FE / GQ/ MATHS I / EXPANSION & SD EXPANSIONS OF FUNCTIONS Maclaurian’s Theorem: Let f (x) be a function of x then bg b g f x = f 0 x2 + f 2! b g + x f 0 b0g x3 + f ' 3! b0g + .... Taylor’s Theorem: b i. f x + h g b g ii. f x b iii. f x + h g b g + x f' b h g + = f h x2 f'' 2! 3 b h g + x3! f' '' b h g + ...... b x - a g f' b a g + b x - a g f' ' b a g + b x - a g 2 b g = f a + 2! 2 b g + h f' b x g h + f'' 2! = f x bxg 3! 3 h + f' ' ' 3! 3 f'' ' b a g.... b x g + ....... Standard Results: 2 3 4 5 x x x x + + + + .......... 2! 3! 4! 5! 1. ex = 1 + x + 2. sin x = x - 3. cos x = 1 - 4. x x sinh x = x + + + ........... 3! 5! 5. x x x cosh x = 1 + + + + ........ 2! 4! 6! 6. log 1 + x 7. log 8. tanh-1 x = x + 9. x x x tan x = x + + ........ 3 5 7 10. x 2x tan x = x + + 3 15 11. x 2x tanh x = x + 3 15 3 5 2 b g b1 - xg -1 7 x x x + + ............ 3! 5! 7! 4 6 x x x + + .......... 2! 4! 6! 3 5 2 4 6 2 = x - 3 2 = - x 3 3 3 …..Progress through quality education 5 3 4 5 x x x x ........ 2 3 4 5 5 x x + 3 5 3 4 x x x x + + ......... 2 3 4 5 5 + ......... 7 5 + .......... 5 ....... 1 FE / GQ/ MATHS I / EXPANSION & SD 12. 13. 14. b1 + xg b1 + xg b1 - xg b m m -1 2! gx b = 1 + mx + 1 = 1 - x + x2 - x3 + x4 ......... 1 2 gb m m -1 m-2 3! m + g x3 + .... = 1 + x + x2 + x3 + x4 + ...... TYPE -I : Method of using Maclaurin’s Series e x j Pr ove that log 1 + e 2. Find the Maclaurian's series expansion of 3. = log 2 + 1 1 2 1 4 x + x x + ..... 2 8 192 1. b LM FG N H log tan IJ OP upto x KQ F 1 + x IJ . log G H 1-x K + x 4 g Obtain the series of log 1 + x . Hence find the series of Use this expansion to find log FG 11 IJ H9K 4. Expand log (sec x + tan x) as a series in ascending powers of x 5. ex Find the series expansion of 1 ex 6. Proe that log log 1 + x 7. Pr ove that 8. Prove that e 9. LM b OP = g N Q b1 + xg = 1 + x 1 x x Prove that e x sin x ax -1 5 2 1 3 251 4 x + x x + x + ..... 2 24 8 2880 2 - 1 3 5 4 x + x ....... 2 6 1 4 1 6 x + x + ....... 3 120 2 = 1 + x + 2 a - b cos bx = 1 + a x + 2! e x sin e - 1 j 10. Prove that 11. Prove that 12. Expand log 1 + x + x + x = x + 13. Prove that 2 LM N b1 + xg 1x x 3 Expand log 1- x + x - x …..Progress through quality education j 3! jx 3 + ...... OP Q x 11 2 + x ...... 2 24 15. 3 + 2 8 14. 2 2 1 2 5 4 x x + ....... 2 24 x Expand x upto x . Hence show that 2 e 1 e x e a a - 3b 2 j upto a term in x = e 1 4 2 1 1 2 1 3 1 4 x x x + x + ....... 2 8 48 384 1 + sin x = 1 + e 5 F GH x I J - 1 K e + 1 e x 2 4 x x = 1 + + ......... 2 720 8 upto a term in x 2 FE / GQ/ MATHS I / EXPANSION & SD 16. 17. 18. b Prove that log 1 + sin x g = x - 1 2 1 3 x + x + ....... 2 6 FG 1 + x + x + 5 x + 5 x + ........IJ H K 6 8 b - 1g 2 x Prove that cos x = 1 + b 2n g ! 1 2 Prove that log b 1 + tan x g = x - x + x +......... 2 3 Prove that e e x 2 = e 2 3 n 4 2n-1 2n n=1 19. 2 3 1 2 7 4 x + x + ...... 6 360 20. Prove that x cosec x = 1 + 21. Prove that log 23. Expand tan-1 x in ascending powers of x 24. Expand sin-1 x in ascending powers of x 25. Expand cos-1 x in ascending powers of x 26. Prove that log sec x = 27. Prove that sinh x = x - F1+e I GH e JK 2x = log2 + x 1 2 1 4 1 6 x x + x + ...... 2 12 45 1 2 1 4 1 6 x + x + x + ......... 2 12 45 1 3 3 5 x + x + ....... 6 40 -1 Type-II : Expansion of function using Substitution 28. 29. 30. 31. 32. 33. 34. FG 2 x IJ = 2 L x - 1 x + 1 x .......O MN 3 PQ H 1-x K 5 F 2 x IJ in ascending powers of x Expand sin G H1+x K L 1 x + 1 x ......OP Prove that cos tanh b log x g = - 2 M x 5 N 3 Q F 1 IJ = 2 L x + 1 x + 3 x + ....... O Prove that sec G PQ H 1 - 2 x K MN 6 40 L 1 x + 3 x .......OP Show that sinh e 3 x + 4 x j = 3 M x 40 N 6 Q LM 1 + x 1 OP Expand tan x MN PQ in ascending powers of x Pr ove that tan -1 3 5 2 -1 2 -1 3 -1 3 5 5 2 -1 3 -1 5 2 -1 Expand tan 3 1 - x in ascending powers of x 1 + x …..Progress through quality education 3 FE / GQ/ MATHS I / EXPANSION & SD FG H 35. Expand tan-1 36. Prove that sin 37. Prove that tan IJ in ascending powers of x K e 3 x + 4 x j = 3 LMN x + 16 x + 403 x ....... OPQ F 3 x - x I = 3 L x - 1 x + 1 x .......... O GH 1 3 x JK MN 3 PQ 5 p - qx q + px -1 -1 3 3 3 5 3 5 2 EXPS - 3 2 3 38. 1 2 1 3 1 4 x x If x = y y + y y ......., then prove that y = x + + + ...... 2 3 4 2! 3! 39. x x x y y y If y = x + + + + ....... then prove that x = y + + ..... 2! 3! 4! 2 3 4 40. If x = y - 41. y y y If x = 1 + ...... find y in a series of x 2! 4! 6! 42. y = tan -1 x 2 3 2 4 x cos b sin x sin y3 2y5 + + ....... 3 15 g = xn Sin n n! n=1 x 44. 45. 46. 47. Expand Expand Expand Expand 48. If x + y + xy - 1 = 0 e cosx in ascending powers of x sin x sinh x in ascending power of x ex sin x in ascending powers of x eax sin bx in ascending powers of x 3 3 prove that y = 1 - b g b g b 1 - y g b 1 - 2y g prove that y e 1 + y j, prove that y = 2 50. If x = 51. If x 52. If y3 + y - x = 0, prove that y = x - x3 + 3 x5 ....... 54. 2 y = 1 + x - 2 x ....... 3 5 x - x + 3 x ...... 3 + 2xy - y + x = 1 prove that y = -1 + x - e sin x j Prove that log F x + H Prove that -1 …..Progress through quality education 2 b g 1 26 3 x x ........ 3 81 If x = 2 b g then by obtaining y 0 , y1 0 , y2 0 , and y3 0 49. 53. 4 6 prove that x = y + Pr ove that e 3 3 y3 y5 y7 x3 3x5 + + ....... then prove that y = x + + + ...... 3! 5! 7! 6 40 2 43. 4 2 4 1 2 x ..... 3 6 x x x = 2 + 2.22 + 2.22 42 + ..... 2! 4! 6! 1 + x2 IK = x - x3 2 x5 2 2 x7 2 2 2 1 + 3 1 5 .3 .1 + ...... 3! 5! 7! 4 FE / GQ/ MATHS I / EXPANSION & SD 55. sin -1x If y = 1 x 57. , show that 2 3 2.4 5 246 7 x + x + x + ...... 3 3.5 3 5 7 y = x + 56. 2 Sinh-1x Show that = x - 1 + x2 Prove that e cos-1 x e2 = 2 3 8 5 16 7 x + x x + ....... 3 15 35 LM 1 - x + N OP Q x2 x3 + ........ 2 3 EXPS-4: Taylor’s Theorem 58. 59. 60. 61. Expand e b x in powers of x - 1 g bx - 1g F IJ Expand tan x in powers of G x H 4K x - 2 bx - 2g Prove that log x = log2 + -1 Expand tan x in powers of -1 2 2 + 8 FG x - IJ H 2K bx - 2g 21 62. Expand cos x in powers of 63. Expresses x - 5 x + 6 x - 7 x + 8 x - 9 in powers of 64. 65. 66. 67. 68. 69. 5 4 3 3 2 ....... bx - 1g bx + 2g Expand x - 3 x + 2 x - x + 1 in powers of b x - 3 g Express f bxg = 2 x + 3 x - 8 x + 7 in terms of b x - 2 g Expand 7 x - 3 x + x + 2 in powers of b x - 1 g Expand x - 3 x + 4 x + 3 in powers of b x - 2 g Expand 2 x + 7 x + x - 6 in powers of b x - 2 g 3 2 Expand 3 x - 2 x + x - 4 in powers of 4 3 2 3 6 5 3 2 2 2 3 2 70. By using Taylor’s Theorem arrange in powers of x 7 + bx + 2g + 3bx + 2g + bx + 2g - bx + 2g 3 4 5 71. By using Taylor’s theorem arrange in power of x b 17 + 6 x + 2 g + 3 b x + 2 g + b x + 2g - b x + 2 g 3 4 5 72. Using Taylor’s theorem express bx - 2g 4 73. b - 3 x - 2 g 3 Arrange in powers of x: …..Progress through quality education b + 4 x - 2 bx - 3g 4 g 2 + 5 b in powers of x - 3 x - 3 g + bx - 3g 3 2 + 5 5 FE / GQ/ MATHS I / EXPANSION & SD LM FG N H 74. Arrange log tan 75. Arrange sin FG H IJ OP KQ + x 4 IJ K + x 6 in power of x by Taylor's theorem in powers of x 76. Using Taylor’s theorem show that 1 + x + 2x 77. Expand 2 1 7 2 7 3 x + x x ..... 2 8 16 = 1 + e1 + x + 2x j 2 1 2 b in powers of x - 1 g 78. If sinh 1.5 = 2.1293 & cosh 1.5 = 2.3524, Using Taylor’s series calculate sinh 1.505 79. Using Taylor's series find 9.12 correct to five decimal places 80. Using Taylor’s theorem obtain tan-1 ( 1. 003 ) to four decimal places where = 3.1416 FG 11 IJ where f b x g H 10 K = x3 + 3x2 + 15x - 10 using Taylor's series 81. Find the value of f 82. Using Taylors theorem obtain the expansion of tan FG x + IJ H 4K in ascending powers of x upto a term in x4 and hence find approximately The values of tan (43) and tan (46 30’) 83. Using Taylor’s theorem find sin (30, 30) 84. Using Taylor’s theorem find cos (64) 85. Calculate the value of 10 correct to four decimal places by using Taylors theorem ANSWERS FG 1 + x IJ H 1-x K 3. log 4. x + 6. 1 4 12. x + LM 4 - 2 MN e 5 2 + 4 2 2 + 6 3 j I JK 7 x x x + + + ...... ; 3 5 7 FG 11 IJ H 10 K = 0.20067 1 1 1 3 + x x + ...... 2 4 48 5. 2 log e j 4 e j 6 OP PQ x 4 4 4 x 6 6 6 x + 2 + 4 + 6 - 2 + 4 + 6 .... 2! 4! 6! 5 6 7 x x 3 4 x x x 3 8 + x + + + x + ...... 2 3 4 5 6 7 8 x x Fx+ GH 1 3 1 5 x + x + ........ 6 24 2 14. = 2 e - 1 = 1 - x x2 x4 + + ..... 2 12 720 …..Progress through quality education 6 FE / GQ/ MATHS I / EXPANSION & SD 2 3 5 -x + 23. x x x x + + ...... 3 5 7 25. 2 3 33. 35. 6 7 x x 3 4 x x x 3 8 x x ...... 2 3 4 5 6 7 8 15. 5 LM x + MN 7 OP PQ 3 x 3 5 + x + ..... 6 40 LM x - x + x ......OP MN 3 5 PQ F p IJ - FG x - x + tan G HqK H 3 3 1 2 3 x 3 5 x + + x + ...... 6 40 24. 5 3 -1 58. 59. x 45. x x x - 8 + 32 ....... 6! 10 ! 1 3 3 5 x + x ..... 6 40 I JK 5 6 2 10 b g 3 x x + ......... 2 3 46. 1 + e OP Q 1 4 2 x .......... 5 1 3 1 4 x x ........ 44. 1 + x 3 6 2 LM x + N 34. LM MN = e 1 + b x - 1 g b x -2!1 g 2 + 1 + 4 2 + bx - 1g OP PQ 3 3! ...... b x - 1 g - 41 b x - 1 g + 121 b x - 1 g ....... F x - I FG x - IJ F IJ + FG x - IJ GG 4 JJ H 4 K + ....... tan G H 4 K H 4 K GG 1 + JJ 4 F I H 16 K GH1 + 16 JK F IJ + 1 FG x - IJ - 1 FG x - IJ ....... G x H 2 K 3! H 2 K 5! H 2 K 6 - 3 b x - 1 g - 9 b x - 1 g - 4 b x - 1 g + b x - 1 g 38 + 45 b x + 2 g - 20 b x + 2 g + 3 b x + 2 g 16 + 38 b x - 3 g + 29 b x - 3 g + 9 b x - 3 g + b x - 3 g 19 + 28 b x - 2 g + 15 b x - 2 g + 2 b x - 2 g 7 + 29 b x -1 g + 76 b x -1 g + 110 b x -1 g + 90 b x - 1 g + 39 b x -1 g -1 tan x = 2 3 2 -1 60. 2 2 3 62 63. 64. 65. 66. 67. …..Progress through quality education 5 2 3 5 2 2 2 3 2 3 2 3 3 4 4 5 b + 7 x -1 g 6 7 FE / GQ/ MATHS I / EXPANSION & SD 68. 69. b g + 3bx - 2g + bx - 2g 40 + 53 b x - 2 g + 19 b x - 2 g + 2 b x - 2 g 2 7 + 4 x - 2 3 2 3 70. 17 - 11 x - 38 x2 - 29 x3 - 9 x4 - x5 71. 37 - 6 x - 38 x2 - 29 x3 - 9 x4 - x5 72. 61 - 84 x + 46 x2 - 11 x3 + x4 73. 185 - 51 x + 85 x2 - 15 x3 + x4 4 3 4 5 x + x 74. 2 x + 3 3 75. 1 + 2 77. 2 + 3 1 x2 x 2 2 2! 5 4 bx - 1g + 78. 2.1411 80. 0.78690 82. b tan 43 g 7 64 3 x3 1 x4 + + 2 3! 2 4! bx - 1g 79. 81. = 0.9326 ; 83. 0.50735 85. 3.1623 …..Progress through quality education b 2 - 505 3072 3 x5 ........ 2 5! b x - 1 g ..... 3 3.0146 3.511 tan 46 30' g = 1.05378 84. 0.4384 8 FE / GQ/ MATHS I / EXPANSION & SD Successive Differentiation STANDRED RESULTS y n a n e ax 1. y = e ax a f a f 2. y = sin ax + b 3. y = cos ax + b a f a f 5. y = e ax cos bx c a fm 7. y = a 1 m ax + b a a f n/2 e j e n/2 y n a 2 b2 y n a 2 b2 j e ax sin ebx c n tan-1ab / afj e ax cos ebx c n tan-1ab / afj f a f n 1f a m + n -1f! a n a yn am 1f! aax bfmn a1fn1a n ann 1f! yn aax bf yn f 8. y = log ax + b f y n a n cos ax b n / 2 4. y = e ax sin bx c 6. y = ax + b a y n a n sin ax b n / 2 f a (N - 95) m! m n a n ax b if m > n m n ! (M - 98) TYPE-SD – I Find the n th derivative of the following functions 1. sin2x cos3x 2. cos3x sin2 x (June - 04) 3. sin5x cos3 x 4. cosx cos2x cos3x 5. e 3x sin 4 x 6. e 2x sin 2 x cosx 7. e ax cos2 x sin x (N - 94) 8. e 3x sin x cosx (N - 95) a 9. 2 x sin 2 x cos3 x M - 97 f 11. sin 2 x sin3x cos4x (D - 04) a f 10. e xcos cos x sin (N - 97) 3 12. sin 3x ( Jan 03) TYPE-SD – II 1. 3. x ax -1f ax - 2f ax - 3f 1 a3x - 2f ax - 3f3 (M - 96) (M - 95) …..Progress through quality education 2. 4. x2 x 1 x 3 6x 2 11x 6 x2 ax 2f a2x + 3f aN - 95f 9 FE / GQ/ MATHS I / EXPANSION & SD 5. x 6. x2 a 2 4x ax 1f ax + 1f 7. 2 c2 x x2 2 h (m - 06) 7x 6 TYPE-SD – III Find the n th derivative of the following functions 3. tan -1 F 1 x2 1I GGH x JJK F 2x IJ (D - 05) 4. sin -1G H 1 x2 K aM - 99f 1. tan -1x FG 1 x IJ aN - 95, Jan - 02, M - 05f H 1 xK F x x1 I (M 04) 5. cos-1G H x x1 JK 2. tan -1 FG 2x IJ H 1 x2 K 3. y = tan -1 Examples based on Leibniz’s Theorem 1. If y x 4 cos 3x , find y n e 2. If y = sin -1x sin -1x 3 If y = 1 x 2 j 2 then prove that then prove that e1- x2 j y n2 b2n 1 g xy n1 n2 y n 0 aM - 97f e1- x2 j y n1 b2n 1 g xy n n2 y n1 = 0 aN - 95f a f a f b g e j -1 5. If y = e tan x then prove that e x 2 1jy n2 b2( n 1) x 1 gy n n b n 1 gy n 0 6. If x = sin , y = sin2 then prove that e1- x 2 jy n2 b2 n 1 gxy n1 e n 2 4jy n 0 7. If y = sin e m sin -1xj then prove that e1- x 2 j y n2 b2 n 1 g xy n1 e n 2 m2 j y n 0 y F xI n 8. If cos-1 log G J then prove that x 2 y n2 b2 n 1 g xy n1 2 n 2 y n 0 H nK b 4. If y = a cos logx b sin logx then prove that x 2 y n2 2 n 1 xy n1 n 2 1 y n 0 9. If FG H y 1 m IJ K + y FG H 1 m IJ K = 2x, aM - 96f prove that a 2n + 1 f xy n + 1 + e n2 - m2 j y n = 0 and hence find y n a 0 f 2 10. If Y = log e x + x + 1j prove that Y a 0 f = 0 and Y a 0 f = a - 1 fn 12 . 32 . 52 ..... a 2 n - 1 f2 ex 2 j - 1 yn + 2 + 2n 11. If 2n+1 f ( x ) = cot x, show that n n-1 n n-3 C1 f 0 - C3 f a f a f = tan x , 12. If f x P. T. f …..Progress through quality education n a0f + n C5 f n-5 a0f - ..... = cos n 2 a0f - nC2 f n - 2 a0f + nC4 f n - 4 a0f - ........ = sin n2 10
© Copyright 2025