Center for Nanostructured Graphene (Center of Excellence)

CenterforNanostructuredGraphene
(CenterofExcellence)
Participants at AAU
Thomas Garm Pedersen
Søren J. Brun
Morten Thomsen
René Petersen
Graphene antidot lattice
External Participants
DTU Nanotech
Project
This center aims at producing,
characterizing and modeling devices
built by nanostructuring graphene. In
particular, structures made from socalled antidot lattices are studied. These
are regular arrays of holes that turn
graphene into a semiconductor. They
also lead to interesting effects in
plasmonics and nanofludics. An
important aim is to fabricate and model
transistors based on this platform.
In the Aalborg node of the center, we
develop, implement and apply
theoretical tools to study the properties
of nanostructured graphene and related
materials.
Homepage
Center: www.cng.dtu.dk/
Thomas Garm Pedersen:
http://homes.nano.aau.dk/tgp/
Full antidot-based device including
contact regions
Recent Publications
2012
1. J. G. Pedersen and T. Garm Pedersen, “Dirac model of an isolated graphene antidot in a magnetic field”, Phys.
Rev. B 85, 035413 (2012).
2. J. G. Pedersen and T. Garm Pedersen, “Band gaps in graphene via periodic electrostatic gating”, Phys. Rev. B
85, 235432 (2012).
3. T. Garm Pedersen and J. G. Pedersen, “Transport in graphene antidot barriers and tunneling devices”, J. Appl.
Phys. 112, 113715 (2012).
4. J. G. Pedersen, T. Gunst, T. Markussen, and T. Garm Pedersen, “Graphene antidot lattice waveguides”, Phys.
Rev. B. 86, 245410 (2012).
5. J. G. Pedersen, M.H. Brynildsen, H. Cornean, and T. Garm Pedersen, “Optical Hall conductivity in bulk and
nanostructured graphene beyond the Dirac approximation”, Phys. Rev. B. 86, 235438 (2012).
2013
6. T. Garm Pedersen and J. G. Pedersen, ”Self-consistent tight-binding model of B- and N-doping in graphene”,
Phys. Rev. B. 87, 155433 (2013).
7. J. G. Pedersen and T. Garm Pedersen, “Hofstadter butterflies and magnetically induced band gap quenching in
graphene antidot lattices”, Phys. Rev. B. 87, 235404 (2013).
8. M.L. Trolle and T. Garm Pedersen, “Second harmonic generation in carbon nanotubes induced by transversal
electrostatic field”, J. Phys.: Condens. Matter. 25, 325301 (2013).
9. M.L. Trolle, U.S. Møller, and T. Garm Pedersen, “Large and stable band gaps in spin-polarized graphene antidot
lattices”, Phys. Rev. B. 88, 195418 (2013).
2014
10. X. Zhu, W. Wang, W. Yan, M.B. Larsen, P. Bøggild, T. Garm Pedersen, S. Xiao, J. Zi, and N. A. Mortensen,
“Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere
lithography”, Nano Lett. 14, 2907 (2014).
11. S.J. Brun, M. Thomsen, and T. Garm Pedersen, “Electronic and optical properties of graphene antidot lattices:
Comparison of Dirac and tight-binding models”, J. Phys.: Condens. Matter 26, 265301 (2014).
12. M.L. Trolle, G. Seifert, and T. Garm Pedersen, “Theory of excitonic second harmonic generation in monolayer
MoS2”, Phys. Rev. B. 89, 235410 (2014).
13. M. Thomsen, S.J. Brun, and T. Garm Pedersen, “Dirac model of electronic transport in graphene antidot
barriers”, J. Phys.: Condens. Matter 26, 335301 (2014).
2015
14. T. Garm Pedersen, “Self-consistent model of edge doping in graphene”, Phys. Rev. B. 91, 085428 (2015).
15. M. Thomsen, S.J. Brun, and T. Garm Pedersen, “Stability and magnetization of free-standing and grapheneembedded iron membranes”, Phys. Rev. B. 91 125439 (2015).
16. R. Petersen and T. Garm Pedersen, “Bandgap scaling in bilayer graphene antidot lattices”, Accepted J. Phys.:
Condens. Matter.
17. S.J. Brun and T. Garm Pedersen, “Intense and tunable second-harmonic generation in biased bilayer
graphene”, Accepted Phys. Rev. B.