실험 8. Digital Filter Design 전자공학과 1 Sampling : impulse train Conversion of impulse train to discrete-time sequence 0 0 2 3 ∴ 0 1 0 1 2 2 3 3 전자공학과 • • • • • 2 Continuous-time signal : Sampling period(interval): Sampling frequency(rate): Angular sampling frequency: Sampled signal | 1/ 2 FT of and Discrete-time FT (DTFT) • DTFT of → Fouriertransform ∴ | At :discrete‐timefrequency 2 s, DTFT of , | ( 은 1/ 와 동일한 주기 함수. 주기는 2 ) 0 2 2 DTFT 1/ Inverse DTFT 1 2 2 전자공학과 3 0 2 4 (skip) Discrete Fourier Transform (DFT)Lab10 • Spectrum of the signal : CTFT 1) time is infinite and continuous. 2) frequency is continuous for very short • FT of sampled signal (time sampling) (approximation ) 2) Finite samples : ∞ ∴ 1) ∞ → 0 1 1 DTFT : continuous we like to compute the spectrum at finite frequencies ( ∴ equally spaced frequencies) 1 Discrete Fourier Transform(DFT) 전자공학과 Discrete time 4 Discrete frequency DFT, Continuous frequency DTFT, Continuous time Fourier series, CTFT, (skip) Relationship between DTFT and DFTLab10 • DTFT • DTFT of finite-length sequence • DFT is obtained from DTFT by evaluating at a discrete set of equally spaced frequencies , for 0,1, ⋯ , 1. 전자공학과 5 Filter : moving average • Discrete-time system : 7-point moving average 1 7 1 7 “filtering”. Ex) 1.02 전자공학과 1 cos ⋯ ,5 0, otherwise 6 6 45 Impulse response • Weighted moving average (filter, length) • Impulse response = filter order, : output for unit impulse input 0for 0andfor Impulse Response length of Convolution sum ∗ 전자공학과 1 = filter 7 is finite Finite Frequency response • Frequency response of 7-point moving average system 1 7 Normalized frequency 1 ( /2 전자공학과 8 Digital filter | • Filter : frequency response – Magnitude vs. frequency (LPF, BPF, HPF, …) – Phase vs. frequency | phase • FIR filter – Linear phase, Stable, Can be realized efficiently in hardware – Require much higher filter order than IIR filter to achieve a given level of performance • IIR filter – Meet a given set of specifications with a much lower filter order than a corresponding IIR filter – – feedback 이 있음. 즉, filter의 이전 출력을 현재 출력 계산에 이용 Nonlinear phase (Usually, the entire data sequence is available prior to filtering. This allows for a noncausal, zero-phase filtering approach (via the filtfilt function), which eliminates the nonlinear phase distortion of an IIR filter.) 전자공학과 9 Ideal low pass filter • Ideal low pass filter • Inverse DFT 1 2 1 2 1 ∴ 1 2 0 sin DTFT Inverse DTFT 1 2 Zero phase response Non-casual system Infinite duration 전자공학과 10 Windowing • To make it causal, the impulse response is shifted after being truncated. Windowing (rectangular window, hamming window) shifting : linear phase/constant group delay 전자공학과 11 Effect of windowing • • • 0.5 ∗ sinc 0.5 , 1000 1000 0.5 ∗ sinc 0.5 , 20 20 : 에 길이 41인 hamming window를 곱한 신호 fir1 function in Matlab Frequency response (magnitude) 전자공학과 12 Effect of windowing 전자공학과 13 (skip) FIR filter in Matlab • fir1 • Ideal LPF에 hamming widowing ringing을 줄임 • n = 50; Wn = 0.4; b = fir1(n,Wn); create row vector b containing the coefficients of the order n Hammingwindowed filter. This is a lowpass, linear phase FIR filter with cutoff frequency Wn. Wn is a number between 0 and 1, where 1 corresponds to the Nyquist frequency, half the sampling frequency. (Unlike other methods, here Wn corresponds to the 6 dB point.) For a highpass filter, simply append the string 'high' to the function's parameter list. For a bandpass or bandstop filter, specify Wn as a two-element vector containing the passband edge frequencies; append the string 'stop' for the bandstop configuration. b2=fir1(50,[0.2 0.4]) 전자공학과 14 Digital Filter Design with Matlab • fir1 • fdatool – Refer to the supplement titled as “lab8_supp_filter_design_matlab.ppt” 전자공학과 15 예비 보고서 • 아래의 Matlab function을 조사하시오. • conv(), freqz(), filter(), fvtool() • sinc(), hamming(), fir1() • 강의자료에서 Matlab으로 그린 그래프를 그리시오. (예비보고서에 각 그래프의 matlab 코드 포함) 전자공학과 16 실험 1 • 다음의 filter를 제작하시오. Filter 제작이 잘 되었는지 frequency response를 그려서 확인하시오. – LPF : 0 ~ 1 kHz – BPF : 1 ~ 2 kHz • ‘She’곡의 10초 가량을 Load하시오. Load한 곡을 1000 Hz 간격으로 0 Hz~5kHz 주파수 대역을 분리해서 곡을 제작하고 각 주파수 대역 의 주파수 특성 및 음향학적 특성을 분석하시오. 즉, 0 ~ 1 KHz, 1 ~ 2 kHz, 2 ~ 3 kHz, 3 ~ 4 kHz, 4~ 5 kHz의 주파수 성분을 분리해내 어 소리를 들어보고 spectrogram을 그려보시오. 어떠한 특성이 있는 지 기술하시오. (디지털 필터 이용) 전자공학과 17 실험 2 • Lab 7의 두 번째 실험에서 제작한 작은별 곡(2, 3, 4차 하모닉 성분 포함)으로부터, 기저대역 (fundamental), 2차 하모닉, 3차 하모닉, 4차 하모닉 성분만으로 된 4개의 곡을 제작하시오 (디지털 필터 설계). 제 작한 각각의 곡의 주파수 특성을 분석하시오 전자공학과 18 실험 3 • 설계2에서 제작된 기저대역, 2차, 3차, 4차 하모닉 성분들을 합성하 여 곡을 제작하시오. 이때 각 주파수 대역의 성분들을 합성하는 비율 을 다르게 하면서 합성된 곡의 주파수 특성 및 음향학적 특성을 분석 하시오. 전자공학과 19
© Copyright 2024