Unit Circle β Class Work
Find the exact value of the given expression.
1. πππ
4π
β
4. π‘ππ
2. π ππ
3
π
π
7π
β
β5π
5. πππ‘
6
3. π ππ
4
4
6. ππ π
βπ
βπ
π
3 β2β10
7. Given the terminal point ( ,
7
πππ§ π½ = β
β9π
2
βπ
) find tanΞΈ
πβππ
π
8. Given the terminal point (
ππ¨π π½ =
7
3
βπ
βπ
π
15π
2π
β5 β12
13
,
13
) find cotΞΈ
π
ππ
2
9. Knowing cosx= and the terminal point is in the fourth quadrant find sinx.
3
π¬π’π§ π = β
βπ
π
4
10. Knowing cotx= and the terminal point is in the third quadrant find secx.
5
ππ¨π π = β
Pre-Calc Trig
πβππ
π
~1~
NJCTL.org
Unit Circle β Home Work
Find the exact value of the given expression.
11. πππ
5π
12. π ππ
3
π
π
14. π‘ππ
4
13. π ππ
15. πππ‘
6
13π
4
16. ππ π
π
βπ
π
7
β24
25
25
17. Given the terminal point ( ,
ππ¨π π½ = β
3
β11π
2
π
) find cotΞΈ
π
ππ
18. Given the terminal point (
πππ§ π½ = β
4π
βπ
βπ
π
β7π
β
3π
β4β2 7
9
, ) find tanΞΈ
9
πβπ
π
7
19. Knowing sinx= and the terminal point is in the second quadrant find secx.
8
π¬ππ π = β
20. Knowing cscx=
β4
5
πβππ
ππ
and the terminal point is in the third quadrant find cotx.
ππ¨π π =
Pre-Calc Trig
π
π
~2~
NJCTL.org
Graphing β Class Work
State the amplitude, period, phase shift, and vertical shift for each function. Draw the graph by hand and
then check it with a graphing calculator.
π
21. π¦ = 2 cos (2 (π₯ + )) + 1
22. π¦ = β3 cos(4π₯ β π) β 2
3
π
A: 2 P: π
PS: β π VS: 1
2
π
3
6
A: 3 P:
23. π¦ = sin ( (π₯ + )) + 3
π
π
PS:
π
π
VS: -2
24. π¦ = β1 cos(3π₯ β 2π) β 1
π
A: 1 P: ππ
PS: β π VS: 3
A: 1 P:
ππ
π
PS:
ππ
π
VS: -1
2
25. π¦ = cos(4π₯ β 2π) + 2
3
π
A:π P:
Pre-Calc Trig
π
π
PS:
π
π
VS: 2
~3~
NJCTL.org
Graphing β Home Work
State the amplitude, period, phase shift, and vertical shift for each function. Draw the graph by hand and
then check it with a graphing calculator.
1
π
2
3
26. π¦ = β4 cos ( (π₯ β )) + 2
A: 4 P: ππ
PS:
1
π
4
2
27. π¦ = β2 cos(4π₯ β 3π) β 3
π
VS: 2
π
A: 2 P:
28. π¦ = 2 sin ( (π₯ + )) + 1
π
π
PS:
ππ
π
VS: -3
29. π¦ = β1 cos(6π₯ β 2π) β 1
π
A: 2 P: ππ
PS: β π VS: 1
A: 1 P:
π
π
PS:
π
π
VS: 1
3
30. π¦ = cos(4π₯ β 3π) β 2
2
π
π
A: π P: π PS:
Pre-Calc Trig
ππ
π
VS: -2
~4~
NJCTL.org
Law of Sines β Class Work
Solve triangle ABC.
31. π΄ = 70°, π΅ = 30°, π = 4
32. π΅ = 65°, πΆ = 50°, π = 12
πͺ = πππ π = π. ππ π = π. ππ
π¨ = πππ π = ππ π = ππ. ππ
33. π = 6, π΄ = 25°, π΅ = 45°
34. π = 8, π΅ = 60°, πΆ = 40°
πͺ = ππππ π = π. ππ π = π. ππ
π¨ = πππ π = ππ. ππ π = ππ. ππ
35. π = 12, π = 6, πΆ = 70°
36. π = 12, π = 15, π΅ = 40°
π¨ = ππ. ππ πͺ = ππ. ππ π = ππ. ππ
ππ
π
π¨ = πππ. π πͺ = ππ. ππ π = π. ππ
π¨ = πππ π© = πππ π = ππ. ππ
37. π΄ = 35°, π = 6, π = 11
π΅π πΊπππππππ
38. An airplane is on the radar at both Newark Liberty International and JFK airports that are 20 miles
apart. The angle of elevation from Newark to the plane is 42°and from JFK is 35° when the plane is
directly between them. How far is the plane from JFK? What is the planeβs elevation?
ππ. ππ πππππ ππππ π±ππ²
π. ππ πππππ ππ πππππππππ
39. A mathematician walking in the woods noticed that the angle the angle of elevation to a bird at the
top of a tree is 50°, after walking 40β toward the tree, the angle is 55°. How far is she from the bird?
πππ. ππ ππππ ππππ πππ ππππ
Pre-Calc Trig
~5~
NJCTL.org
Law of Sines β Home Work
Solve triangle ABC.
40. π΄ = 60°, π΅ = 40°, π = 5
41. π΅ = 75°, πΆ = 50°, π = 14
π¨ = πππ π = ππ. ππ π = ππ. ππ
πͺ = πππ π = π. π π = π. ππ
42. π = 6, π΄ = 35°, π΅ = 45°
43. π = 8, π΅ = 50°, πΆ = 40°
πͺ = ππππ π = π. ππ π = π. ππ
π¨ = πππ π = ππ. ππ π = π. ππ
44. π = 12, π = 8, πΆ = 65°
45. π = 12, π = 16, π΅ = 50°
π΅π πΊπππππππ
π¨ = ππ. ππ π© = ππ. ππ π = ππ. ππ
46. π΄ = 40°, π = 5, π = 12
π΅π πΊπππππππ
47. An airplane is on the radar at both Newark Liberty International and JFK airports that are 20 miles
apart. The angle of elevation from Newark to the plane is 52°and from JFK is 45° when the plane is
directly between them. How far is the plane from JFK? What is the planeβs elevation?
ππ. ππ πππππ ππππ π±ππ²
ππ. ππ πππππ ππ πππππππππ
48. A mathematician walking in the woods noticed that the angle the angle of elevation to a bird at the
top of a tree is 45°, after walking 30β toward the tree, the angle is 60°. How far is she from the bird?
ππ. ππ ππππ ππππ πππ ππππ
Pre-Calc Trig
~6~
NJCTL.org
Law of Cosines β Class Work
Solve triangle ABC.
49. π = 3, π = 4, π = 6
50. π = 5, π = 6, π = 7
π¨ = ππ. ππ π© = ππ. ππ πͺ = πππ. ππ
π¨ = ππ. ππ π© = ππ. ππ πͺ = ππ. ππ
51. π = 7, π = 6, π = 4
52. π΄ = 100°, π = 4, π = 5
π = π. ππ π© = ππ. ππ πͺ = ππ. ππ
π¨ = ππ. ππ π© = ππ. ππ πͺ = ππ. ππ
53. π΅ = 60°, π = 5, π = 9
54. πΆ = 40°, π = 10, π = 12
π¨ = ππ. ππ π = π. ππ πͺ = ππ. ππ
π¨ = ππ. ππ π© = ππ. ππ π = π. ππ
55. A ship at sea noticed two lighthouses that according to the charts are 1 mile apart. The light at
lighthouse A is 200β above sea level and the navigator on the ship measures the angle of elevation
to be 2°, how far is the ship from lighthouse A? The light at lighthouse B is 300β above sea level and
the navigator on the ship measures the angle of elevation to be 5°, how far is the ship from
lighthouse B? How far is the ship from shore?
π»ππ ππππ ππ ππππ. ππ ππ ππππ ππππππππππ π¨
π»ππ ππππ ππ ππππ. ππ ππ ππππ ππππππππππ π©
π»ππ ππππ ππ ππππ. π ππ ππππ πππππ
56. A student takes his 2 dogs for a walk. He lets them off their leash in a field where Edison runs at 7
m/s and Einstein runs at 6 m/s. The student determines the angle between the dogs is 20°, how far
are the dogs from each other in 8 seconds?
π»ππ π
πππ πππ ππ. π π πππππ
Pre-Calc Trig
~7~
NJCTL.org
Law of Cosines β Home Work
Solve triangle ABC.
57. π = 4, π = 5, π = 8
58. π = 4, π = 10, π = 13
π¨ = ππ. ππ π© = ππ. ππ πͺ = πππ. ππ
π¨ = ππ. ππ π© = ππ. ππ πͺ = πππ. ππ
59. π = 11, π = 8, π = 6
60. π΄ = 85°, π = 3, π = 7
π¨ = πππ. ππ π© = ππ. ππ πͺ = ππ. ππ
π = π. ππ π© = ππ. ππ πͺ = ππ. ππ
61. π΅ = 70°, π = 6, π = 12
62. πΆ = 25°, π = 14, π = 19
π¨ = ππ. ππ π = ππ. ππ πͺ = ππ. ππ
π¨ = ππ. ππ π© = ππ. ππ π = π. ππ
63. A ship at sea noticed two lighthouses that according to the charts are 1 mile apart. The light at
lighthouse A is 275β above sea level and the navigator on the ship measures the angle of elevation
to be 4°, how far is the ship from lighthouse A? The light at lighthouse B is 325β above sea level and
the navigator on the ship measures the angle of elevation to be 8°, how far is the ship from
lighthouse B? How far is the ship from shore?
π»ππ ππππ ππ ππππ. π ππ ππππ ππππππππππ π¨
π»ππ ππππ ππ ππππ. π ππ ππππ ππππππππππ π©
π»ππ ππππ ππ ππππ. π ππ ππππ πππππ
64. A student takes his 2 dogs for a walk. He lets them off their leash in a field where Edison runs at 10
m/s and Einstein runs at 8 m/s. The student determines the angle between the dogs is 25°, how far
are the dogs from each other in 5 seconds?
π»ππ π
πππ πππ ππ. π π πππππ
Pre-Calc Trig
~8~
NJCTL.org
Pythagorean Identities β Class Work
Simplify the expression
65. csc π₯ tan π₯
66. cot π₯ sec π₯ sin π₯
π¬ππ π
π
68. (1 + cot 2 x)(1 β cos 2 x)
67. sin x (csc x β sin x)
π
ππ¨π¬π π
69. 1 β
tan2 x
70. (sin x β cos x)2
sec2 π₯
ππ¨π¬π π
71.
π β π¬π’π§ ππ
cot2 x
72.
1βsin2 x
cosx
secx+tanx
π β π¬π’π§ π
ππ¬π π π
73. sin π₯ tan π₯ + cos π₯
π¬ππ π
Verify the Identity
74. (1 β sin π₯)(1 + sin π₯) = cos 2 x
75.
tan π₯ cot π₯
sec π₯
= cos π₯
π
π¬ππ π
π β π¬π’π§π π
ππ¨π¬π π
ππ¨π¬ π
76. (1 β cos 2 x)(1 + tan2 x) = tan2 x
77.
(π¬π’π§π π)(π¬ππ π π)
(π¬π’π§π π) (
π
ππ¨π¬ π π
+
1
sec xβtan x
= 2 sec x
(π¬ππ πβπππ§ π)+(π¬ππ π+πππ§ π)
π¬ππ π πβπππ§π π
)
π π¬ππ π
π
πππ§π π
Pre-Calc Trig
1
sec x+tan x
π π¬ππ π
~9~
NJCTL.org
Pythagorean Identities β Home Work
Simplify the expression
78. (tan x + cot x )2
79.
1βsin x
cos x
+
π¬ππ π π + ππ¬π π π
80.
cos xβcos y
sin x+sin y
+
π π¬ππ π
sin xβsin y
81.
cos x+cos y
1
sin π₯
β
π
82.
cos x
1βsin x
1
csc π₯
ππ¨π¬ π ππ¨π π
1+sec2 x
83.
1+tan2 x
sin2 x
tan2 x
+
cos2 x
cot2 x
ππ¨π¬π π + π
84.
π
π‘ππ2 π₯
85.
1+π‘ππ2 π₯
cos x
sec x
+
sin x
csc x
π¬π’π§π π
86.
1+sec2 x
1+tan2 x
+
π
cos2 x
cot2 x
π
Verify the Identity
87. πππ 2 π₯ β π ππ2 π₯ = 1 β 2π ππ2 π₯
88. tan π₯ cos π₯ csc π₯ = 1
(π β π¬π’π§π π) β π¬π’π§π π
π¬π’π§ π
π
(ππ¨π¬ π) (ππ¨π¬ π) (π¬π’π§ π)
π β π π¬π’π§π π
89.
1+cot x
csc x
π
= sin x + cos x
90.
ππ¨π¬ π
π¬π’π§ π
π
π¬π’π§ π
cos x csc x
cot x
=1
π
π¬π’π§ π
ππ¨π¬ π
π¬π’π§ π
π+
ππ¨π¬ π
ππ¨π¬ π
ππ¨π¬ π
(π + π¬π’π§ π ) (
π¬π’π§ π
π
π¬π’π§ π
)
π¬π’π§ π
β ππ¨π¬ π
π
π¬π’π§ π + ππ¨π¬ π
Pre-Calc Trig
~10~
NJCTL.org
Angle Sum/Difference Identity β Class Work
Use Angle Sum/Difference Identity to find the exact value of the expression.
91. sin 105
92. cos 75
βπ + βπ
π
βπ β βπ
π
93. tan 195
βπ + βπ
12
βπ β βπ
π
π + βπ
95. cos
π
94. π ππ β
19π
96. π‘ππ β
12
π
12
π β βπ
βπ β βπ
π
π + βπ
Verify the Identity.
π
π
3
3
π
π
π
π
π
π
π
π
π
π
π¬π’π§ π ππ¨π¬ + ππ¨π¬ π π¬π’π§ + π¬π’π§ π ππ¨π¬ β ππ¨π¬ π π¬π’π§
π
π
1
4
4
2
98. cos (π₯ + ) cos (π₯ β ) = cos 2 π₯ β
97. sin (π₯ + ) + sin (π₯ β ) = sin π₯
π
π
π
π
π
π
π
π
(ππ¨π¬ π ππ¨π¬ β π¬π’π§ π π¬π’π§ ) (ππ¨π¬ π ππ¨π¬ + π¬π’π§ π π¬π’π§ )
π¬π’π§ π β π + π¬π’π§ π β π
(ππ¨π¬ π β
βπ
π
β π¬π’π§ π β
π
π¬π’π§ π
π
π
π
βπ
π
) (ππ¨π¬ π β
βπ
π
+ π¬π’π§ π β
βπ
π
π
ππ¨π¬π π β π π¬π’π§π π
π
ππ¨π¬π π β π (π β ππ¨π¬π π)
π
ππ¨π¬π π β π
π
tan π₯β1
4
tan π₯+1
99. tan (π₯ β ) =
100.
π
π
π
π+πππ§ π πππ§
π
sin(π₯+π¦)βsin(π₯βπ¦)
cos(π₯+π¦)+cos(π₯βπ¦)
= tan π¦
(π¬π’π§ π ππ¨π¬ π+ππ¨π¬ π π¬π’π§ π)β(π¬π’π§ π ππ¨π¬ πβππ¨π¬ π π¬π’π§ π)
πππ§ πβπππ§
(ππ¨π¬ π ππ¨π¬ πβπ¬π’π§ π π¬π’π§ π)+(ππ¨π¬ π ππ¨π¬ π+π¬π’π§ π π¬π’π§ π)
π ππ¨π¬ π π¬π’π§ π
πππ§ πβπ
π ππ¨π¬ π ππ¨π¬ π
π+πππ§ π(π)
πππ§ π
Pre-Calc Trig
~11~
NJCTL.org
)
Angle Sum/Difference Identity β Home Work
Use Angle Sum/Difference Identity to find the exact value of the expression.
101. sin 165
102. cos 105
βπ β βπ
π
βπ β βπ
π
103.
tan 285
π β βπ
cos
12
βπ β βπ
π
π + βπ
105.
11π
104. π ππ β
17π
106. π‘ππ β
12
7π
12
βπ + βπ
βπ β βπ
π
π β βπ
Verify the Identity.
107.
sin (π₯ +
(π¬π’π§ π ππ¨π¬
ππ
π
2π
3
) + sin (π₯ β
+ ππ¨π¬ π π¬π’π§
ππ
π
2π
3
) = βsin π₯
) + (π¬π’π§ π ππ¨π¬
π
ππ
π
β ππ¨π¬ π π¬π’π§
108. cos (π₯ +
ππ
π
)
(ππ¨π¬ π ππ¨π¬
ππ
π
π
π¬π’π§ π β β π + π¬π’π§ π β β π
(ππ¨π¬ π β
3π
4
) cos (π₯ β
β π¬π’π§ π π¬π’π§
ββπ
π
β π¬π’π§ π
β π¬π’π§ π β
π
π
ππ
π
βπ
π
3π
4
) = cos 2 π₯ β
) (ππ¨π¬ π ππ¨π¬
) (ππ¨π¬ π β
ππ
π
ββπ
π
1
2
+ π¬π’π§ π π¬π’π§
+ π¬π’π§ π β
βπ
π
ππ
π
)
)
π
ππ¨π¬π π β π π¬π’π§π π
π
π
ππ¨π¬π π β π (π β ππ¨π¬π π)
π
π
ππ¨π¬π π β π
109.
tan (π₯ +
5π
4
)=
tan π₯+1
110. πππ (
1βtan π₯
ππ
π
ππ
πβπππ§ π πππ§
π
(ππ¨π¬
πππ§ π+πππ§
ππ
(
πππ§ π+π
π
6
+ π₯) πππ (
ππ¨π¬ π β π¬π’π§
ββπ
π
5π
ππ
π
π
4
π¬π’π§ π) (ππ¨π¬
ββπ
π
π
π
π
3
β π₯) = β sin2 π₯
π
π
ππ
π
ππ¨π¬ π + π¬π’π§
ππ
π
π¬π’π§ π)
π
β ππ¨π¬ π + β π¬π’π§ π)
π
π
ππ¨π¬π π β π¬π’π§π π
π
π
(π β π¬π’π§π π) β π π¬π’π§π π
π
π
~12~
6
β ππ¨π¬ π β β π¬π’π§ π) (
πβπππ§ π(π)
Pre-Calc Trig
5π
β π¬π’π§π π
NJCTL.org
Double Angle Identity β Class Work
Find the exact value of the expression.
1
111.
πππ π = , ππππ cos 2π ππ π ππ ππ π‘βπ ππππ π‘ ππ’ππππππ‘.
112.
πππ π = , ππππ sin 2π ππ π ππ ππ π‘βπ πππ’ππ‘β ππ’ππππππ‘.
113.
π πππ =
114.
π πππ =
115.
π‘πππ =
116.
πππ‘π = , ππππ tan 2π ππ π ππ ππ π‘βπ π‘βπππ ππ’ππππππ‘.
4
1
4
β3
, ππππ tan 2π ππ π ππ ππ π‘βπ π‘βπππ ππ’ππππππ‘.
7
β3
7
βπ
π
ββππ
π
ππβππ
ππ
, ππππ cos 2π ππ π ππ ππ π‘βπ πππ’ππ‘β ππ’ππππππ‘.
βππ
ππ
, ππππ sin 2π ππ π ππ ππ π‘βπ π πππππ ππ’ππππππ‘.
βππ
ππ
β5
9
5
9
β
ππ
ππ
Verify the Identity.
117.
sin 3π₯ = 3 sin π₯ β 4 sin3 π₯
118. tan 3π₯ =
3 tan π₯βπ‘ππ3 π₯
1β3π‘ππ2 π₯
π¬π’π§(ππ + π)
πππ§(ππ + π)
π¬π’π§ ππ ππ¨π¬ π + ππ¨π¬ ππ π¬π’π§ π
πππ§ ππ+πππ§ π
πβπππ§ ππ πππ§ π
(π π¬π’π§ π ππ¨π¬ π) ππ¨π¬ π + (π β π π¬π’π§π π) π¬π’π§ π
π
π πππ§ π
+πππ§ π
πβπππ§π π
π πππ§ π
πβ
πππ§ π
πβπππ§π π
π
π π¬π’π§ π ππ¨π¬ π + π¬π’π§ π β π π¬π’π§ π
118.
π π¬π’π§ π (π β π¬π’π§π π) + π¬π’π§ π β π π¬π’π§π π
π πππ§ π+πππ§ πβπππ§π π
πβπππ§π π
πβπππ§π πβπ πππ§π π
πβπππ§π π
π
π π¬π’π§ π β π π¬π’π§ π
119.
sin 4π₯
sin π₯
= 4 cos 2π₯ πππ π₯
120. csc 2π₯ =
π πππ§ πβπππ§π π
csc π₯
π
π¬π’π§ π
π¬π’π§ ππ
π(π π¬π’π§ π ππ¨π¬ π) ππ¨π¬ ππ
π
π¬π’π§ π
π π¬π’π§ π ππ¨π¬ π
π
π¬π’π§ π
~13~
πβπ πππ§π π
2 cos π₯
π π¬π’π§ ππ ππ¨π¬ ππ
π ππ¨π¬ π ππ¨π¬ ππ
Pre-Calc Trig
β
β
π
π ππ¨π¬ π
β
ππ¬π π
π ππ¨π¬ π
NJCTL.org
Double Angle Identity β Home Work
Find the exact value of the expression.
π
π
3
121.
πππ π = , ππππ cos 2π ππ π ππ ππ π‘βπ ππππ π‘ ππ’ππππππ‘.
122.
πππ π = , ππππ sin 2π ππ π ππ ππ π‘βπ πππ’ππ‘β ππ’ππππππ‘.
123.
π πππ =
124.
π πππ =
125.
π‘πππ =
126.
πππ‘π = , ππππ tan 2π ππ π ππ ππ π‘βπ π‘βπππ ππ’ππππππ‘.
4
3
4
β5
, ππππ tan 2π ππ π ππ ππ π‘βπ π‘βπππ ππ’ππππππ‘.
7
β5
7
βπβπ
π
βππβπ
, ππππ cos 2π ππ π ππ ππ π‘βπ πππ’ππ‘β ππ’ππππππ‘.
βπ
ππ
, ππππ sin 2π ππ π ππ ππ π‘βπ π πππππ ππ’ππππππ‘.
βππ
ππ
β4
9
4
9
β
ππ
ππ
Verify the Identity.
127.
sec 2π₯ =
sec2 π₯
128.
2βsec2 π₯
1+sin 2x
sin 2x
1
= 1 + sec x cscx
2
π
π
ππ¨π¬ ππ
π¬π’π§ ππ
+π
π
π
π ππ¨π¬π πβπ
π π¬π’π§ π ππ¨π¬ π
π
ππ¨π¬ π π
π ππ¨π¬ π πβπ
ππ¨π¬ π π
π
π
+π
ππ¬π π π¬ππ π + π
π¬ππ π π
πβπ¬ππ π π
129.
1 + cos 10π₯ = 2 cos 2 5π₯
π + (π ππ¨π¬ π ππ β π)
π ππ¨π¬ π ππ
Pre-Calc Trig
~14~
NJCTL.org
Half Angle Identity β Class Work
Find the exact value of the expression.
130.
β
1βcos 6π₯
π¬π’π§ ππ
132.
π₯
π₯
2
2
131. cos 2 ( ) β sin2 ( )
2
ππ¨π¬ ππ
sin 22.5
133. tan 67.5
βπ
βπ β βπ
π
π β βπ
ππ
π + βπ
π
Verify the Identity.
134.
π₯
2π‘πππ₯
2
tan π₯+sin π₯
sec = ±β
π
π¬π’π§ π
π π¬π’π§ π
= β π¬π’π§ πππ¨π¬ π
+π¬π’π§ π
ππ¨π¬ π
β
π π¬π’π§ π
ππ¨π¬ π
ππ¨π¬ π
β β π¬π’π§ π+π¬π’π§
β π¬π’π§ π(π+ππ¨π¬ π) β
π ππ¨π¬ π β β
ππ¨π¬ π
ππ¨π¬ π
π
π+ππ¨π¬ π
β
π
π+ππ¨π¬ π
β
π
β
π
ππ¨π¬
π
π
π
β π¬ππ π
Half Angle Identity β Home Work
Find the exact value of the expression.
135.
β
1+cos 4π₯
ππ¨π¬ ππ
137.
π₯
π₯
2
2
136. 2 cos ( ) sin ( )
2
π¬π’π§ π
cos 22.5
138. tan 15
π
βπ + βπ
π
π + βπ
ππ π β βπ
Verify the Identity.
π₯
139. tan = csc π₯ β cot π₯
2
=
Pre-Calc Trig
πβππ¨π¬ π
π¬π’π§ π
β
π
π¬π’π§ π
ππ¨π¬ π
β π¬π’π§ π β ππ¬π π β ππ¨π π
~15~
NJCTL.org
Power Reducing Identity β Class Work
Simplify the expression.
140. πππ 4 π₯
π
π
π
141. π ππ8 π₯
π
ππ
+ π ππ¨π¬ ππ + π ππ¨π¬ ππ
πππ
π
π
142.
π
π
ππ¨π¬ ππ ππ¨π¬ ππ + πππ ππ¨π¬ ππ
π ππ4 π₯ πππ 2 π₯
π
ππ
143.
π
β π ππ¨π¬ ππ + ππ ππ¨π¬ ππ β
π
π
π
β ππ ππ¨π¬ ππ β ππ ππ¨π¬ ππ + ππ ππ¨π¬ ππ ππ¨π¬ ππ
π
3
2
5
Find sin if cos π = and π is in the first quadrant.
βπ
π
144.
π
3
2
5
Find cos if tan π = and π is in the third quadrant.
β
Pre-Calc Trig
βππ(ππβπβππ)
ππ
~16~
NJCTL.org
Power Reducing Identity β Home Work
Simplify the expression.
145. π ππ2 π₯ πππ 2 π₯
π
π
146. π ππ4 π₯ πππ 4 π₯
π
π
β π ππ¨π¬ ππ
πππ
π
π
β ππ ππ¨π¬ ππ + πππ ππ¨π¬ ππ
π ππ2 π₯ πππ 4 π₯
147.
π
π
π
π
+ ππ ππ¨π¬ ππ β ππ ππ¨π¬ ππ β ππ ππ¨π¬ ππ ππ¨π¬ ππ
ππ
148.
π
3
2
5
Find sin if cos π = and π is in the fourth quadrant.
β
149.
π
β4
2
7
Find cos if sin π =
βπ
and π is in the third quadrant.
β
Pre-Calc Trig
π
βππ(πββππ)
ππ
~17~
NJCTL.org
Sum to Product Identity β Class Work
Find the exact value of the expression.
150. sin 75 + sin 15
151. cos 75 β cos 15
βπ
π
β
152. cos 75 + cos 15
βπ
βπ
π
π
Verify the Identity.
153.
sin x+ sin5x
cos x+cos5x
= tan3x
154.
sin x + sin y
cos xβcos y
= β cot
xβy
155.
2
π+π
πβπ
ππ¨π¬
π
π
π+π
πβπ
βπ π¬π’π§
π¬π’π§
π
π
ππ
ππ
π π¬π’π§ π ππ¨π¬ π
ππ
ππ
π ππ¨π¬ π ππ¨π¬ π
π¬π’π§ ππ
ππ¨π¬ ππ
πβπ
π
πβπ
π¬π’π§
π
ππ¨π¬
βππ¨π
π
ππ¨π π
Sum to Product Identity β Home Work
Find the exact value of the expression.
156. sin 105 + sin 15
157. cos 105 β cos 15
β
= cot x
ππ¨π¬ π
π¬π’π§ π
πβπ
πππ§ ππ
βπ
π
sin 3xβsin x
ππ
ππ
π ππ¨π¬ π ππ¨π¬ π
ππ
ππ
π π¬π’π§ π ππ¨π¬ π
π π¬π’π§
β
cos x+cos 3x
158. cos 105 + cos 15
βπ
βπ
π
π
Verify the Identity.
159.
cos4x+cos2x
sin 4x+sin2x
= cot3x
160.
π π¬π’π§
ππ¨π¬ ππ
π¬π’π§ ππ
π π¬π’π§ ππ ππ¨π¬(βππ) + π¬π’π§ ππ
π ππ¨π¬ ππ ππ¨π¬(βππ) + ππ¨π¬ ππ
ππ¨π ππ
π¬π’π§ ππ (π ππ¨π¬(βππ) + π)
ππ¨π¬ ππ (π ππ¨π¬(βππ) + π)
cos 87 + cos 33 = sin 63
π ππ¨π¬
πππ
π
ππ¨π¬
ππ
π
π¬π’π§ ππ
ππ¨π¬ ππ
π ππ¨π¬ ππ ππ¨π¬ ππ
πππ§ ππ
π
π β π β π¬π’π§(ππ β ππ)
Pre-Calc Trig
π¬π’π§ ππ
= tan 3x
ππ
βππ
ππ¨π¬
+ π¬π’π§ ππ
π
π
ππ
βππ
π ππ¨π¬ π ππ¨π¬ π + ππ¨π¬ ππ
ππ
ππ
ππ¨π¬
π
π
ππ
ππ
π π¬π’π§ ππ¨π¬
π
π
π ππ¨π¬
161.
sin x+sin 5x+sin 3x
cos x+cos 5x+cos 3π₯
~18~
NJCTL.org
Product to Sum Identity β Class Work
Find the exact value of the expression.
162. cos 75 cos 15
164.
163. sin 37.5 sin 7.5
π
βπββπ
π
π
2 sin 52.5 cos 97.5
165. 10 cos 6π₯ sin 4π₯
π π¬π’π§ πππ β π π¬π’π§ ππ
π+βπ
π
Product to Sum Identity β Home Work
Find the exact value of the expression.
166. cos 37.5 cos 7.5
168.
167. sin 45 sin 15
βπ+βπ
πββπ
π
π
4 cos 195 sin 15
169. 3 sin 8π₯ cos 2π₯
π
π
Pre-Calc Trig
π
π¬π’π§ πππ + π π¬π’π§ ππ
π
βπ
~19~
NJCTL.org
Inverse Trig Functions β Class Work
Evaluate the expression.
170.
171.
sin (πππ β1
5
13
6
170. πππ (π‘ππβ1 β )
)
5
ππ
πβππ
ππ
ππ
3
π‘ππ (π ππβ1 )
172. sin (π‘ππβ1 β
4
πβπ
β
π
173.
πππ (π ππβ1
6
11
πβπππ
πππ
3
5
π
βπ
ππ
Ο
sinβ1 (sin )
176. sinβ1 (sin
4
π
3Ο
4
)
πππ
ππππππ
π
177.
)
174. π‘ππ (πππ β1 β )
)
βππ
175.
7
13
Ο
Ο
cos β1 (cos )
178. cos β1 (cos β )
3
3
π
πππ
ππππππ
π
Inverse Trig Functions β Home Work
Evaluate the expression.
179.
181.
sin (πππ β1
12
13
7
180. πππ (π‘ππβ1 β )
)
5
π
πβππ
ππ
ππ
1
π‘ππ (π ππβ1 )
182. sin (π‘ππβ1 β
4
βππ
β
ππ
183.
πππ (π ππβ1
9
11
πβπππ
πππ
4
5
π
βπ
ππ
Ο
sinβ1 (sin )
186. sinβ1 (sin
6
π
cos β1 (cos
5Ο
6
)
πππ
ππππππ
π
187.
)
184. π‘ππ (πππ β1 β )
)
πβππ
185.
5
13
2Ο
3
188. cos β1 (cos β
)
ππ
2Ο
3
)
πππ
ππππππ
π
Pre-Calc Trig
~20~
NJCTL.org
Trig Equations β Class Work
Find the value(s) of x such that 0 β€ π₯ < 2π, if they exist.
189. sin π₯ = 1
π=
191.
π
190. 3 tan2 π₯ = 1
π
ππ
ππ
πππ
π = π,
π
π ππ 2 π₯ β 2 = 0
193.
,
π
,
π
195.
π
,
π
,
π=
π
π
π
π
,
π
ππ
π
198. sin + cos π₯ = 0
2
π
ππ
ππ
πππ
,
,
π₯
sin 2π₯ + cos π₯ = 0
,
π
196. 2(sin π₯ + 1) = πππ 2 π₯
π
ππ
199.
π
π
ππ
ππ
πππ
π = π,
π
π ππ2 π₯ β cos π₯ sin π₯ = 0
π = π,
π
194. 3π ππ 2 π₯ = 4
π = π, π
, π ,
197.
,
π
ππ
π
ππ
ππ
πππ
π
π
π = π,
π
ππ π 2 π₯ = 4
π= ,
,
192. 2π ππ2 π₯ + 3 = 7 sin π₯
π
ππ
ππ
ππ
π = π,
π
π
ππ
π = π
, π ,
π
π
cos 2π₯ + cos π₯ = 2
π=π
Pre-Calc Trig
~21~
NJCTL.org
Trig Equations β Home Work
Find the value(s) of x such that 0 β€ π₯ < 2π, if they exist.
200. cos π₯ = β1
π
ππ
ππ
ππ
π=π
202.
201. 2 sin2 π₯ = 1
π = π,
ππ π 2 π₯ β 2 = 0
204.
π
,
π
,
π=
π
π ππ 2 π₯ = 4
π
206.
π
,
π
,
π
208.
,π,
π=
π
ππ
π
π
,
π
,
π
ππ
πππ
π
π
,
π
,π
π₯
sin 2π₯ = 2tan 2π₯
209. tan β sin π₯ = 0
2
π
ππ
π = π, π
, π ,
210.
π
207. (sin π₯ β 1) = β2πππ 2 π₯
π
ππ
π
ππ
π
,
π
ππ
ππ
ππ
π= ,
π
πππ 2 π₯ β cos π₯ sin π₯ = 0
π = π,
π
205. 3ππ π 2 π₯ = 4
π
ππ
ππ
ππ
π= ,
,
203. 2π ππ2 π₯ β 3 = sin π₯
π
ππ
ππ
ππ
π = π,
π
π
ππ
π = π, π
, π ,
π
π
sin 2π₯ β sin π₯ = 0
π
ππ
π = π, π
, π ,
Pre-Calc Trig
π
~22~
NJCTL.org
Trigonometry Unit Review
Multiple Choice
1. Given the terminal point of (
a.
β2 ββ2
2
,
2
) find tan π.
Ο
4
b. β
C
Ο
4
c. -1
d. 1
2. Knowing sec π₯ =
a.
b.
c.
d.
β5
4
and the terminal point is in the second quadrant find cot π.
β4
5
3
C
5
β4
3
β3
4
5
3. What is the phase shift of π¦ = cos(6π₯ β 2π) + 3?
3
a.
b.
c.
1
2Ο
Ο
B
3
1
3
d. 2π
π
4. The difference between the maximum of π¦ = 2 cos (2 (π₯ + )) + 1 and π¦ = β3 cos(4π₯ β π) β 2 is
3
5.
6.
7.
8.
a. 1
A
b. 2
c. 3
d. 8
Given βπ΄π΅πΆ, π€ππ‘β π΄ = 35°, π = 5, & π = 7, ππππ π΅.
a. 18.418
b. 53.418
C
c. 91.582
d. both a and b
Given βπ΄π΅πΆ, π€ππ‘β π΄ = 50°, π = 6, & π = 8, ππππ π΅.
a. 1.021
b. 40
D
c. 128.979
d. no solution
Given βπ΄π΅πΆ, π€ππ‘β π΄ = 50°, π = 6, & π = 8, ππππ π΅.
a. 6.188
b. 32.456
C
c. 47.967
d. 82.033
(sec π₯ + tan π₯)(sec π₯ β tan π₯) =
a. 1 + 2 sec π₯ tan π₯
b. 1 β sec π₯ tan π₯
c.
1β
2 sin π₯
D
πππ 2 π₯
d. 1
Pre-Calc Trig
~23~
NJCTL.org
9. Find the exact value of sin
a.
b.
c.
d.
π
12
β6ββ2
4
β6+β2
4
β6ββ2
2
β6ββ2
A
2
10. On the interval [0, 2Ο), sin 2π₯ = 0, thus x =
a. 0
Ο
b.
D
c.
2
3Ο
2
d. all of the above
11. Find the exact value of cos 105
a.
β2ββ3
2
β2ββ3
b. β
c.
B
2
β2+β3
2
β2+β3
d. β
2
12. π ππ4 π₯ =
a.
b.
c.
d.
1
8
1
8
1
8
1
8
(3 β cos π₯ + cos 4π₯)
(3 + cos π₯ + cos 4π₯)
(3 + 4 cos π₯ + cos 4π₯)
D
(3 β 4cos π₯ + cos 4π₯)
13. Rewrite cos 6π₯ sin 4π₯ as a sum or difference.
a.
b.
c.
d.
1
2
1
2
1
2
1
2
1
cos 10x β cos2x
2
1
cos 10x + cos2x
2
D
sin 10x β sin2x
1
sin 10x β sin2x
2
14. On the interval [0, 2Ο), sin 5π₯ + sin 3π₯ = 0
Ο
a.
b.
c.
4
kΟ
4
kΟ
4
C
, where k β Integers
, where k β {0,1,2,6}
d. no solution on the interval given
15. π ππ
β1
(sin
a.
4π
3
)=
4π
3
b. β
π
3
B
c. πππ‘β π πππ π
d. Undefined
Pre-Calc Trig
~24~
NJCTL.org
16. On the interval [0, 2Ο), solve 2sin2 π₯ + 3 cos π₯ = 3
I. 0
a.
b.
c.
d.
II.
Ο
3
I only
II and III
I and III
I, II, and III
III.
5Ο
3
D
Extended Response
1. The range of a projectile launched at initial velocity π£0 and angle π, is
π=
1
π£ 2
16 0
sin π cos π,
where r is the horizontal distance, in feet, the projectile will travel.
a. Rewrite the formula using double angle formula.
π
π = ππ ππ π π¬π’π§ ππ½
b. A golf ball is hit 200 yards, if the initial velocity 200 ft/sec, what was the angle it was hit?
π½ = ππ. πππ
c.
If the golfer struck the ball at 45°, how far would the ball traveled?
π = ππππ ππππ
2. A state park hires a surveyor to map out the park.
a. A and B are on opposite sides of the lake, if the surveyor stands at point C and measures
angle ACB= 50 and CA= 400β and CB= 350β, how wide is the lake?
πππ. π ππππ
b. At a river the surveyor picks two spots, X and Y, on the same bank of the river and a tree, C,
on opposite bank. Angle X= 60 and angle Y= 50 and XY=300β, how wide is the river?
(Remember distance is measured along perpendiculars.)
πππ. π ππππ
c.
The surveyor measured the angle to the top of a hill at the center of the park to be 32°. She
moved 200β closer and the angle to the top of the hill was 43°. How tall was the hill?
πππ. π ππππ
Pre-Calc Trig
~25~
NJCTL.org
3. The average daily production, M (in hundreds of gallons), on a dairy farm is modeled by
2ππ
π = 19.6 sin (
+ 12.6) + 45
365
where d is the day, d=1 is January first.
a. What is the period of the function?
πππ
b. What is the average daily production for the year?
ππππ πππππππ
c.
Using the graph of M(d), what months during the year is production over 5500 gallons a day?
February thru May
4. A student was asked to solve the following equation over the interval [0, 2π). During his calculations
he might have made an error. Identify the error and correct his work so that he gets the right
answer.
cos π₯ + 1 = sin π₯
cos 2 x + 2 cos x + 1 = π ππ2 π₯
cos 2 x + 2 cos x + 1 = 1 β πππ 2 π₯
2 cos π₯ = 0
cos π₯ = 0
Ο 3Ο
,
2 2
Error is on line 4
Line 4 should read
π ππ¨π¬π π + π ππ¨π¬ π = π
The rest of the problem is
π ππ¨π¬ π (ππ¨π¬ π + π) = π
π ππ¨π¬ π = π
ππ¨π¬ π + π = π
ππ¨π¬ π = π
ππ¨π¬ π = βπ
π
ππ
π = , π
,
π
π
Pre-Calc Trig
~26~
NJCTL.org
© Copyright 2025