MIXED, CHARGE AND HEAT NOISES IN THERMOELECTRIC NANOSYSTEMS A. Crépieux1 and F. Michelini2 1 – Centre de Physique Théorique, CNRS & Aix-Marseille University, France 2 – IM2NP, CNRS & Aix-Marseille University, France INTRODUCTION CURRENT FLUCTUATIONS “The noise is the signal” Rolf LANDAUER NOISE dt ei t Iˆ0 Iˆt AT EQUILIBRIUM 0 2kBT0G Iˆt Iˆt Iˆ Gives the linear conductance through the fluctuation-dissipation theorem SCHOTTKY RELATION IN THE POISSIONIAN LIMIT (T=0) 0 e * I e * / e = Fano factor (1/3, 1, 5/3, 2, ...) STATISTICS AND DYNAMICS CROSS-CORRELATOR 4e2 * * S23 Tr s 21s21 s31s31 0 h S x , x 1 Kc2 eI 0 2 CREPIEUX et al., PRB 67, 205408 (2003) MARTIN/LANDAUER, PRB 45, 1742 (1992) Its sign gives the statistics of the excitations FINITE FREQUENCY NOISE G Re Y Absorption noise Emission noise CREPIEUX et al., PRB 78, 205422 (2008) S S 2 The asymmetry of the finite-frequency noise is related to the ac conductance HEAT CURRENT NOISE JJ dt ei t Jˆ 0 Jˆ t Jˆ t Jˆ t Jˆ Jˆ t Iˆ E t Iˆt e Heat fluctuations give information on higher-order cumulant of charge KINDERMANN/PILGRAM, Phys. Rev. B 69, 155334 (2004) counting statistics Finite-frequency symmetrized heat noise SERGI, Phys. Rev. B 83, 033401 (2011) Proposal for the detection of single-electron heat transfer statistics SANCHEZ/BUTTIKER, Eur. Phys. Lett. 100, 47008 (2012) Fluctuations of heat current emitted from a single-particle source BATTISTA et al., Phys. Rev. Lett. 110, 126602 (2013) Heat fluctuations in driven quantum conductor MOSKALETS, Phys. Rev. Lett. 112, 206801 (2014) Energy and power fluctuations in ac-driven coherent conductor BATTISTA et al., Phys. Rev. B 90, 085418 (2014) PURPOSE OF THIS WORK Find the information contained in the correlator mixing charge and heat currents, and its link with thermoelectric conversion CHARGE NOISE IpqI Iˆp 0 Iˆq t p, q = reservoirs p=q auto-correlation p≠q cross-correlation dt HEAT NOISE CHARGE CURRENT Iˆp t eN p Iˆp t Iˆp t Iˆp JpqJ Jˆ p 0 Jˆq t dt HEAT CURRENT dQ dE dN MIXED NOISES Iˆp 0 Jˆq t JI pq Jˆ p 0 Iˆq t IpqJ dt dt GIAZOTTO et al, Rev. Mod. Phys. 78, 217 (2006) SANCHEZ et al., New J. Phys. 15, 125001 (2013) Jˆ p t IˆpE t p ˆ I p t e Jˆ p t Jˆ p t Jˆ p RESPONSE LINEAR LINEAR RESPONSE RELATIONS BETWEEN NOISES AND CONDUCTANCES IppI 2k BT0G JppJ G = electrical conductance S = Seebeck coefficient = thermal conductance T0 = average temperature 2k BT02~ IppJ JppI 2k BT02 SG S V T I 0 ~ S 2T0G Fluctuation-dissipation theorem applies for each kind of noises KUBO et al., J. Phys. Soc. Jpn. 12, 1203 (1957) FIGURE OF MERIT ZT0 2 S T0G IJ 2 pq IpqI JJ pq IJ 2 pq Independent of p and q ZT0 is not upper bounded IJ 2 pq II JJ pq pq CREPIEUX / MICHELINI, arXiv:1403:8035 (2014) LITTMANN/DAVIDSON, J. App. Phys. 32, 217 (1961) Argument of entropy production 1 Cauchy-Swartz inequality WHAT ABOUT THE NON-LINEAR REGIME ? I G SG V ~ J G T Optimization of the figure of merit does not guarantee a maximum of thermoelectric efficiency max C 1 ZT0 1 1 ZT0 1 C Carnot efficiency One has rather to consider the ratio between electric and thermal powers WHITNEY’s talk th Pout Pinel el Pout th Pin Voltage to heat conversion Heat to voltage conversion SINGLE LEVEL QUANTUM DOT L L , TL R 0 R , TR L, R F eV / 2 TL, R T0 T / 2 I R I L JR JL IL JL L R LANDAUER-LIKE EXPRESSION pq 1 h p q n n , I, J F d nI 0 nJ 1 F f L 1 f L f R 1 f R 1 f L f R 2 2 0 2 2 L, R f L, R 1 exp k T B L, R 1 This approach allows to study the noises varying V, T, T0, 0 and NOISES GENERAL RELATION IpqI IpqJ JpqI 0 p, q p, q p,q Power conservation JpqJ V 2 ILLI p,q JˆL JˆR V IˆL Pth Pel CHANGE OF SIGN Charge noise Mixed noise Charge conservation Heat noise kBT / region of positive sign region of negative sign 0 / 2 kBT0 / 1 RL LR The heat cross-correlator can change its sign contrary to the charge cross-correlator eV / SCHOTTKY REGIME WEAK TRANSMISSION 1 Tight energy-charge coupling: J R 0 R I R NOISES ESPOSITO et al., Eur. Phys. Lett. 85, 60010 (2009) I ILR e IR J JLR 0 L J R J ILR e J R 0 R I R coth 0 R 2 k BTR 0 L 2 k BTL 1 when T L, R 0 Noises are proportional to currents EFFICIENCY J Pth el R P IR V J ILR JR e I ILR IR e J J ILR JLR eV IL JR EQUIVALENTLY IJ 2 LR IJ 2 II JJ LR LR LR Independent on The efficiency can be written as a ratio of noises NUMERICAL VERIFICATION AUTO-RATIO CROSS-RATIO EFFICIENCY k BT / 0 0 k BT0 / 0 0.001 The efficiency fits with the cross-ratio ! But it has no relation with the auto-ratio CONCLUSION MIXED NOISE IN DISTINCT RESERVOIRS J ILR IˆL 0 JˆR t dt LINEAR RESPONSE REGIME ZT0 = a measure of thermoelectric conversion SCHOTTKY REGIME IJ 2 LR 2 IJ II JJ LR LR LR IJ 2 pq IpqI JJ pq IJ 2 pq CREPIEUX / MICHELINI, arXiv:1403:8035 (2014) PERSPECTIVES Mixed noise in a three terminals systems More realistic transmission coefficient ,V Effect of coulomb interactions Mixed noise at finite frequency and/or with ac-driven Thanks to P. Eyméoud, M. Guigou, and R. Whitney
© Copyright 2025