Pre-Calc Trig ~1~ − − √ − √ − −

Unit Circle – Class Work
Find the exact value of the given expression.
1. π‘π‘œπ‘ 
4πœ‹
βˆ’
4. π‘‘π‘Žπ‘›
2. 𝑠𝑖𝑛
3
𝟏
𝟐
7πœ‹
βˆ’
βˆ’5πœ‹
5. π‘π‘œπ‘‘
6
3. 𝑠𝑒𝑐
4
4
6. 𝑐𝑠𝑐
βˆ’πŸ
βˆšπŸ‘
πŸ‘
3 βˆ’2√10
7. Given the terminal point ( ,
7
𝐭𝐚𝐧 𝜽 = βˆ’
βˆ’9πœ‹
2
βˆ’πŸ
) find tanΞΈ
𝟐√𝟏𝟎
πŸ‘
8. Given the terminal point (
𝐜𝐨𝐭 𝜽 =
7
3
βˆ’πŸ
√𝟐
𝟐
15πœ‹
2πœ‹
βˆ’5 βˆ’12
13
,
13
) find cotΞΈ
πŸ“
𝟏𝟐
2
9. Knowing cosx= and the terminal point is in the fourth quadrant find sinx.
3
𝐬𝐒𝐧 𝒙 = βˆ’
βˆšπŸ“
πŸ‘
4
10. Knowing cotx= and the terminal point is in the third quadrant find secx.
5
𝐜𝐨𝐭 𝒙 = βˆ’
Pre-Calc Trig
𝟐√𝟏𝟎
πŸ‘
~1~
NJCTL.org
Unit Circle – Home Work
Find the exact value of the given expression.
11. π‘π‘œπ‘ 
5πœ‹
12. 𝑠𝑖𝑛
3
𝟏
𝟐
14. π‘‘π‘Žπ‘›
4
13. 𝑠𝑒𝑐
15. π‘π‘œπ‘‘
6
13πœ‹
4
16. 𝑐𝑠𝑐
𝟏
βˆšπŸ‘
πŸ‘
7
βˆ’24
25
25
17. Given the terminal point ( ,
𝐜𝐨𝐭 𝜽 = βˆ’
3
βˆ’11πœ‹
2
𝟏
) find cotΞΈ
πŸ•
πŸπŸ’
18. Given the terminal point (
𝐭𝐚𝐧 𝜽 = βˆ’
4πœ‹
βˆ’πŸ
√𝟐
𝟐
βˆ’7πœ‹
βˆ’
3πœ‹
βˆ’4√2 7
9
, ) find tanΞΈ
9
πŸ•βˆšπŸ
πŸ–
7
19. Knowing sinx= and the terminal point is in the second quadrant find secx.
8
𝐬𝐞𝐜 𝒙 = βˆ’
20. Knowing cscx=
βˆ’4
5
πŸ–βˆšπŸπŸ“
πŸπŸ“
and the terminal point is in the third quadrant find cotx.
𝐜𝐨𝐭 𝒙 =
Pre-Calc Trig
πŸ’
πŸ‘
~2~
NJCTL.org
Graphing – Class Work
State the amplitude, period, phase shift, and vertical shift for each function. Draw the graph by hand and
then check it with a graphing calculator.
πœ‹
21. 𝑦 = 2 cos (2 (π‘₯ + )) + 1
22. 𝑦 = βˆ’3 cos(4π‘₯ βˆ’ πœ‹) βˆ’ 2
3
𝝅
A: 2 P: 𝝅 PS: βˆ’ πŸ‘ VS: 1
2
πœ‹
3
6
A: 3 P:
23. 𝑦 = sin ( (π‘₯ + )) + 3
𝝅
𝟐
PS:
𝝅
πŸ’
VS: -2
24. 𝑦 = βˆ’1 cos(3π‘₯ βˆ’ 2πœ‹) βˆ’ 1
𝝅
A: 1 P: πŸ‘π… PS: βˆ’ πŸ” VS: 3
A: 1 P:
πŸπ…
πŸ‘
PS:
πŸπ…
πŸ‘
VS: -1
2
25. 𝑦 = cos(4π‘₯ βˆ’ 2πœ‹) + 2
3
𝟐
A:πŸ‘ P:
Pre-Calc Trig
𝝅
𝟐
PS:
𝝅
𝟐
VS: 2
~3~
NJCTL.org
Graphing – Home Work
State the amplitude, period, phase shift, and vertical shift for each function. Draw the graph by hand and
then check it with a graphing calculator.
1
πœ‹
2
3
26. 𝑦 = βˆ’4 cos ( (π‘₯ βˆ’ )) + 2
A: 4 P: πŸ’π… PS:
1
πœ‹
4
2
27. 𝑦 = βˆ’2 cos(4π‘₯ βˆ’ 3πœ‹) βˆ’ 3
𝝅
VS: 2
πŸ‘
A: 2 P:
28. 𝑦 = 2 sin ( (π‘₯ + )) + 1
𝝅
𝟐
PS:
πŸ‘π…
πŸ’
VS: -3
29. 𝑦 = βˆ’1 cos(6π‘₯ βˆ’ 2πœ‹) βˆ’ 1
𝝅
A: 2 P: πŸ–π… PS: βˆ’ 𝟐 VS: 1
A: 1 P:
𝝅
πŸ‘
PS:
𝝅
πŸ‘
VS: 1
3
30. 𝑦 = cos(4π‘₯ βˆ’ 3πœ‹) βˆ’ 2
2
πŸ‘
𝝅
A: 𝟐 P: 𝟐 PS:
Pre-Calc Trig
πŸ‘π…
πŸ’
VS: -2
~4~
NJCTL.org
Law of Sines – Class Work
Solve triangle ABC.
31. 𝐴 = 70°, 𝐡 = 30°, 𝑐 = 4
32. 𝐡 = 65°, 𝐢 = 50°, π‘Ž = 12
π‘ͺ = πŸ–πŸŽπ’ 𝒂 = πŸ‘. πŸ–πŸ 𝒃 = 𝟐. πŸŽπŸ‘
𝑨 = πŸ”πŸ“π’ 𝒃 = 𝟏𝟐 𝒄 = 𝟏𝟎. πŸπŸ’
33. 𝑏 = 6, 𝐴 = 25°, 𝐡 = 45°
34. 𝑐 = 8, 𝐡 = 60°, 𝐢 = 40°
π‘ͺ = πŸπŸπŸŽπ’ 𝒂 = πŸ‘. πŸ“πŸ— 𝒄 = πŸ•. πŸ—πŸ•
𝑨 = πŸ–πŸŽπ’ 𝒂 = 𝟏𝟐. πŸπŸ” 𝒃 = 𝟏𝟎. πŸ•πŸ–
35. 𝑐 = 12, 𝑏 = 6, 𝐢 = 70°
36. 𝑏 = 12, π‘Ž = 15, 𝐡 = 40°
𝑨 = πŸ“πŸ‘. πŸ“π’ π‘ͺ = πŸ–πŸ”. πŸ“π’ 𝒄 = πŸπŸ–. πŸ”πŸ‘
𝒐𝒓
𝒐
𝑨 = πŸπŸπŸ”. πŸ“ π‘ͺ = πŸπŸ‘. πŸ“π’ 𝒄 = πŸ’. πŸ‘πŸ”
𝑨 = πŸ–πŸπ’ 𝑩 = πŸπŸ–π’ 𝒂 = 𝟏𝟐. πŸ”πŸ“
37. 𝐴 = 35°, π‘Ž = 6, 𝑏 = 11
𝑡𝒐 π‘Ίπ’π’π’–π’•π’Šπ’π’
38. An airplane is on the radar at both Newark Liberty International and JFK airports that are 20 miles
apart. The angle of elevation from Newark to the plane is 42°and from JFK is 35° when the plane is
directly between them. How far is the plane from JFK? What is the plane’s elevation?
πŸπŸ‘. πŸ•πŸ‘ π’Žπ’Šπ’π’†π’” π’‡π’“π’π’Ž 𝑱𝑭𝑲
πŸ—. πŸ’πŸ π’Žπ’Šπ’π’†π’” π’Šπ’ π’†π’π’†π’—π’‚π’•π’Šπ’π’
39. A mathematician walking in the woods noticed that the angle the angle of elevation to a bird at the
top of a tree is 50°, after walking 40’ toward the tree, the angle is 55°. How far is she from the bird?
πŸ‘πŸ“πŸ. πŸ“πŸ• 𝒇𝒆𝒆𝒕 π’‡π’“π’π’Ž 𝒕𝒉𝒆 π’ƒπ’Šπ’“π’…
Pre-Calc Trig
~5~
NJCTL.org
Law of Sines – Home Work
Solve triangle ABC.
40. 𝐴 = 60°, 𝐡 = 40°, 𝑐 = 5
41. 𝐡 = 75°, 𝐢 = 50°, π‘Ž = 14
𝑨 = πŸ“πŸ“π’ 𝒃 = πŸπŸ”. πŸ“πŸ 𝒃 = πŸπŸ‘. πŸŽπŸ—
π‘ͺ = πŸ–πŸŽπ’ 𝒂 = πŸ’. πŸ’ 𝒃 = πŸ‘. πŸπŸ”
42. 𝑏 = 6, 𝐴 = 35°, 𝐡 = 45°
43. 𝑐 = 8, 𝐡 = 50°, 𝐢 = 40°
π‘ͺ = πŸπŸŽπŸŽπ’ 𝒂 = πŸ’. πŸ–πŸ• 𝒄 = πŸ–. πŸ‘πŸ”
𝑨 = πŸ—πŸŽπ’ 𝒂 = 𝟏𝟐. πŸ’πŸ“ 𝒃 = πŸ—. πŸ“πŸ‘
44. 𝑐 = 12, 𝑏 = 8, 𝐢 = 65°
45. 𝑏 = 12, π‘Ž = 16, 𝐡 = 50°
𝑡𝒐 π‘Ίπ’π’π’–π’•π’Šπ’π’
𝑨 = πŸ•πŸ•. πŸ–π’ 𝑩 = πŸ‘πŸ•. πŸπ’ 𝒂 = 𝟏𝟐. πŸ—πŸ’
46. 𝐴 = 40°, π‘Ž = 5, 𝑏 = 12
𝑡𝒐 π‘Ίπ’π’π’–π’•π’Šπ’π’
47. An airplane is on the radar at both Newark Liberty International and JFK airports that are 20 miles
apart. The angle of elevation from Newark to the plane is 52°and from JFK is 45° when the plane is
directly between them. How far is the plane from JFK? What is the plane’s elevation?
πŸπŸ“. πŸ–πŸ– π’Žπ’Šπ’π’†π’” π’‡π’“π’π’Ž 𝑱𝑭𝑲
𝟏𝟐. πŸ‘πŸ’ π’Žπ’Šπ’π’†π’” π’Šπ’ π’†π’π’†π’—π’‚π’•π’Šπ’π’
48. A mathematician walking in the woods noticed that the angle the angle of elevation to a bird at the
top of a tree is 45°, after walking 30’ toward the tree, the angle is 60°. How far is she from the bird?
πŸ–πŸ. πŸ—πŸ” 𝒇𝒆𝒆𝒕 π’‡π’“π’π’Ž 𝒕𝒉𝒆 π’ƒπ’Šπ’“π’…
Pre-Calc Trig
~6~
NJCTL.org
Law of Cosines – Class Work
Solve triangle ABC.
49. π‘Ž = 3, 𝑏 = 4, 𝑐 = 6
50. π‘Ž = 5, 𝑏 = 6, 𝑐 = 7
𝑨 = πŸπŸ”. πŸ’π’ 𝑩 = πŸ‘πŸ”. πŸ’π’ π‘ͺ = πŸπŸπŸ•. πŸπ’
𝑨 = πŸ’πŸ’. πŸ’π’ 𝑩 = πŸ“πŸ•. πŸπ’ π‘ͺ = πŸ•πŸ–. πŸ“π’
51. π‘Ž = 7, 𝑏 = 6, 𝑐 = 4
52. 𝐴 = 100°, 𝑏 = 4, 𝑐 = 5
𝒂 = πŸ”. πŸ—πŸ 𝑩 = πŸ‘πŸ’. πŸ•π’ π‘ͺ = πŸ’πŸ“. πŸ‘π’
𝑨 = πŸ–πŸ”. πŸ’π’ 𝑩 = πŸ“πŸ–. πŸ–π’ π‘ͺ = πŸ‘πŸ’. πŸ–π’
53. 𝐡 = 60°, π‘Ž = 5, 𝑐 = 9
54. 𝐢 = 40°, π‘Ž = 10, 𝑏 = 12
𝑨 = πŸ‘πŸ‘. πŸ•π’ 𝒃 = πŸ•. πŸ–πŸ π‘ͺ = πŸ–πŸ”. πŸ‘π’
𝑨 = πŸ“πŸ”. πŸ‘π’ 𝑩 = πŸ–πŸ‘. πŸ•π’ 𝒄 = πŸ•. πŸ•πŸ”
55. A ship at sea noticed two lighthouses that according to the charts are 1 mile apart. The light at
lighthouse A is 200’ above sea level and the navigator on the ship measures the angle of elevation
to be 2°, how far is the ship from lighthouse A? The light at lighthouse B is 300’ above sea level and
the navigator on the ship measures the angle of elevation to be 5°, how far is the ship from
lighthouse B? How far is the ship from shore?
𝑻𝒉𝒆 π’”π’‰π’Šπ’‘ π’Šπ’” πŸ“πŸ•πŸπŸ•. πŸπŸ“ 𝒇𝒕 π’‡π’“π’π’Ž π’π’Šπ’ˆπ’‰π’•π’‰π’π’–π’”π’† 𝑨
𝑻𝒉𝒆 π’”π’‰π’Šπ’‘ π’Šπ’” πŸ‘πŸ’πŸπŸ—. 𝟎𝟐 𝒇𝒕 π’‡π’“π’π’Ž π’π’Šπ’ˆπ’‰π’•π’‰π’π’–π’”π’† 𝑩
𝑻𝒉𝒆 π’”π’‰π’Šπ’‘ π’Šπ’” πŸ‘πŸ‘πŸ”πŸ”. πŸ’ 𝒇𝒕 π’‡π’“π’π’Ž 𝒔𝒉𝒐𝒓𝒆
56. A student takes his 2 dogs for a walk. He lets them off their leash in a field where Edison runs at 7
m/s and Einstein runs at 6 m/s. The student determines the angle between the dogs is 20°, how far
are the dogs from each other in 8 seconds?
𝑻𝒉𝒆 π’…π’π’ˆπ’” 𝒂𝒓𝒆 πŸπŸ—. πŸ• π’Ž 𝒂𝒑𝒂𝒓𝒕
Pre-Calc Trig
~7~
NJCTL.org
Law of Cosines – Home Work
Solve triangle ABC.
57. π‘Ž = 4, 𝑏 = 5, 𝑐 = 8
58. π‘Ž = 4, 𝑏 = 10, 𝑐 = 13
𝑨 = πŸπŸ’. πŸπ’ 𝑩 = πŸ‘πŸŽ. πŸ•π’ π‘ͺ = πŸπŸπŸ“. πŸπ’
𝑨 = πŸπŸ‘. πŸ‘π’ 𝑩 = πŸ‘πŸ“. πŸπ’ π‘ͺ = πŸπŸ‘πŸ. πŸ”π’
59. π‘Ž = 11, 𝑏 = 8, 𝑐 = 6
60. 𝐴 = 85°, 𝑏 = 3, 𝑐 = 7
𝑨 = 𝟏𝟎𝟐. πŸ”π’ 𝑩 = πŸ’πŸ“. πŸπ’ π‘ͺ = πŸ‘πŸ. πŸπ’
𝒂 = πŸ•. πŸ‘πŸ• 𝑩 = πŸπŸ‘. πŸ—π’ π‘ͺ = πŸ•πŸ. πŸπ’
61. 𝐡 = 70°, π‘Ž = 6, 𝑐 = 12
62. 𝐢 = 25°, π‘Ž = 14, 𝑏 = 19
𝑨 = πŸπŸ—. πŸ”π’ 𝒃 = 𝟏𝟏. πŸ’πŸ‘ π‘ͺ = πŸ–πŸŽ. πŸ’π’
𝑨 = πŸ–πŸ”. πŸ–π’ 𝑩 = πŸ”πŸ–. πŸπ’ 𝒄 = πŸ–. πŸ”πŸ“
63. A ship at sea noticed two lighthouses that according to the charts are 1 mile apart. The light at
lighthouse A is 275’ above sea level and the navigator on the ship measures the angle of elevation
to be 4°, how far is the ship from lighthouse A? The light at lighthouse B is 325’ above sea level and
the navigator on the ship measures the angle of elevation to be 8°, how far is the ship from
lighthouse B? How far is the ship from shore?
𝑻𝒉𝒆 π’”π’‰π’Šπ’‘ π’Šπ’” πŸ‘πŸ—πŸ‘πŸ. πŸ• 𝒇𝒕 π’‡π’“π’π’Ž π’π’Šπ’ˆπ’‰π’•π’‰π’π’–π’”π’† 𝑨
𝑻𝒉𝒆 π’”π’‰π’Šπ’‘ π’Šπ’” πŸπŸ‘πŸπŸ. πŸ“ 𝒇𝒕 π’‡π’“π’π’Ž π’π’Šπ’ˆπ’‰π’•π’‰π’π’–π’”π’† 𝑩
𝑻𝒉𝒆 π’”π’‰π’Šπ’‘ π’Šπ’” πŸπŸ“πŸ–πŸ•. 𝟎 𝒇𝒕 π’‡π’“π’π’Ž 𝒔𝒉𝒐𝒓𝒆
64. A student takes his 2 dogs for a walk. He lets them off their leash in a field where Edison runs at 10
m/s and Einstein runs at 8 m/s. The student determines the angle between the dogs is 25°, how far
are the dogs from each other in 5 seconds?
𝑻𝒉𝒆 π’…π’π’ˆπ’” 𝒂𝒓𝒆 𝟐𝟏. πŸ– π’Ž 𝒂𝒑𝒂𝒓𝒕
Pre-Calc Trig
~8~
NJCTL.org
Pythagorean Identities – Class Work
Simplify the expression
65. csc π‘₯ tan π‘₯
66. cot π‘₯ sec π‘₯ sin π‘₯
𝐬𝐞𝐜 𝒙
𝟏
68. (1 + cot 2 x)(1 βˆ’ cos 2 x)
67. sin x (csc x βˆ’ sin x)
𝟏
𝐜𝐨𝐬𝟐 𝒙
69. 1 βˆ’
tan2 x
70. (sin x βˆ’ cos x)2
sec2 π‘₯
𝐜𝐨𝐬𝟐 𝒙
71.
𝟏 βˆ’ 𝐬𝐒𝐧 πŸπ’™
cot2 x
72.
1βˆ’sin2 x
cosx
secx+tanx
𝟏 βˆ’ 𝐬𝐒𝐧 𝒙
𝐜𝐬𝐜 𝟐 𝒙
73. sin π‘₯ tan π‘₯ + cos π‘₯
𝐬𝐞𝐜 𝒙
Verify the Identity
74. (1 βˆ’ sin π‘₯)(1 + sin π‘₯) = cos 2 x
75.
tan π‘₯ cot π‘₯
sec π‘₯
= cos π‘₯
𝟏
𝐬𝐞𝐜 𝒙
𝟏 βˆ’ 𝐬𝐒𝐧𝟐 𝒙
𝐜𝐨𝐬𝟐 𝒙
𝐜𝐨𝐬 𝒙
76. (1 βˆ’ cos 2 x)(1 + tan2 x) = tan2 x
77.
(𝐬𝐒𝐧𝟐 𝒙)(𝐬𝐞𝐜 𝟐 𝒙)
(𝐬𝐒𝐧𝟐 𝒙) (
𝟏
𝐜𝐨𝐬 𝟐 𝒙
+
1
sec xβˆ’tan x
= 2 sec x
(𝐬𝐞𝐜 π’™βˆ’π­πšπ§ 𝒙)+(𝐬𝐞𝐜 𝒙+𝐭𝐚𝐧 𝒙)
𝐬𝐞𝐜 𝟐 π’™βˆ’π­πšπ§πŸ 𝒙
)
𝟐 𝐬𝐞𝐜 𝒙
𝟏
𝐭𝐚𝐧𝟐 𝒙
Pre-Calc Trig
1
sec x+tan x
𝟐 𝐬𝐞𝐜 𝒙
~9~
NJCTL.org
Pythagorean Identities – Home Work
Simplify the expression
78. (tan x + cot x )2
79.
1βˆ’sin x
cos x
+
𝐬𝐞𝐜 𝟐 𝒙 + 𝐜𝐬𝐜 𝟐 𝒙
80.
cos xβˆ’cos y
sin x+sin y
+
𝟐 𝐬𝐞𝐜 𝒙
sin xβˆ’sin y
81.
cos x+cos y
1
sin π‘₯
βˆ’
𝟎
82.
cos x
1βˆ’sin x
1
csc π‘₯
𝐜𝐨𝐬 𝒙 𝐜𝐨𝐭 𝒙
1+sec2 x
83.
1+tan2 x
sin2 x
tan2 x
+
cos2 x
cot2 x
𝐜𝐨𝐬𝟐 𝒙 + 𝟏
84.
𝟏
π‘‘π‘Žπ‘›2 π‘₯
85.
1+π‘‘π‘Žπ‘›2 π‘₯
cos x
sec x
+
sin x
csc x
𝐬𝐒𝐧𝟐 𝒙
86.
1+sec2 x
1+tan2 x
+
𝟏
cos2 x
cot2 x
𝟐
Verify the Identity
87. π‘π‘œπ‘  2 π‘₯ βˆ’ 𝑠𝑖𝑛2 π‘₯ = 1 βˆ’ 2𝑠𝑖𝑛2 π‘₯
88. tan π‘₯ cos π‘₯ csc π‘₯ = 1
(𝟏 βˆ’ 𝐬𝐒𝐧𝟐 𝒙) βˆ’ 𝐬𝐒𝐧𝟐 𝒙
𝐬𝐒𝐧 𝒙
𝟏
(𝐜𝐨𝐬 𝒙) (𝐜𝐨𝐬 𝒙) (𝐬𝐒𝐧 𝒙)
𝟏 βˆ’ 𝟐 𝐬𝐒𝐧𝟐 𝒙
89.
1+cot x
csc x
𝟏
= sin x + cos x
90.
𝐜𝐨𝐬 𝒙
𝐬𝐒𝐧 𝒙
𝟏
𝐬𝐒𝐧 𝒙
cos x csc x
cot x
=1
𝟏
𝐬𝐒𝐧 𝒙
𝐜𝐨𝐬 𝒙
𝐬𝐒𝐧 𝒙
𝟏+
𝐜𝐨𝐬 𝒙
𝐜𝐨𝐬 𝒙
𝐜𝐨𝐬 𝒙
(𝟏 + 𝐬𝐒𝐧 𝒙 ) (
𝐬𝐒𝐧 𝒙
𝟏
𝐬𝐒𝐧 𝒙
)
𝐬𝐒𝐧 𝒙
βˆ™ 𝐜𝐨𝐬 𝒙
𝟏
𝐬𝐒𝐧 𝒙 + 𝐜𝐨𝐬 𝒙
Pre-Calc Trig
~10~
NJCTL.org
Angle Sum/Difference Identity – Class Work
Use Angle Sum/Difference Identity to find the exact value of the expression.
91. sin 105
92. cos 75
βˆšπŸ” + √𝟐
πŸ’
βˆšπŸ” βˆ’ √𝟐
πŸ’
93. tan 195
βˆ’πŸ + βˆšπŸ‘
12
√𝟐 βˆ’ βˆšπŸ”
πŸ’
𝟏 + βˆšπŸ‘
95. cos
πœ‹
94. 𝑠𝑖𝑛 βˆ’
19πœ‹
96. π‘‘π‘Žπ‘› βˆ’
12
πœ‹
12
𝟏 βˆ’ βˆšπŸ‘
βˆšπŸ” βˆ’ √𝟐
πŸ’
𝟏 + βˆšπŸ‘
Verify the Identity.
πœ‹
πœ‹
3
3
𝝅
𝝅
𝝅
𝝅
πŸ‘
πŸ‘
πŸ‘
πŸ‘
𝟏
𝟏
𝐬𝐒𝐧 𝒙 𝐜𝐨𝐬 + 𝐜𝐨𝐬 𝒙 𝐬𝐒𝐧 + 𝐬𝐒𝐧 𝒙 𝐜𝐨𝐬 βˆ’ 𝐜𝐨𝐬 𝒙 𝐬𝐒𝐧
πœ‹
πœ‹
1
4
4
2
98. cos (π‘₯ + ) cos (π‘₯ βˆ’ ) = cos 2 π‘₯ βˆ’
97. sin (π‘₯ + ) + sin (π‘₯ βˆ’ ) = sin π‘₯
𝝅
𝝅
𝝅
𝝅
πŸ’
πŸ’
πŸ’
πŸ’
(𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬 βˆ’ 𝐬𝐒𝐧 𝒙 𝐬𝐒𝐧 ) (𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬 + 𝐬𝐒𝐧 𝒙 𝐬𝐒𝐧 )
𝐬𝐒𝐧 𝒙 βˆ— 𝟐 + 𝐬𝐒𝐧 𝒙 βˆ— 𝟐
(𝐜𝐨𝐬 𝒙 βˆ—
√𝟐
𝟐
βˆ’ 𝐬𝐒𝐧 𝒙 βˆ—
𝟐
𝐬𝐒𝐧 𝒙
πŸ’
𝟏
𝟐
√𝟐
𝟐
) (𝐜𝐨𝐬 𝒙 βˆ—
√𝟐
𝟐
+ 𝐬𝐒𝐧 𝒙 βˆ—
√𝟐
𝟐
𝟐
𝐜𝐨𝐬𝟐 𝒙 βˆ’ πŸ’ 𝐬𝐒𝐧𝟐 𝒙
𝟏
𝐜𝐨𝐬𝟐 𝒙 βˆ’ 𝟐 (𝟏 βˆ’ 𝐜𝐨𝐬𝟐 𝒙)
𝟏
𝐜𝐨𝐬𝟐 𝒙 βˆ’ 𝟐
πœ‹
tan π‘₯βˆ’1
4
tan π‘₯+1
99. tan (π‘₯ βˆ’ ) =
100.
𝝅
πŸ’
𝝅
𝟏+𝐭𝐚𝐧 𝒙 𝐭𝐚𝐧
πŸ’
sin(π‘₯+𝑦)βˆ’sin(π‘₯βˆ’π‘¦)
cos(π‘₯+𝑦)+cos(π‘₯βˆ’π‘¦)
= tan 𝑦
(𝐬𝐒𝐧 𝒙 𝐜𝐨𝐬 π’š+𝐜𝐨𝐬 𝒙 𝐬𝐒𝐧 π’š)βˆ’(𝐬𝐒𝐧 𝒙 𝐜𝐨𝐬 π’šβˆ’πœπ¨π¬ 𝒙 𝐬𝐒𝐧 π’š)
𝐭𝐚𝐧 π’™βˆ’π­πšπ§
(𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬 π’šβˆ’π¬π’π§ 𝒙 𝐬𝐒𝐧 π’š)+(𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬 π’š+𝐬𝐒𝐧 𝒙 𝐬𝐒𝐧 π’š)
𝟐 𝐜𝐨𝐬 𝒙 𝐬𝐒𝐧 π’š
𝐭𝐚𝐧 π’™βˆ’πŸ
𝟐 𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬 π’š
𝟏+𝐭𝐚𝐧 𝒙(𝟏)
𝐭𝐚𝐧 π’š
Pre-Calc Trig
~11~
NJCTL.org
)
Angle Sum/Difference Identity – Home Work
Use Angle Sum/Difference Identity to find the exact value of the expression.
101. sin 165
102. cos 105
√𝟐 βˆ’ βˆšπŸ”
πŸ’
βˆšπŸ” βˆ’ √𝟐
πŸ’
103.
tan 285
𝟏 βˆ’ βˆšπŸ‘
cos
12
√𝟐 βˆ’ βˆšπŸ”
πŸ’
𝟏 + βˆšπŸ‘
105.
11πœ‹
104. 𝑠𝑖𝑛 βˆ’
17πœ‹
106. π‘‘π‘Žπ‘› βˆ’
12
7πœ‹
12
βˆ’πŸ + βˆšπŸ‘
√𝟐 βˆ’ βˆšπŸ”
πŸ’
𝟏 βˆ’ βˆšπŸ‘
Verify the Identity.
107.
sin (π‘₯ +
(𝐬𝐒𝐧 𝒙 𝐜𝐨𝐬
πŸπ…
πŸ‘
2πœ‹
3
) + sin (π‘₯ βˆ’
+ 𝐜𝐨𝐬 𝒙 𝐬𝐒𝐧
πŸπ…
πŸ‘
2πœ‹
3
) = βˆ’sin π‘₯
) + (𝐬𝐒𝐧 𝒙 𝐜𝐨𝐬
𝟏
πŸπ…
πŸ‘
βˆ’ 𝐜𝐨𝐬 𝒙 𝐬𝐒𝐧
108. cos (π‘₯ +
πŸπ…
πŸ‘
)
(𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬
πŸ‘π…
πŸ’
𝟏
𝐬𝐒𝐧 𝒙 βˆ— βˆ’ 𝟐 + 𝐬𝐒𝐧 𝒙 βˆ— βˆ’ 𝟐
(𝐜𝐨𝐬 𝒙 βˆ—
3πœ‹
4
) cos (π‘₯ βˆ’
βˆ’ 𝐬𝐒𝐧 𝒙 𝐬𝐒𝐧
βˆ’βˆšπŸ
𝟐
βˆ’ 𝐬𝐒𝐧 𝒙
βˆ’ 𝐬𝐒𝐧 𝒙 βˆ—
𝟐
πŸ’
πŸ‘π…
πŸ’
√𝟐
𝟐
3πœ‹
4
) = cos 2 π‘₯ βˆ’
) (𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬
) (𝐜𝐨𝐬 𝒙 βˆ—
πŸ‘π…
πŸ’
βˆ’βˆšπŸ
𝟐
1
2
+ 𝐬𝐒𝐧 𝒙 𝐬𝐒𝐧
+ 𝐬𝐒𝐧 𝒙 βˆ—
√𝟐
𝟐
πŸ‘π…
πŸ’
)
)
𝟐
𝐜𝐨𝐬𝟐 𝒙 βˆ’ πŸ’ 𝐬𝐒𝐧𝟐 𝒙
𝟏
𝟏
𝐜𝐨𝐬𝟐 𝒙 βˆ’ 𝟐 (𝟏 βˆ’ 𝐜𝐨𝐬𝟐 𝒙)
𝟐
𝟏
𝐜𝐨𝐬𝟐 𝒙 βˆ’ 𝟐
109.
tan (π‘₯ +
5πœ‹
4
)=
tan π‘₯+1
110. π‘π‘œπ‘  (
1βˆ’tan π‘₯
πŸ“π…
πŸ’
πŸ“π…
πŸβˆ’π­πšπ§ 𝒙 𝐭𝐚𝐧
πŸ’
(𝐜𝐨𝐬
𝐭𝐚𝐧 𝒙+𝐭𝐚𝐧
πŸ“π…
(
𝐭𝐚𝐧 𝒙+𝟏
πŸ”
6
+ π‘₯) π‘π‘œπ‘  (
𝐜𝐨𝐬 𝒙 βˆ’ 𝐬𝐒𝐧
βˆ’βˆšπŸ‘
𝟐
5πœ‹
πŸ“π…
πŸ”
πŸ’
4
𝐬𝐒𝐧 𝒙) (𝐜𝐨𝐬
βˆ’βˆšπŸ‘
𝟐
𝟐
πŸ’
πŸ‘
3
βˆ’ π‘₯) = βˆ’ sin2 π‘₯
𝟏
πŸ‘
πŸ“π…
πŸ”
𝐜𝐨𝐬 𝒙 + 𝐬𝐒𝐧
πŸ“π…
πŸ”
𝐬𝐒𝐧 𝒙)
𝟏
βˆ— 𝐜𝐨𝐬 𝒙 + βˆ— 𝐬𝐒𝐧 𝒙)
𝟐
𝟏
𝐜𝐨𝐬𝟐 𝒙 βˆ’ 𝐬𝐒𝐧𝟐 𝒙
πŸ’
𝟏
(𝟏 βˆ’ 𝐬𝐒𝐧𝟐 𝒙) βˆ’ πŸ’ 𝐬𝐒𝐧𝟐 𝒙
πŸ‘
πŸ’
~12~
6
βˆ— 𝐜𝐨𝐬 𝒙 βˆ’ βˆ— 𝐬𝐒𝐧 𝒙) (
πŸβˆ’π­πšπ§ 𝒙(𝟏)
Pre-Calc Trig
5πœ‹
βˆ’ 𝐬𝐒𝐧𝟐 𝒙
NJCTL.org
Double Angle Identity – Class Work
Find the exact value of the expression.
1
111.
π‘π‘œπ‘ πœƒ = , 𝑓𝑖𝑛𝑑 cos 2πœƒ 𝑖𝑓 πœƒ 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘.
112.
π‘π‘œπ‘ πœƒ = , 𝑓𝑖𝑛𝑑 sin 2πœƒ 𝑖𝑓 πœƒ 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘“π‘œπ‘’π‘Ÿπ‘‘β„Ž π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘.
113.
π‘ π‘–π‘›πœƒ =
114.
π‘ π‘–π‘›πœƒ =
115.
π‘‘π‘Žπ‘›πœƒ =
116.
π‘π‘œπ‘‘πœƒ = , 𝑓𝑖𝑛𝑑 tan 2πœƒ 𝑖𝑓 πœƒ 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘‘β„Žπ‘–π‘Ÿπ‘‘ π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘.
4
1
4
βˆ’3
, 𝑓𝑖𝑛𝑑 tan 2πœƒ 𝑖𝑓 πœƒ 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘‘β„Žπ‘–π‘Ÿπ‘‘ π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘.
7
βˆ’3
7
βˆ’πŸ•
πŸ–
βˆ’βˆšπŸπŸ“
πŸ–
𝟏𝟐√𝟏𝟎
πŸ‘πŸ
, 𝑓𝑖𝑛𝑑 cos 2πœƒ 𝑖𝑓 πœƒ 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘“π‘œπ‘’π‘Ÿπ‘‘β„Ž π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘.
βˆ’πŸ‘πŸ
πŸ’πŸ—
, 𝑓𝑖𝑛𝑑 sin 2πœƒ 𝑖𝑓 πœƒ 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘.
βˆ’πŸ’πŸ“
πŸ“πŸ‘
βˆ’5
9
5
9
βˆ’
πŸ’πŸ“
πŸπŸ–
Verify the Identity.
117.
sin 3π‘₯ = 3 sin π‘₯ βˆ’ 4 sin3 π‘₯
118. tan 3π‘₯ =
3 tan π‘₯βˆ’π‘‘π‘Žπ‘›3 π‘₯
1βˆ’3π‘‘π‘Žπ‘›2 π‘₯
𝐬𝐒𝐧(πŸπ’™ + 𝒙)
𝐭𝐚𝐧(πŸπ’™ + 𝒙)
𝐬𝐒𝐧 πŸπ’™ 𝐜𝐨𝐬 𝒙 + 𝐜𝐨𝐬 πŸπ’™ 𝐬𝐒𝐧 𝒙
𝐭𝐚𝐧 πŸπ’™+𝐭𝐚𝐧 𝒙
πŸβˆ’π­πšπ§ πŸπ’™ 𝐭𝐚𝐧 𝒙
(𝟐 𝐬𝐒𝐧 𝒙 𝐜𝐨𝐬 𝒙) 𝐜𝐨𝐬 𝒙 + (𝟏 βˆ’ 𝟐 𝐬𝐒𝐧𝟐 𝒙) 𝐬𝐒𝐧 𝒙
𝟐
𝟐 𝐭𝐚𝐧 𝒙
+𝐭𝐚𝐧 𝒙
πŸβˆ’π­πšπ§πŸ 𝒙
𝟐 𝐭𝐚𝐧 𝒙
πŸβˆ’
𝐭𝐚𝐧 𝒙
πŸβˆ’π­πšπ§πŸ 𝒙
πŸ‘
𝟐 𝐬𝐒𝐧 𝒙 𝐜𝐨𝐬 𝒙 + 𝐬𝐒𝐧 𝒙 βˆ’ 𝟐 𝐬𝐒𝐧 𝒙
118.
𝟐 𝐬𝐒𝐧 𝒙 (𝟏 βˆ’ 𝐬𝐒𝐧𝟐 𝒙) + 𝐬𝐒𝐧 𝒙 βˆ’ 𝟐 π¬π’π§πŸ‘ 𝒙
𝟐 𝐭𝐚𝐧 𝒙+𝐭𝐚𝐧 π’™βˆ’π­πšπ§πŸ‘ 𝒙
πŸβˆ’π­πšπ§πŸ 𝒙
πŸβˆ’π­πšπ§πŸ π’™βˆ’πŸ 𝐭𝐚𝐧𝟐 𝒙
πŸβˆ’π­πšπ§πŸ 𝒙
πŸ‘
πŸ‘ 𝐬𝐒𝐧 𝒙 βˆ’ πŸ’ 𝐬𝐒𝐧 𝒙
119.
sin 4π‘₯
sin π‘₯
= 4 cos 2π‘₯ π‘π‘œπ‘  π‘₯
120. csc 2π‘₯ =
πŸ‘ 𝐭𝐚𝐧 π’™βˆ’π­πšπ§πŸ‘ 𝒙
csc π‘₯
𝟏
𝐬𝐒𝐧 𝒙
𝐬𝐒𝐧 πŸπ’™
𝟐(𝟐 𝐬𝐒𝐧 𝒙 𝐜𝐨𝐬 𝒙) 𝐜𝐨𝐬 πŸπ’™
𝟏
𝐬𝐒𝐧 𝒙
𝟐 𝐬𝐒𝐧 𝒙 𝐜𝐨𝐬 𝒙
𝟏
𝐬𝐒𝐧 𝒙
~13~
πŸβˆ’πŸ‘ 𝐭𝐚𝐧𝟐 𝒙
2 cos π‘₯
𝟐 𝐬𝐒𝐧 πŸπ’™ 𝐜𝐨𝐬 πŸπ’™
πŸ’ 𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬 πŸπ’™
Pre-Calc Trig
β†’
βˆ—
𝟏
𝟐 𝐜𝐨𝐬 𝒙
β†’
𝐜𝐬𝐜 𝒙
𝟐 𝐜𝐨𝐬 𝒙
NJCTL.org
Double Angle Identity – Home Work
Find the exact value of the expression.
𝟏
πŸ–
3
121.
π‘π‘œπ‘ πœƒ = , 𝑓𝑖𝑛𝑑 cos 2πœƒ 𝑖𝑓 πœƒ 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘.
122.
π‘π‘œπ‘ πœƒ = , 𝑓𝑖𝑛𝑑 sin 2πœƒ 𝑖𝑓 πœƒ 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘“π‘œπ‘’π‘Ÿπ‘‘β„Ž π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘.
123.
π‘ π‘–π‘›πœƒ =
124.
π‘ π‘–π‘›πœƒ =
125.
π‘‘π‘Žπ‘›πœƒ =
126.
π‘π‘œπ‘‘πœƒ = , 𝑓𝑖𝑛𝑑 tan 2πœƒ 𝑖𝑓 πœƒ 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘‘β„Žπ‘–π‘Ÿπ‘‘ π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘.
4
3
4
βˆ’5
, 𝑓𝑖𝑛𝑑 tan 2πœƒ 𝑖𝑓 πœƒ 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘‘β„Žπ‘–π‘Ÿπ‘‘ π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘.
7
βˆ’5
7
βˆ’πŸ‘βˆšπŸ•
πŸ–
βˆ’πŸπŸŽβˆšπŸ”
, 𝑓𝑖𝑛𝑑 cos 2πœƒ 𝑖𝑓 πœƒ 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘“π‘œπ‘’π‘Ÿπ‘‘β„Ž π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘.
βˆ’πŸ
πŸ’πŸ—
, 𝑓𝑖𝑛𝑑 sin 2πœƒ 𝑖𝑓 πœƒ 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘.
βˆ’πŸ•πŸ
πŸ—πŸ•
βˆ’4
9
4
9
βˆ’
πŸ•πŸ
πŸ”πŸ“
Verify the Identity.
127.
sec 2π‘₯ =
sec2 π‘₯
128.
2βˆ’sec2 π‘₯
1+sin 2x
sin 2x
1
= 1 + sec x cscx
2
𝟏
𝟏
𝐜𝐨𝐬 πŸπ’™
𝐬𝐒𝐧 πŸπ’™
+𝟏
𝟏
𝟏
𝟐 𝐜𝐨𝐬𝟐 π’™βˆ’πŸ
𝟐 𝐬𝐒𝐧 𝒙 𝐜𝐨𝐬 𝒙
𝟏
𝐜𝐨𝐬 𝟐 𝒙
𝟐 𝐜𝐨𝐬 𝟐 π’™βˆ’πŸ
𝐜𝐨𝐬 𝟐 𝒙
𝟏
𝟐
+𝟏
𝐜𝐬𝐜 𝒙 𝐬𝐞𝐜 𝒙 + 𝟏
𝐬𝐞𝐜 𝟐 𝒙
πŸβˆ’π¬πžπœ 𝟐 𝒙
129.
1 + cos 10π‘₯ = 2 cos 2 5π‘₯
𝟏 + (𝟐 𝐜𝐨𝐬 𝟐 πŸ“π’™ βˆ’ 𝟏)
𝟐 𝐜𝐨𝐬 𝟐 πŸ“π’™
Pre-Calc Trig
~14~
NJCTL.org
Half Angle Identity – Class Work
Find the exact value of the expression.
130.
√
1βˆ’cos 6π‘₯
𝐬𝐒𝐧 πŸ‘π’™
132.
π‘₯
π‘₯
2
2
131. cos 2 ( ) βˆ’ sin2 ( )
2
𝐜𝐨𝐬 πŸπ’™
sin 22.5
133. tan 67.5
√𝟐
√𝟐 βˆ’ √𝟐
𝟐
𝟐 βˆ’ √𝟐
𝒐𝒓
𝟐 + √𝟐
𝟐
Verify the Identity.
134.
π‘₯
2π‘‘π‘Žπ‘›π‘₯
2
tan π‘₯+sin π‘₯
sec = ±βˆš
𝟐
𝐬𝐒𝐧 𝒙
𝟐 𝐬𝐒𝐧 𝒙
= √ 𝐬𝐒𝐧 π’™πœπ¨π¬ 𝒙
+𝐬𝐒𝐧 𝒙
𝐜𝐨𝐬 𝒙
√
𝟐 𝐬𝐒𝐧 𝒙
𝐜𝐨𝐬 𝒙
𝐜𝐨𝐬 𝒙
β†’ √ 𝐬𝐒𝐧 𝒙+𝐬𝐒𝐧
βˆ— 𝐬𝐒𝐧 𝒙(𝟏+𝐜𝐨𝐬 𝒙) β†’
𝒙 𝐜𝐨𝐬 𝒙 β†’ √
𝐜𝐨𝐬 𝒙
𝐜𝐨𝐬 𝒙
𝟐
𝟏+𝐜𝐨𝐬 𝒙
β†’
𝟏
𝟏+𝐜𝐨𝐬 𝒙
√
𝟐
β†’
𝟏
𝐜𝐨𝐬
𝒙
𝒙
𝟐
β†’ 𝐬𝐞𝐜 𝟐
Half Angle Identity – Home Work
Find the exact value of the expression.
135.
√
1+cos 4π‘₯
𝐜𝐨𝐬 πŸπ’™
137.
π‘₯
π‘₯
2
2
136. 2 cos ( ) sin ( )
2
𝐬𝐒𝐧 𝒙
cos 22.5
138. tan 15
𝟏
√𝟐 + √𝟐
𝟐
𝟐 + βˆšπŸ‘
𝒐𝒓 𝟐 βˆ’ βˆšπŸ‘
Verify the Identity.
π‘₯
139. tan = csc π‘₯ βˆ’ cot π‘₯
2
=
Pre-Calc Trig
πŸβˆ’πœπ¨π¬ 𝒙
𝐬𝐒𝐧 𝒙
β†’
𝟏
𝐬𝐒𝐧 𝒙
𝐜𝐨𝐬 𝒙
βˆ’ 𝐬𝐒𝐧 𝒙 β†’ 𝐜𝐬𝐜 𝒙 βˆ’ 𝐜𝐨𝐭 𝒙
~15~
NJCTL.org
Power Reducing Identity – Class Work
Simplify the expression.
140. π‘π‘œπ‘  4 π‘₯
πŸ‘
πŸ–
𝟏
141. 𝑠𝑖𝑛8 π‘₯
𝟏
πŸ‘πŸ“
+ 𝟐 𝐜𝐨𝐬 πŸπ’™ + πŸ– 𝐜𝐨𝐬 πŸ’π’™
πŸπŸπŸ–
𝟏
πŸ–
142.
πŸ‘
𝟏
𝐜𝐨𝐬 πŸπ’™ 𝐜𝐨𝐬 πŸ’π’™ + πŸπŸπŸ– 𝐜𝐨𝐬 πŸ–π’™
𝑠𝑖𝑛4 π‘₯ π‘π‘œπ‘  2 π‘₯
𝟏
πŸπŸ”
143.
πŸ‘
βˆ’ πŸ– 𝐜𝐨𝐬 πŸπ’™ + πŸ‘πŸ 𝐜𝐨𝐬 πŸ’π’™ βˆ’
𝟏
𝟏
𝟏
βˆ’ πŸπŸ” 𝐜𝐨𝐬 πŸπ’™ βˆ’ πŸπŸ” 𝐜𝐨𝐬 πŸ’π’™ + πŸπŸ” 𝐜𝐨𝐬 πŸπ’™ 𝐜𝐨𝐬 πŸ’π’™
πœƒ
3
2
5
Find sin if cos πœƒ = and πœƒ is in the first quadrant.
βˆšπŸ“
πŸ“
144.
πœƒ
3
2
5
Find cos if tan πœƒ = and πœƒ is in the third quadrant.
βˆ’
Pre-Calc Trig
βˆšπŸπŸ•(πŸ‘πŸ’βˆ’πŸ“βˆšπŸ‘πŸ’)
πŸ‘πŸ’
~16~
NJCTL.org
Power Reducing Identity – Home Work
Simplify the expression.
145. 𝑠𝑖𝑛2 π‘₯ π‘π‘œπ‘  2 π‘₯
𝟏
πŸ–
146. 𝑠𝑖𝑛4 π‘₯ π‘π‘œπ‘  4 π‘₯
𝟏
πŸ‘
βˆ’ πŸ– 𝐜𝐨𝐬 πŸ’π’™
πŸπŸπŸ–
𝟏
𝟏
βˆ’ πŸ‘πŸ 𝐜𝐨𝐬 πŸ’π’™ + πŸπŸπŸ– 𝐜𝐨𝐬 πŸ–π’™
𝑠𝑖𝑛2 π‘₯ π‘π‘œπ‘  4 π‘₯
147.
𝟏
𝟏
𝟏
𝟏
+ πŸπŸ” 𝐜𝐨𝐬 πŸπ’™ βˆ’ πŸπŸ” 𝐜𝐨𝐬 πŸ’π’™ βˆ’ πŸπŸ” 𝐜𝐨𝐬 πŸπ’™ 𝐜𝐨𝐬 πŸ’π’™
πŸπŸ”
148.
πœƒ
3
2
5
Find sin if cos πœƒ = and πœƒ is in the fourth quadrant.
βˆ’
149.
πœƒ
βˆ’4
2
7
Find cos if sin πœƒ =
βˆšπŸ“
and πœƒ is in the third quadrant.
βˆ’
Pre-Calc Trig
πŸ“
βˆšπŸπŸ’(πŸ•βˆ’βˆšπŸ‘πŸ‘)
πŸπŸ’
~17~
NJCTL.org
Sum to Product Identity – Class Work
Find the exact value of the expression.
150. sin 75 + sin 15
151. cos 75 – cos 15
βˆšπŸ”
𝟐
βˆ’
152. cos 75 + cos 15
√𝟐
βˆšπŸ”
𝟐
𝟐
Verify the Identity.
153.
sin x+ sin5x
cos x+cos5x
= tan3x
154.
sin x + sin y
cos xβˆ’cos y
= βˆ’ cot
xβˆ’y
155.
2
𝒙+π’š
π’™βˆ’π’š
𝐜𝐨𝐬
𝟐
𝟐
𝒙+π’š
π’™βˆ’π’š
βˆ’πŸ 𝐬𝐒𝐧
𝐬𝐒𝐧
𝟐
𝟐
πŸ”π’™
πŸ’π’™
𝟐 𝐬𝐒𝐧 𝟐 𝐜𝐨𝐬 𝟐
πŸ”π’™
πŸ’π’™
𝟐 𝐜𝐨𝐬 𝟐 𝐜𝐨𝐬 𝟐
𝐬𝐒𝐧 πŸ‘π’™
𝐜𝐨𝐬 πŸ‘π’™
π’™βˆ’π’š
𝟐
π’™βˆ’π’š
𝐬𝐒𝐧
𝟐
𝐜𝐨𝐬
βˆ’πœπ¨π­
𝟐
𝐜𝐨𝐭 𝒙
Sum to Product Identity – Home Work
Find the exact value of the expression.
156. sin 105 + sin 15
157. cos 105 – cos 15
βˆ’
= cot x
𝐜𝐨𝐬 𝒙
𝐬𝐒𝐧 𝒙
π’™βˆ’π’š
𝐭𝐚𝐧 πŸ‘π’™
βˆšπŸ”
𝟐
sin 3xβˆ’sin x
πŸ’π’™
πŸπ’™
𝟐 𝐜𝐨𝐬 𝟐 𝐜𝐨𝐬 𝟐
πŸπ’™
πŸ’π’™
𝟐 𝐬𝐒𝐧 𝟐 𝐜𝐨𝐬 𝟐
𝟐 𝐬𝐒𝐧
βˆ’
cos x+cos 3x
158. cos 105 + cos 15
√𝟐
βˆšπŸ”
𝟐
𝟐
Verify the Identity.
159.
cos4x+cos2x
sin 4x+sin2x
= cot3x
160.
𝟐 𝐬𝐒𝐧
𝐜𝐨𝐬 πŸ‘π’™
𝐬𝐒𝐧 πŸ‘π’™
𝟐 𝐬𝐒𝐧 πŸ‘π’™ 𝐜𝐨𝐬(βˆ’πŸπ’™) + 𝐬𝐒𝐧 πŸ‘π’™
𝟐 𝐜𝐨𝐬 πŸ‘π’™ 𝐜𝐨𝐬(βˆ’πŸπ’™) + 𝐜𝐨𝐬 πŸ‘π’™
𝐜𝐨𝐭 πŸ‘π’™
𝐬𝐒𝐧 πŸ‘π’™ (𝟐 𝐜𝐨𝐬(βˆ’πŸπ’™) + 𝟏)
𝐜𝐨𝐬 πŸ‘π’™ (𝟐 𝐜𝐨𝐬(βˆ’πŸπ’™) + 𝟏)
cos 87 + cos 33 = sin 63
𝟐 𝐜𝐨𝐬
𝟏𝟐𝟎
𝟐
𝐜𝐨𝐬
πŸ“πŸ’
𝟐
𝐬𝐒𝐧 πŸ‘π’™
𝐜𝐨𝐬 πŸ‘π’™
𝟐 𝐜𝐨𝐬 πŸ”πŸŽ 𝐜𝐨𝐬 πŸπŸ•
𝐭𝐚𝐧 πŸ‘π’™
𝟏
𝟐 βˆ— 𝟐 βˆ— 𝐬𝐒𝐧(πŸ—πŸŽ βˆ’ πŸπŸ•)
Pre-Calc Trig
𝐬𝐒𝐧 πŸ”πŸ‘
= tan 3x
πŸ”π’™
βˆ’πŸ’π’™
𝐜𝐨𝐬
+ 𝐬𝐒𝐧 πŸ‘π’™
𝟐
𝟐
πŸ”π’™
βˆ’πŸ’π’™
𝟐 𝐜𝐨𝐬 𝟐 𝐜𝐨𝐬 𝟐 + 𝐜𝐨𝐬 πŸ‘π’™
πŸ”π’™
πŸπ’™
𝐜𝐨𝐬
𝟐
𝟐
πŸ”π’™
πŸπ’™
𝟐 𝐬𝐒𝐧 𝐜𝐨𝐬
𝟐
𝟐
𝟐 𝐜𝐨𝐬
161.
sin x+sin 5x+sin 3x
cos x+cos 5x+cos 3π‘₯
~18~
NJCTL.org
Product to Sum Identity – Class Work
Find the exact value of the expression.
162. cos 75 cos 15
164.
163. sin 37.5 sin 7.5
𝟏
βˆšπŸβˆ’βˆšπŸ‘
πŸ’
πŸ’
2 sin 52.5 cos 97.5
165. 10 cos 6π‘₯ sin 4π‘₯
πŸ“ 𝐬𝐒𝐧 πŸπŸŽπ’™ βˆ’ πŸ“ 𝐬𝐒𝐧 πŸπ’™
𝟏+√𝟐
πŸ’
Product to Sum Identity – Home Work
Find the exact value of the expression.
166. cos 37.5 cos 7.5
168.
167. sin 45 sin 15
√𝟐+βˆšπŸ‘
πŸβˆ’βˆšπŸ‘
πŸ’
πŸ’
4 cos 195 sin 15
169. 3 sin 8π‘₯ cos 2π‘₯
πŸ‘
𝟏
Pre-Calc Trig
πŸ‘
𝐬𝐒𝐧 πŸπŸŽπ’™ + 𝟐 𝐬𝐒𝐧 πŸ”π’™
𝟐
βˆ’πŸ’
~19~
NJCTL.org
Inverse Trig Functions – Class Work
Evaluate the expression.
170.
171.
sin (π‘π‘œπ‘  βˆ’1
5
13
6
170. π‘π‘œπ‘  (π‘‘π‘Žπ‘›βˆ’1 βˆ’ )
)
5
𝟏𝟐
πŸ“βˆšπŸ”πŸ
πŸπŸ‘
πŸ”πŸ
3
π‘‘π‘Žπ‘› (π‘ π‘–π‘›βˆ’1 )
172. sin (π‘‘π‘Žπ‘›βˆ’1 βˆ’
4
πŸ‘βˆšπŸ•
βˆ’
πŸ•
173.
π‘π‘œπ‘  (π‘ π‘–π‘›βˆ’1
6
11
πŸ•βˆšπŸπŸπŸ–
πŸπŸπŸ–
3
5
πŸ’
βˆ’πŸ‘
𝟏𝟏
Ο€
sinβˆ’1 (sin )
176. sinβˆ’1 (sin
4
𝝅
3Ο€
4
)
π’–π’π’…π’†π’‡π’Šπ’π’†π’…
πŸ’
177.
)
174. π‘‘π‘Žπ‘› (π‘π‘œπ‘  βˆ’1 βˆ’ )
)
βˆšπŸ–πŸ“
175.
7
13
Ο€
Ο€
cos βˆ’1 (cos )
178. cos βˆ’1 (cos βˆ’ )
3
3
𝝅
π’–π’π’…π’†π’‡π’Šπ’π’†π’…
πŸ‘
Inverse Trig Functions – Home Work
Evaluate the expression.
179.
181.
sin (π‘π‘œπ‘  βˆ’1
12
13
7
180. π‘π‘œπ‘  (π‘‘π‘Žπ‘›βˆ’1 βˆ’ )
)
5
πŸ“
πŸ“βˆšπŸ•πŸ’
πŸπŸ‘
πŸ•πŸ’
1
π‘‘π‘Žπ‘› (π‘ π‘–π‘›βˆ’1 )
182. sin (π‘‘π‘Žπ‘›βˆ’1 βˆ’
4
βˆšπŸπŸ“
βˆ’
πŸπŸ“
183.
π‘π‘œπ‘  (π‘ π‘–π‘›βˆ’1
9
11
πŸ“βˆšπŸπŸ—πŸ’
πŸπŸ—πŸ’
4
5
πŸ‘
βˆ’πŸ’
𝟏𝟏
Ο€
sinβˆ’1 (sin )
186. sinβˆ’1 (sin
6
𝝅
cos βˆ’1 (cos
5Ο€
6
)
π’–π’π’…π’†π’‡π’Šπ’π’†π’…
πŸ”
187.
)
184. π‘‘π‘Žπ‘› (π‘π‘œπ‘  βˆ’1 βˆ’ )
)
𝟐√𝟏𝟎
185.
5
13
2Ο€
3
188. cos βˆ’1 (cos βˆ’
)
πŸπ…
2Ο€
3
)
π’–π’π’…π’†π’‡π’Šπ’π’†π’…
πŸ‘
Pre-Calc Trig
~20~
NJCTL.org
Trig Equations – Class Work
Find the value(s) of x such that 0 ≀ π‘₯ < 2πœ‹, if they exist.
189. sin π‘₯ = 1
𝒙=
191.
𝝅
190. 3 tan2 π‘₯ = 1
𝝅 πŸ“π… πŸ•π… πŸπŸπ…
𝒙 = πŸ”,
𝟐
𝑠𝑒𝑐 2 π‘₯ βˆ’ 2 = 0
193.
,
πŸ’
,
πŸ’
195.
πŸ”
,
πŸ”
,
𝒙=
πŸ’
𝟐
πŸ”
πŸ”
,
πŸ”
πŸ‘π…
𝟐
198. sin + cos π‘₯ = 0
2
𝝅 πŸ‘π… πŸ•π… πŸπŸπ…
,
,
π‘₯
sin 2π‘₯ + cos π‘₯ = 0
,
πŸ”
196. 2(sin π‘₯ + 1) = π‘π‘œπ‘  2 π‘₯
𝝅 πŸ“π…
199.
πŸ”
𝝅 πŸ“π… πŸ•π… πŸπŸπ…
𝒙 = πŸ”,
πŸ”
𝑠𝑖𝑛2 π‘₯ βˆ’ cos π‘₯ sin π‘₯ = 0
𝒙 = 𝟐,
πŸ”
194. 3𝑠𝑒𝑐 2 π‘₯ = 4
𝒙 = 𝟎, 𝝅, πŸ’ ,
197.
,
𝝅 πŸ“π…
𝝅 πŸ“π… πŸ•π… πŸπŸπ…
πŸ”
πŸ”
𝒙 = πŸ”,
πŸ’
𝑐𝑠𝑐 2 π‘₯ = 4
𝒙= ,
,
192. 2𝑠𝑖𝑛2 π‘₯ + 3 = 7 sin π‘₯
𝝅 πŸ‘π… πŸ“π… πŸ•π…
𝒙 = πŸ’,
πŸ”
𝝅 πŸ“π…
𝒙 = 𝝅, πŸ‘ ,
πŸ”
πŸ‘
cos 2π‘₯ + cos π‘₯ = 2
𝒙=𝟎
Pre-Calc Trig
~21~
NJCTL.org
Trig Equations – Home Work
Find the value(s) of x such that 0 ≀ π‘₯ < 2πœ‹, if they exist.
200. cos π‘₯ = βˆ’1
𝝅 πŸ‘π… πŸ“π… πŸ•π…
𝒙=𝝅
202.
201. 2 sin2 π‘₯ = 1
𝒙 = πŸ’,
𝑐𝑠𝑐 2 π‘₯ βˆ’ 2 = 0
204.
πŸ’
,
πŸ’
,
𝒙=
πŸ’
𝑠𝑒𝑐 2 π‘₯ = 4
πŸ‘
206.
πŸ‘
,
πŸ‘
,
πŸ‘
208.
,πŸ’,
𝒙=
πŸ’
πŸ‘π…
𝟐
πŸ‘
,
πŸ‘
,
πŸ‘
πŸ•π… πŸπŸπ… 𝝅
πŸ”
,
πŸ”
,𝟐
π‘₯
sin 2π‘₯ = 2tan 2π‘₯
209. tan βˆ’ sin π‘₯ = 0
2
𝝅 πŸ‘π…
𝒙 = 𝟎, 𝝅, 𝟐 ,
210.
πŸ’
207. (sin π‘₯ βˆ’ 1) = βˆ’2π‘π‘œπ‘  2 π‘₯
𝝅 πŸ‘π… 𝝅 πŸ“π…
𝟐
,
𝝅 πŸπ… πŸ’π… πŸ“π…
𝒙= ,
πŸ‘
π‘π‘œπ‘  2 π‘₯ βˆ’ cos π‘₯ sin π‘₯ = 0
𝒙 = 𝟐,
πŸ’
205. 3𝑐𝑠𝑐 2 π‘₯ = 4
𝝅 πŸπ… πŸ’π… πŸ“π…
𝒙= ,
,
203. 2𝑠𝑖𝑛2 π‘₯ βˆ’ 3 = sin π‘₯
𝝅 πŸ‘π… πŸ“π… πŸ•π…
𝒙 = πŸ’,
πŸ’
𝝅 πŸ‘π…
𝒙 = 𝟎, 𝝅, 𝟐 ,
𝟐
𝟐
sin 2π‘₯ βˆ’ sin π‘₯ = 0
𝝅 πŸ“π…
𝒙 = 𝟎, 𝝅, πŸ‘ ,
Pre-Calc Trig
πŸ‘
~22~
NJCTL.org
Trigonometry Unit Review
Multiple Choice
1. Given the terminal point of (
a.
√2 βˆ’βˆš2
2
,
2
) find tan πœƒ.
Ο€
4
b. βˆ’
C
Ο€
4
c. -1
d. 1
2. Knowing sec π‘₯ =
a.
b.
c.
d.
βˆ’5
4
and the terminal point is in the second quadrant find cot πœƒ.
βˆ’4
5
3
C
5
βˆ’4
3
βˆ’3
4
5
3. What is the phase shift of 𝑦 = cos(6π‘₯ βˆ’ 2πœ‹) + 3?
3
a.
b.
c.
1
2Ο€
Ο€
B
3
1
3
d. 2πœ‹
πœ‹
4. The difference between the maximum of 𝑦 = 2 cos (2 (π‘₯ + )) + 1 and 𝑦 = βˆ’3 cos(4π‘₯ βˆ’ πœ‹) βˆ’ 2 is
3
5.
6.
7.
8.
a. 1
A
b. 2
c. 3
d. 8
Given βˆ†π΄π΅πΆ, π‘€π‘–π‘‘β„Ž 𝐴 = 35°, π‘Ž = 5, & 𝑐 = 7, 𝑓𝑖𝑛𝑑 𝐡.
a. 18.418
b. 53.418
C
c. 91.582
d. both a and b
Given βˆ†π΄π΅πΆ, π‘€π‘–π‘‘β„Ž 𝐴 = 50°, π‘Ž = 6, & 𝑐 = 8, 𝑓𝑖𝑛𝑑 𝐡.
a. 1.021
b. 40
D
c. 128.979
d. no solution
Given βˆ†π΄π΅πΆ, π‘€π‘–π‘‘β„Ž 𝐴 = 50°, 𝑏 = 6, & 𝑐 = 8, 𝑓𝑖𝑛𝑑 𝐡.
a. 6.188
b. 32.456
C
c. 47.967
d. 82.033
(sec π‘₯ + tan π‘₯)(sec π‘₯ βˆ’ tan π‘₯) =
a. 1 + 2 sec π‘₯ tan π‘₯
b. 1 βˆ’ sec π‘₯ tan π‘₯
c.
1βˆ’
2 sin π‘₯
D
π‘π‘œπ‘  2 π‘₯
d. 1
Pre-Calc Trig
~23~
NJCTL.org
9. Find the exact value of sin
a.
b.
c.
d.
πœ‹
12
√6βˆ’βˆš2
4
√6+√2
4
√6βˆ’βˆš2
2
√6βˆ’βˆš2
A
2
10. On the interval [0, 2Ο€), sin 2π‘₯ = 0, thus x =
a. 0
Ο€
b.
D
c.
2
3Ο€
2
d. all of the above
11. Find the exact value of cos 105
a.
√2βˆ’βˆš3
2
√2βˆ’βˆš3
b. βˆ’
c.
B
2
√2+√3
2
√2+√3
d. βˆ’
2
12. 𝑠𝑖𝑛4 π‘₯ =
a.
b.
c.
d.
1
8
1
8
1
8
1
8
(3 βˆ’ cos π‘₯ + cos 4π‘₯)
(3 + cos π‘₯ + cos 4π‘₯)
(3 + 4 cos π‘₯ + cos 4π‘₯)
D
(3 βˆ’ 4cos π‘₯ + cos 4π‘₯)
13. Rewrite cos 6π‘₯ sin 4π‘₯ as a sum or difference.
a.
b.
c.
d.
1
2
1
2
1
2
1
2
1
cos 10x βˆ’ cos2x
2
1
cos 10x + cos2x
2
D
sin 10x βˆ’ sin2x
1
sin 10x βˆ’ sin2x
2
14. On the interval [0, 2Ο€), sin 5π‘₯ + sin 3π‘₯ = 0
Ο€
a.
b.
c.
4
kΟ€
4
kΟ€
4
C
, where k ∈ Integers
, where k ∈ {0,1,2,6}
d. no solution on the interval given
15. 𝑠𝑖𝑛
βˆ’1
(sin
a.
4πœ‹
3
)=
4πœ‹
3
b. βˆ’
πœ‹
3
B
c. π‘π‘œπ‘‘β„Ž π‘Ž π‘Žπ‘›π‘‘ 𝑏
d. Undefined
Pre-Calc Trig
~24~
NJCTL.org
16. On the interval [0, 2Ο€), solve 2sin2 π‘₯ + 3 cos π‘₯ = 3
I. 0
a.
b.
c.
d.
II.
Ο€
3
I only
II and III
I and III
I, II, and III
III.
5Ο€
3
D
Extended Response
1. The range of a projectile launched at initial velocity 𝑣0 and angle πœƒ, is
π‘Ÿ=
1
𝑣 2
16 0
sin πœƒ cos πœƒ,
where r is the horizontal distance, in feet, the projectile will travel.
a. Rewrite the formula using double angle formula.
𝟏
𝒓 = πŸ‘πŸ π’—πŸŽ 𝟐 𝐬𝐒𝐧 𝟐𝜽
b. A golf ball is hit 200 yards, if the initial velocity 200 ft/sec, what was the angle it was hit?
𝜽 = πŸπŸ’. πŸ‘πŸ’π’
c.
If the golfer struck the ball at 45°, how far would the ball traveled?
𝒓 = πŸπŸπŸ“πŸŽ 𝒇𝒆𝒆𝒕
2. A state park hires a surveyor to map out the park.
a. A and B are on opposite sides of the lake, if the surveyor stands at point C and measures
angle ACB= 50 and CA= 400’ and CB= 350’, how wide is the lake?
πŸ‘πŸπŸŽ. 𝟐 𝒇𝒆𝒆𝒕
b. At a river the surveyor picks two spots, X and Y, on the same bank of the river and a tree, C,
on opposite bank. Angle X= 60 and angle Y= 50 and XY=300’, how wide is the river?
(Remember distance is measured along perpendiculars.)
𝟐𝟏𝟏. πŸ– 𝒇𝒆𝒆𝒕
c.
The surveyor measured the angle to the top of a hill at the center of the park to be 32°. She
moved 200’ closer and the angle to the top of the hill was 43°. How tall was the hill?
πŸ‘πŸ•πŸ–. πŸ– 𝒇𝒆𝒆𝒕
Pre-Calc Trig
~25~
NJCTL.org
3. The average daily production, M (in hundreds of gallons), on a dairy farm is modeled by
2πœ‹π‘‘
𝑀 = 19.6 sin (
+ 12.6) + 45
365
where d is the day, d=1 is January first.
a. What is the period of the function?
πŸ‘πŸ”πŸ“
b. What is the average daily production for the year?
πŸ’πŸ“πŸ”πŸ” π’ˆπ’‚π’π’π’π’π’”
c.
Using the graph of M(d), what months during the year is production over 5500 gallons a day?
February thru May
4. A student was asked to solve the following equation over the interval [0, 2πœ‹). During his calculations
he might have made an error. Identify the error and correct his work so that he gets the right
answer.
cos π‘₯ + 1 = sin π‘₯
cos 2 x + 2 cos x + 1 = 𝑠𝑖𝑛2 π‘₯
cos 2 x + 2 cos x + 1 = 1 βˆ’ π‘π‘œπ‘  2 π‘₯
2 cos π‘₯ = 0
cos π‘₯ = 0
Ο€ 3Ο€
,
2 2
Error is on line 4
Line 4 should read
𝟐 𝐜𝐨𝐬𝟐 𝒙 + 𝟐 𝐜𝐨𝐬 𝒙 = 𝟎
The rest of the problem is
𝟐 𝐜𝐨𝐬 𝒙 (𝐜𝐨𝐬 𝒙 + 𝟏) = 𝟎
𝟐 𝐜𝐨𝐬 𝒙 = 𝟎
𝐜𝐨𝐬 𝒙 + 𝟏 = 𝟎
𝐜𝐨𝐬 𝒙 = 𝟎
𝐜𝐨𝐬 𝒙 = βˆ’πŸ
𝝅
πŸ‘π…
𝒙 = , 𝝅,
𝟐
𝟐
Pre-Calc Trig
~26~
NJCTL.org