Hydrodynamik + kolloidkemi = nya cellulosabaserade produkter Håkansson K.M.O., Kvick M., Lundell F., Fall B.A., Prahl Wittberg, L., Wågberg, L. and Söderberg D Januari 2015 WWSC is a joint research center at KTH and Chalmers Clothes from wood ? kids.britannica.com wikipedia.org 2/19 Viscose or Rayon Grinding Dissolving Cellulose I Polymer Cellulose II Spinning 3/19 Aral Sea Aral Sea 1960 www.google.com/maps Peak CoGon? 4/23 Fibre properties Black spruce wood fibre Material properIes 4 Page, D. H. & el Hosseiny, F. J. Pulp. Paper. Sci 99–100 (1983) Specific Strength [MPa m3/kg] 10 The fibre properIes are highly dependent on the fibril orientaIon First Carbon Fibre Crystalline cellulose Aramid S−glass E−glass 3 10 o 32 39o Viscose Cotton 46o Coir 2 1o 22o Ramie 10 Spectra Kevlar Polypropylene Nylon Aluminium Steel HDPE 0 10 1 2 10 10 Specific Modulus [GPa m3/kg] Eichhorn et al., J Mater Sci (2001) Eichhorn et al., J Mater Sci (2009) 5/11 Cellulose nanofibrils, CNF AFM image of CNF 1 μm Courtesy of A. Fall and G. Nyström Gel Locked Dispersion Freely moving 3 g/l ≈ 0.3 % by weight 6/19 Sp ecific Strength [MPa cm 3 /g] Wet spinning of cellulose nanofibrils E−glass 3 10 Cotton Viscose 46o 2 10 42o 32o Fibril 1o 22o Cellulose II filament Cordenka 700 filament 26o 32o Wood chip CNF paper CNF paper, Henriksson et al. (2008) CNF, Walther et al. (2011) CNF, Iwamoto et al. (2011) CNF, Sehaqui et al. (2012) 1 10 Sp ecific Modulus [GPa cm 3 /g] 2 10 Walther el al. (2011) Adv. Mater. 7/19 Flow focusing – popular in micro-fluidics b) Accelerated flow is used in order to align cellulose nanofibrils x y z Q2 /2 Q1 h = 1 mm Q2 /2 h H2O h = 1 mm H2O + Ink H2O 8/19 Filament Manufacturing Process Nano-‐cellulose liquid dispersion y NaCl NaCl z Gel thread H2O 9/23 Process concept 10/19 Process concept b) x y Nano Cellulose z Ions Q2 /2 Q1 h = 1 mm Q2 /2 Ions h 1 11/19 SEM Images of Dried Filaments 30 μm 3 μm 1 μm 20 μm 12/23 PETRA III, Synchrotron in Hamburg 13/19 X-ray Scattering Wide Angle X-‐ray ScaGering Detectable scales ~ Å 2-‐9 m 10-‐50 cm 2θ € X-‐ray beam from the synchrotron € d= λ 2sin θ Small Angle X-‐ray ScaGering Detectable scales ~ 1-‐500 nm 14/19 Orientation from X-ray data The order parameter, S: ϕ S = P2 (cosϕ) = 3 2 1 cos ϕ − 2 2 In this case: € π € Intensity, I(ϕ) 40 € 30 S= $3 2 1' I( ϕ ) cos ϕ − & ) sin ϕdϕ ∫ %2 ( 2 0 Random orientaIon Aligned 20 10 0 0 100 200 300 Azimuthal angle, ϕ S = 0 S = 1 15/19 Order parameter Extensional Flow and Fibril Orientation 0.8 AcceleraIon 0.6 0.4 Shear Brownian diffusion 0.2 0 −0.2 −2 DeceleraIon 0 2 4 6 8 10 Downstream p osition, z/h 12 14 16/19 Controllable properties Figure 5.3. Properties of common filament materials. (a,b) Overview and close-up of specific ultimate strength versus specific Young’s modulus for a number of materials, re- 17/19 Thin filament with a knot H2O pH 2 Order parameter, S Cellulose nanofibrils 0.5 0.4 0.3 0.2 SAXS Diffusion S = 0.36 POM 0.1 0 0 5 10 15 20 25 Downstream p osition, z/h 30 18/19 Conductive filament 40 % Carbon nanotubes 60 % Cellulose nanofibrils ConducIvity = 200 S/cm Hamedi et. al. (2014) ACS Nano 19/19 Extensible filament 20/19 Thank You and Thanks to: Kungliga Tekniska Högskolan (KTH) Chalmers Tekniska Högskola (CTH) InnvenIa AB Deutsches Elektronen-‐Synchrotron (DESY) Wallenberg Wood Science Center (WWSC) Linné FLOW Centre KTH Mechanics: Adj. Prof. D. Söderberg Ass. Prof. F. Lundell PhD. L. Prahl WiGberg Lic. M. Kvick DESY Hamburg: PhD. S. Yu PhD. G. Santoro PhD. S. V. Roth PhD. C. Krywka KTH Fibre & Polymer Technology: Prof. L. Wågberg Prof. L. Berglund PhD. A. Fall PhD. M. Hamedi CTH Polymeric Materials & Composites: Prof. M. Rigdahl InnvenIa AB: Prof. T. Lindström PhD. C. Aulin 21
© Copyright 2025