TRACE code application to low operating pressure research reactor safety analysis Adolfo Rais (Switzerland) D. Novog (Canada) and T. Hamidouche (Belgium) Motivation McMaster University Nuclear Reactor safety analysis TRACE code assessment against: 1. Subcooled boiling experiments 2. IAEA 10MW reactor theoretical benchmark Adolfo Rais, 2014 Subcooled boiling experiments at low pressures - Axial void fraction measurement - Annular test section - Controlled: P, G, θ, q’’ - TRACE & Adolfo Rais, 2014 RELAP5 model Heated Section Results subcooled boiling 0.6 0.6 Run no. BC7 Run no. BC8 !"#$%& '()*++#,"-& .& /012& 34 0.4 5,"& .& 61007& 859 :& .& /6;& <-=>/?@ ABB& .& 7;6& <C=>/ 0.3 0.2 ;3%0,) <#&=>>%$3?) @) AA) B7 0.4 9$3) @) CDEAF) G9+ H) @) AIF) J?K(A.L "MM) @) NOI) JPK(A 0.3 0.2 0.1 0.1 0.0 0.0 -0.04 Adolfo Rais, 2014 -0.03 ) !120'$(03,+% ) 4567! ) 5!869: 0.5 Void Fraction Void Fraction 0.5 & DIJ$E,>$"%9# & KLM4D & LDNM5O -0.02 -0.01 DA(,#,)E,(>& F(9#,%G& ?& H$ 0.00 -0.04 -0.03 -0.02 -0.01 !"#$%$&'$#() *#+%$,-) .) /0 0.00 Results subcooled boiling (cont’d) Overall TRACE 0.6 performance: - Poor agreement with experimental data - Is this only happening at low pressures? TRACE Void Fraction - Studies on TRACE’s models to spot potential causes 0.5 0.4 0.3 0.2 0.1 0.0 0.0 Adolfo Rais, 2014 0.1 0.2 0.3 Measured Void Fraction 0.4 Subcooled boiling at various P 0.7 code-to-code comparison: TRACE vs. RELAP5 0.6 Void Fraction 0.5 0.4 15 MPa TRACE 15 MPa RELAP5 2 MPa TRACE 2 MPa RELAP5 Simulations for fixed: G, θ, q’’ 0.2 MPa TRACE 0.2 MPa RELAP5 Incr 0.3 e as i ng p re s s ure 0.2 0.1 0.0 0.0 Adolfo Rais, 2014 0.1 0.2 Axial position (m) 0.3 Subcooled boiling at various P 0.7 code-to-code comparison: TRACE vs. RELAP5 0.6 Void Fraction 0.5 0.4 15 MPa TRACE 15 MPa RELAP5 2 MPa TRACE 2 MPa RELAP5 Simulations for fixed: G, θ, q’’ 0.2 MPa TRACE 0.2 MPa RELAP5 Incr 0.3 e as i ng p re s s ure 0.2 Large divergence at low pressure 0.1 0.0 0.0 Adolfo Rais, 2014 0.1 0.2 Axial position (m) 0.3 TRACE TRACE overprediction: potential causes void fraction: Interaction of three models 1. Void source 2. Void sink 3. Interfacial friction Adolfo Rais, 2014 TRACE TRACE overprediction: potential causes void fraction: Interaction of three models 1. Void source 2. Void sink 3. Interfacial friction Adolfo Rais, 2014 ■ q’’ partitioning sub-model ■ Flow regime transitions Overview - TRACE code assessment against: 1. Subcooled boiling experiments systematic overprediction 2. IAEA 10MW reactor theoretical benchmark Adolfo Rais, 2014 Quick specs: - Generic (idealized) MTR - 10 MW nominal - H2O cooled & moderated - Graphite moderated W - Water G - Grafite Transients considered: SFE - Standard Fuel Element - Fast loss-of-flow CFE - Control - Slow loss-of-flow Fuel Element - Slow reactivity insertion - Fast reactivity insertion Adolfo Rais, 2014 Water Reflector IAEA 10 MW reactor benchmark W G G G G W W SFE 5% SFE 25% SFE 25% SFE 5% W SFE 5% CFE 25% SFE 45% SFE 45% CFE 25% SFE 5% SFE 25% SFE 45% SFE 45% SFE 25% SFE 5% CFE 25% SFE 45% SFE 45% CFE 25% SFE 5% W SFE 5% SFE 25% SFE 25% SFE 5% W W G G G G W W - Water G - Grafite SFE 45% Alum. W SFE 45% SFE - Standard Fuel Element CFE - Control Fuel Element Water reflector Results IAEA benchmark TRACE’s results compared against: | RELAP5 | PARET | RETRAC-PC Transients considered: - Fast loss-of-flow - Slow loss-of-flow - Slow reactivity insertion - Fast reactivity insertion Adolfo Rais, 2014 | COBRA III-C | EUREKA-PT | ... Results IAEA benchmark TRACE’s results compared against: | RELAP5 | PARET | RETRAC-PC | COBRA III-C | EUREKA-PT | ... ✔ acceptable agreement Transients considered: - Fast loss-of-flow - Slow loss-of-flow - Slow reactivity insertion - Fast reactivity insertion Adolfo Rais, 2014 ✖ unexpected behavior Results IAEA benchmark (cont’d) Fast reactivity insertion transient: $1.5 in 0.5 sec. 10MW TRACE RELAP5 200 power 1MW Power (W) 100kW clad 10kW 175 150 125 1kW 100W 100 coolant 10W 75 1W 50 0.4 Adolfo Rais, 2014 0.5 0.6 0.7 Time (s) 0.8 0.9 Temperature (°C) 100MW Results IAEA benchmark (cont’d) Fast reactivity insertion transient: $1.5 in 0.5 sec. 10MW TRACE RELAP5 200 power 30 °C 1MW Power (W) 100kW clad 10kW 175 150 125 1kW 100W 100 coolant 10W 75 1W 50 0.4 Adolfo Rais, 2014 0.5 0.6 0.7 Time (s) 0.8 0.9 Temperature (°C) 100MW Results IAEA benchmark (cont’d) Fast reactivity insertion transient: $1.5 in 0.5 sec. TRACE RELAP5 clad 5 Temperature (°C) 160 140 4 120 100 3 -Trans. boiling 80 3 2 -Nucleate boiling 2 60 1- Liquid convection 40 0.6 Adolfo Rais, 2014 0.7 0.8 Time (s) 1 0.9 Heat Transfer Regime No. 180 TRACE triggering Transition Boiling without reaching Critical Heat Flux Critical Heat Flux 10000 6 CHF Heat Flux 1000 4 3 -Transition boiling 100 2 -Nucleate boiling 1- Liquid conv. 10 0.60 Adolfo Rais, 2014 3 0.65 0.70 Time (s) 0.75 2 1 0.80 Heat Transfer Regime Heat Flux (kW/m2) 5 Conclusions Subcooled boiling experiments ■ systematic void overprediction ■ overprediction only at low pressures ■ RELAP5: superior performance IAEA theoretical benchmark ■ acceptable agreement between codes for FLOF, SLOF, SRIA ■ FRIA: singular behavior (trans. boiling) Adolfo Rais, 2014 Need to revise TRACE models to yield better results Thank you! Adolfo Rais, 2014 Thus finally, ✓ Tl Tl,OSV Tl,OSV ◆ Heat flux partitioning sub-model 00 qev = 00 (qw qf00c,2 )· Tl,sat (3.10) To complete the description, the final expressions for wall heat flux partitioning implemented by relap5 and trace are presented in Table 3.1. relap5 00 qev = 00 qw · ✓ Tl Tl,sat Tl,OSV Tl,OSV trace ◆ 1 · 1+✏ 00 qev = 00 (qw qf00c,2 )· ✓ Tl Tl,sat Tl,OSV Tl,OSV ◆ Table 3.1: relap5 vs. trace heat flux partitioning models High @ low not vary much It is clear that bothsuppression expressions in Table 3.1press are similar. Does The only noticeable di↵erences are, for relap5’s expression, in Lthe the pumping ε= f (ρ /ρvlast ) term containingfrom low to factor high (✏), P and for trace, the term qf00c,2 . Both terms act suppressing the wall evaporation rate. However, recalling Eq. 3.4, the pumping factor (✏) is densities ratio (⇢l /⇢v ) dependent, hence it becomes exceptionally important at low-pressure conditions. The results suggest that, at high pressures, the suppression resulting from the pumping factor ✏ in relap5 00 approaches that one given by q f c,2 in trace. This could explain the fact that both Adolfo Rais, 2014 IAEA 10 MW reactor benchmark Reactor core Al. Cladding Support Plate Light Water Moderator amplification Fuel Meat Fuel ele ment amplification Fuel Plate Adolfo Rais, 2014 ©2013 Adolfo Rais Homogeneous Equilibrium Model Void fraction Experimental TRACE HEM Void Fraction 1 1 Run no. BC7 15 MPa 2 MPa 0.2 MPa HEM model G = 200 kg/m2-s q’’ = 500 kW/m2 0 -0.4 -0.2 Adolfo Rais, 2014 0.0 0.2 Eq. quality (Xe) 0.4 0.6 0.8 -0.04 -0.03 -0.02 Equilibrium Quality - Xe -0.01 0.00
© Copyright 2024