When thermoelectric systems meet the Feynman ratchet: harmonic response and feedback Christophe Goupil, Yann Apertet, Henni Ouerdane, Philippe Lecoeur Feynman ratchet model Tcold Thot Energy taken from hot side L N exp k BThot I Qhot L N eff N exp k BTcold escape frequency Energy delivered to the cold side torque I Qcold N eff spring energy N eff N N P I Qhot I Qcold L N eff Strong coupling configuration effective « current » Velasco at al. J. Phys. D: Appl. Phys.34 (2001) 1000–1006 Linearization L N 1 k BThot Tcold Thot N 1 k BTcold N eff R V T R I V Rload I V0 Rload k BThot T L0 L L Tcold k BThot L L0 L0 T Tcold k BThot N eff : stopping force (open voltage) L 0 : ( short circuit ) Apertet et al. PRE 2014 Power budget Tcold Thot I Qhot L N eff I Qcold k BThot 2 Thot N eff N eff Tcold N eff I Qhot Thot I KT RI 2 Rin V0 Tcold Tcold Rload I Qcold Tcold I KT 1 RI 2 dissipative resistance P Tcold k BThot T N eff N eff P T RI I Apertet et al. PRE 2014 Extension to non-linear model I Qhot L N eff FRThot N eff L0 L N eff I Qcold Tcold Tcold N eff FRTcold N eff P L N eff FR T N eff L0 L 2 N eff N eff Rdis lin Rdis L0 L N eff k BThot L0 N eff Rload Rdyn d L0 L d N eff Rdyn shows the variation trend of the dissipation d L Rload (t ) d N eff Apertet et al. PRE 2014 Non-linear model & efficiency Parameters : x ∶ Force I : Flux • R dyn = − dx dI • R dissip = x0 − x I • γ ∶ coefficient de répartition de la chaleur dissipée Linear System In a non linear system these parameters are functions of the working point! Supra-Linear System Maximum power : Sub-Linear System Efficiency at maximum power : After Wang et Tu, EPL, 98 (2012) 40001 Feynman & Meso a) Feynman’s ratchet: Energy reference at the cold side and not influenced by the load. b) Mesoscopic thermoelectric: mean of the Fermi levels of the reservoirs, and are modified by the load (biaising V). Apertet et al. PRE 2014 Carnot, Yvon, Chambadal, Novikov, Curzon & Ahlborn Thot Thot Finite Time Thermodynamics FTT Work Power Endoreversible Tcold Tcold P Tcold W C 1 Qin Thot Pmax Tcold CA 1 Thot Q in W ηCA ηCarnot η • J. Yvon, The saclay Reactor: Two Years of Experience in the Use of a Compresed gas as a Heat Transfer Agent, Proceedings of the International Conference on the Peaceful Uses of Atomic Energy (1955) • P. Chambadal Les centrales nucléaires. Armand Colin, Paris, France, 4 1-58, (1957) • I.I. Novikov, Efficiency of an Atomic Power Generation Installation, Atomic Energy 3 (1957) • F.L. Curzon & B. Ahlborn, Efficiency of a Carnot Engine at Maximum Power Output, Am. J. Phys. 43 (1975) From coupling to feedback Y Apertet et al. EPL 97 (2012) Macroscopic N. Nakpathomkun et al. PRB 82 (2010) Mesocopic Thot General model: Onsager description 1 I R I T Q R Khot ThTE TE TTE K0 R KTE(I) TcTE + voc L O A D VTE I VTE R 2T T K 0 TE R VOC ( I ) TTE ( I ) I Q ( I ) IT K 0 TTE ( I ) 2T IQ (I ) K 0 TTE ( I ) R Rload Kcold Tcold I K TE ( I ) K 0 1 ZT I CC Convection Conduction Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil et Ph. Lecoeur, EPL 97 (2012) General model: presentation Thot Khot Qin TTE TE Power Qout Kcold Tcold Thermal boundary conditions: mixed but two extremal configurations • Neumann: TTE imposed Khot and Kcold inifinite Carnot…impossible! • Dirichlet: Heat flux imposed (Khot=Kcold=0) Solar heating or gas burner • Adiabatic (Khot=Kcold=0) impedance spectroscopy (TTE =0). General model: resulting picture Thot VOC ( I ) TTE ( I ) Khot TEG T RTE TTE K0 KTE(I) TcTE Kcold Tcold Y. Apertet, et al. EPL 97 (2012) K c 2T I VOC ( I ) T Kc K0 Kc K0 I ThTE R + v’oc L O A D K hot K cold Kc K hot K cold VTE V 'OC RTE Thevenin model • The feedback comes from Kc • Adiabatic if Kc=0. • No RTE if the coupling is perfect, Kc =>∞. Power Electric adaptation Thermal adaptation For given Thermal contacts K contact K 0 ZT 1 Rload R ZT 1 See also: M. Freunek et al., J. Elec. Mat. 38 (2009) K. Yazawa et A. Shakouri, JAP 111 (2012) The thermal adapatation is fundamental for correct working conditions! Y. Apertet, et al. EPL 97 (2012) 1rst order harmonic response Thot Chot Khot TEG I ThTE TTE RTE Cth K0 KTE(I) TcTE Kcold Ccold Tcold R + v’oc L O A D VTE Small signal analysis i(t) R dTTE CS K0 KC iT + 𝐾𝑇𝐸 (𝑖) = 𝛼𝑖𝑇 𝛿𝑇𝑇𝐸 L O A D CS Cth Chot Ccold dvTE KC K hot K cold K hot K cold dTTE dTTE (i ) iT jCS K C K 0 Small signal analysis 2iT i dTTE jCTh 1 jCTh K c K 0 2T RTE dTTE RTE i CTh 1 j 2 RTE T Total ouput impedance RTE 2T KC K0 CS CTE 2 T TE RTE CTE Not a real electrical capacitance !!! RTE Z ( j ) R 1 j TE Maximal output power if impedance matching => Better @ non zero frequency? Conclusion • Feynman’s ratchet as a system model for thermoelectricity. • The entropy per tooth generalizes the entropy per carrier concept. • Dynamic resistance. • Thermoelectric resistance: RTE • Thermoelectric capacitance: CTE • 1rst order dynamic response: TE =RTE CTE Special thanks to • Henni Ouerdane • Yann Apertet • Philippe Lecoeur • Knud Zabrocki • Wolfgang Seifert • Cronin Vining Dilbert 10-10-1993
© Copyright 2024