Chemical Bonding CHEM 6277-10 Lecture 21 Lecturer: Hanning Chen, Ph.D.

Chemical Bonding
CHEM 6277-10
Lecture 21
Molecular Vibrational Spectroscopy
Lecturer: Hanning Chen, Ph.D.
11/06/2014
Quiz 20
10 minutes
Please stop writing when the timer stops !
Vibrational Degrees of Freedom
For a system with N atoms, (N > 1)
Linear Molecules
Non-Linear Molecules
Translational
3
3
Rotational
2
3
Vibrational
3N-5
3N-6
Total
3N
3N
Nv = 4
Nv = 3
Nv = 1
Geometry Optimization
How to find a molecular geometry with the lowest energy?
Let us start from an arbitrary geometry denoted by
{
! !
!
R1, R2 ,..., RN
}
step by step
! !
!
E R1, R2 ,..., RN
({
Assumption:
{
})
{
! !
!
R1', R2' ,..., RN '
! !
!
> E ' R1', R2' ,..., RN '
({
! !
!
R1', R2' ,..., RN '
mandatory condition:
}
})
}
{
! !
!
R1, R2 ,..., RN
R2
R1
}
2
atomic
coordinates
3
R3
1
is the optimized structure! (I am feeling lucky!)
∂E ({ R})
∂({ R})
! !
!
R= R1', R2' ,..., RN '
{
=
0
}
quasi-Newton Method
{
Taylor expansion of energy at the initial structure
∂E ( R )
E ( R') = E ( R ) + ∑ ( R − Ri )
∂Ri
i=1
3N
'
i
3N 3N
R={R}
+ ∑ ∑ ( R − Ri )
!
Energy gradients evaluated at R
∂E ( R )
Ei =
∂Ri
'
i
i=1 j=1
(
∂ E ( R)
R − Rj
∂Ri ∂R j
∂ E ( R)
Eij =
∂Ri ∂R j
R={R}
2 ∂ E ( R)
1
'
+ ∑ ( Ri − Ri )
R={R}
2
2 i=1
∂Ri
2
3N
∂ E ( R)
Eii = 2
∂ Ri
R={R}
2
R={R}
R={R}
second-order derivative
3N 3N
E ( R') = E ( R ) + ∑ ( R − Ri )Ei + ∑ ∑ ( R − Ri )
no
mandatory
condition
2
}
2
'
i
i=1
)
'
j
first-order derivative
3N
! !
!
!
R1, R2 ,..., RN = R
'
i
i=1 j≠i
(
)
3N
2 2
1
'
R − R j Eij + ∑ ( Ri − Ri ) Eii
2 i=1
'
j
The energy expression is NOT quite useful.
Further Partial Differentiation
Derivative with respect to the atomic coordinate components:
∂E ( R') ∂E ( R )
=
+∑
∂Ri '
∂Ri '
i=1
3N
∂( R − Ri )
'
i
∂Ri '
3N 3N
Ei + ∑ ∑
∂( R − Ri )
'
i
∂Ri '
i=1 j≠i
3N
(
)
(
∂
R
−
R
(
1
i)
'
2
R j − R j Eij + ∑
Eii
2 i=1
∂Ri '
)
'
i
3N
2
0 = 0 + Ei + ∑ R − R j Eij + ( R − Ri ) E
j≠i
'
j
3N
(
'
i
2
ii
)
Ei = ∑ R j − R Eij
j=1
For all coordinate components:
Hessian
Matrix
second
derivative
⎛ E11
⎜
⎜ E21
⎜ ...
⎜
⎜⎝ E(3N )1
E12
...
E1(3N )
E22
...
E2(3N )
...
...
...
... E(3N )(3N )
E(3N )2
'
j
⎞⎛ R −R
1
1'
⎟⎜
⎟ ⎜ R2 − R2'
⎟⎜
...
⎟⎜
⎟⎠ ⎝ R3N − R3N '
⎞ ⎛ E1
⎟ ⎜
⎟ = ⎜ E2
⎟ ⎜ ...
⎟ ⎜
⎠ ⎝ E3N
⎞
⎟
⎟
⎟
⎟
⎠
Gradient
Vector
first
derivative
Feeling Lucky?
Taylor expansion is truncated at the second order !
2
3N
3N 3N
∂E ( R )
∂ E ( R)
'
'
'
E ( R') = E ( R ) + ∑ ( Ri − Ri )
+ ∑ ∑ ( Ri − Ri ) ( R j − R j )
R={R}
i=1
∂Ri
i=1 j=1
2 ∂ E ( R)
1
'
+ ∑ ( Ri − Ri )
R={R}
2
∂Ri ∂R j
2 i=1
∂Ri
3N
2
R={R}
Energy
The potential energy surface is NOT necessarily a perfect harmonic well.
global
minimum
local
minimum
R
Quasi-Newton method does NOT help the system escape a local minimum !
Molecular Mechanics of a Vibrating System
one-dimensional 3-atom model system:
equilibrium
positions:
instantaneous
positions:
Hooke’s Law:
F = k(x − x0 )
Newton’s Law:
2
d x
F = −m 2
dt
1
2
3
x10
x1
x20
x2
x30
x3
Forces acting on atom 1:
F1 = k11 ( x1 − x10 ) + k12 ( x2 − x20 ) + k13 ( x3 − x30 )
Each atom vibrates at a fundamental angular frequency
x1 = Asin (ω t ) + x10
2
d x1
2
F1 = −m1 2 = −m1ω ( x1 − x10 )
dt
ω
:
Atomic Forces
For atom 1:
−m1ω
2
( x1 − x10 ) = k11 ( x1 − x10 ) + k12 ( x2 − x20 ) + k13 ( x3 − x30 )
mass-weighted displacements:
x = m1 ( x1 − x10 ) x = m2 ( x2 − x20 ) x = m3 ( x3 − x30 )
'
2
'
1
'
3
mass-weighted force constants:
k =
'
11
k11
m1 m1
k =
'
12
k12
m1 m2
k =
'
13
k13
m1 m3
Relation between the atomic displacements:
−ω x = k x + k x + k x
2
'
1
'
'
11 1
'
'
12 2
'
'
13 3
Matrix Representation
For a molecule with N vibrational degrees of freedom:
⎛
mass-weighted ⎜
Hessian
⎜
⎜
Matrix
⎜
⎜⎝
'
11
'
12
...
k
k
'
22
...
...
'
kN1
...
'
kN 2
...
...
k
k
'
12
⎞
⎛
k
⎟
⎜
'
k2 N ⎟ ⎜
⎟⎜
... ⎟ ⎜
'
kNN ⎟⎠ ⎜⎝
'
1N
⎞
⎛
x
⎟
⎜
'
x2 ⎟
2⎜
=
−
ω
⎟
⎜
... ⎟
⎜
'
⎜⎝
x N ⎟⎠
'
1
⎞
x
⎟
'
x2 ⎟
⎟
... ⎟
'
x N ⎟⎠
'
1
Standard Eigenvalue-Eigenfunction Problem
Eigenvalues:
Normal mode
analysis: Eigenfunctions:
k =
'
ij
kij
mi m j
ω
vibrational frequencies
{x }
=
'
i
normal mode
1
mi
∂ E
m j ∂ri ∂rj
2
energy perturbation
atomic displacements
Some Examples
Water (H2O) molecule:
wavenumber
−1
1 cm = 3.0 × 10 Hz
10
3657.1 cm
-1
1594.7 cm
-1
3755.9 cm
Carbon Dioxide (CO2) molecule:
1388 cm
677 cm
-1
-1
2349 cm
677 cm
-1
-1
-1
Infrared Spectroscopy
How can we detect the vibrational modes?
Infrared:
100 → 10000 wavenumbers
Unfortunately, the molecular vibrations are INVISIBLE,
because the corresponding wavelengths are longer than RED light.
Theory of Quantum Harmonic Oscillator
Hamiltonian:
2
ˆ
p
1
2
ˆ
H=
+ mω xˆ
2m 2
Wavefunction:
ϕ n (x) =
Energy levels:
1⎞
⎛
En = !ω ⎜ n + ⎟
⎝
2⎠
1
4
⎛ mω ⎞
e
⎜
⎟
n
⎝
⎠
π
!
2 n!
1
mω x 2
−
2!
mω x
Hn(
)
!
wavefunction orthogonality:
ϕ n ' ϕ n = δ nn '
Principles of Infrared Spectroscopy
Fermi’s Golden Rule:
transition rate:
Ri→ f
2π
ˆ
=
Ψi H ' Ψ f
!
2
ρf
coupling energy
Born-Oppenheimer Approximation:
vibronic
wavefunction:
Ψ(R, r) = ψ vib (R)ϕ ele ( R, r )
Under light irradiation:
ψ vib (R) : vibrational
ϕ elec (R) : electronic
!
!
ˆ
H ' (ω ) = E (ω )ir
Separation of vibrational and electronic degrees of freedom:
Ri→ f
2π
"
2
=
ψ i (R) ϕ elec (R, r) r ϕ elec (R, r) ψ f (R) ρ f E
!
!
µ (R, r) : dipole moment
Dipole Moment Perturbation
Taylor expansion of the dipole moment:
µ0
⎛ ∂µ ⎞
µ ( R, r ) = µ ( R0 , r ) + ( R − R0 ) ⎜ ⎟
⎝ ∂R ⎠
static dipole moment
R0
derivate of the
dipole moment
atomic displacement
Transition rate:
2
2
2
2π
2π ⎛ ∂µ ⎞
2
2
Ri→ f =
ψ i (R) µ0 ψ f (R) ρ f E +
⎜⎝ ⎟⎠ ψ i (R) ( R − R0 ) ψ f (R) ρ f E
!
! ∂R
δ if
Ri→ f
2
2
2π 2
2π ⎛ ∂µ ⎞
2
2
=
µ0 ψ i (R) ψ f (R) ρ f E +
⎜⎝ ⎟⎠ ψ i (R) ( R − R0 ) ψ f (R) ρ f E
!
! ∂R
=0
Ri→ f
2
2
2π 2 2
2π ⎛ ∂µ ⎞
2
2
=
µ0 δ if ρ f E +
⎜⎝ ⎟⎠ ψ i (R) ( R − R0 ) ψ f (R) ρ f E
!
! ∂R
2
Vibrational Transition Rate
2
2π ⎛ ∂µ ⎞
2
=
⎜⎝ ⎟⎠ ψ i (R) ( R − R0 ) ψ f (R) ρ f E
! ∂R
2
Ri→ f
Vibrational transition dipole moment:
2
2
2π ⎛ ∂µ ⎞
2π ⎛ ∂µ ⎞
2
2
=
⎜⎝ ⎟⎠ ψ i (R) R ψ f (R) ρ f E −
⎜⎝ ⎟⎠ ψ i (R) R 0 ψ f (R) ρ f E
! ∂R
! ∂R
2
Ri→ f
2
2
2π ⎛ ∂µ ⎞
2π ⎛ ∂µ ⎞ 2 2
2
2
=
⎜⎝ ⎟⎠ ψ i (R) R ψ f (R) ρ f E −
⎜⎝ ⎟⎠ R0 δ if ρ f E
! ∂R
! ∂R
2
Ri→ f
µif
⎛ ∂µ ⎞
⎜⎝ ⎟⎠ :
∂R
derivative of electronic dipole moment
2
2π ⎛ ∂µ ⎞ 2
2
=
⎜⎝ ⎟⎠ µif ρ f E
! ∂R
2
Ri→ f
=0
µif :
vibrational transition dipole moment
Selection Rules for Infrared Spectroscopy
1 ⎛ mω ⎞
ψ i (R) R ψ f (R) = n ⎜
⎟
2 n! ⎝ π ! ⎠
only when
Rule 1:
1
2
e
∫
mω R 2
−
!
f = i + 1 or f = i − 1
ΔE = ±!ω
mω x
mω x
Hi (
)RH f (
)dR
!
!
ψ i (R) R ψ f (R) ≠ 0
ψ i (R) R ψ f (R) =
Vibrational transition can only occur between two neighboring vibrational states !
Rule 2:
⎛ ∂µ ⎞
≠
0
⎜⎝ ⎟⎠
∂R
A normal mode that does not change electronic dipole moment is not IR-detectable!
Infrared Active Normal Modes
Water (H2O) molecule:
IR active
IR active
IR active
Carbon Dioxide (CO2) molecule:
IR inactive
IR active
IR active
IR active
Raman Spectroscopy
Nobel Prize
Physics
excited
λsca
λinc
1930
vibrational
manifolds
ground
Rayleigh scattering
Intensity:
Chandrasekhara. V. Raman
Stokes shift
anti-Stokes shift
I Rayleight ≫ I Stokes > I anti − Stokes
Theory of Raman Spectroscopy
induced dipole moment:
−
P
+
E
Pi = α ij E j
α ij : molecular polarizability
tensor
Electromagnetic field:
E = E0 cos (ω 0t )
Taylor expansion of the molecular polarizability:
∂α
∂α
α = α (R0 ) +
dR = α (R0 ) + A
cos ω vibt
∂R
∂R
Atomic displacements:
dR = A cos ω vibt
Dipole Moment Fluctuation
∂α
⎛
⎞
P ( t ) = α (t)E(t) = ⎜ α (R0 ) + A
cos ω vibt ⎟ E0 cos (ω 0t )
⎝
⎠
∂R
AE0 ∂α
P ( t ) = α (R0 )E0 cos (ω 0t ) +
( cos(ω 0 − ω vib )t + cos(ω 0 + ω vib )t )
2 ∂R
Rayleigh scattering
Stokes scattering
anti-Stokes scattering
A vibrating dipole emits electromagnetic fields !
I Raman
⎛ ∂α ⎞
∝⎜
⎟
⎝ ∂R ⎠
2
Raman selection rule:
∂α
≠0
∂R
Raman Active Normal Modes
Water (H2O) molecule:
Raman active
Raman active
Raman active
Carbon Dioxide (CO2) molecule:
Raman active
Raman inactive
Raman inactive
Raman inactive
Review of Homework 20
12.16 State whether each of the following is a group. (a) All the integers (positive, negative and zero)
with the rule of combination for forming the product of two elements being addition. (b) All positive
integers with the rule of combination being multiplication. (c) All real numbers except zero, with the
rule of combination being multiplication.
(1) close (2) associative (3) identity (4) inversible
(a) A+B=C, (A+B)+C=A+(B+C), I=0, A+(-A)=I=0
→
YES
(b) A*B=C, (A*B)*C=A*(B*C), I=1, A*(1/A)=I=1
→
NO
(c) A*B=C, (A*B)*C=A*(B*C), I=1, A*(1/A)=I=1
→ YES
Homework 21
Reading assignment:
Homework assignment:
Chapter 15.10, 15.11, 15.12, 15.13
Problems 15.34, 15.39
Homework assignments must be turned in by 5:00 PM, November 7th, Friday
to my mailbox in the Department Main Office
located at Room 107, Corcoran Hall