REFERENCES

References
REFERENCES
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
Kandel, E., Nerve cell and behavior, in Principles of neuroscience. 1991, Appelton & Lange:
Norwalk, CT. p. 18-32.
Oberheim, N.A., S.A. Goldman, and M. Nedergaard, Heterogeneity of astrocytic form and
function. Methods Mol Biol, 2012. 814: p. 23-45.
Matthias, K., et al., Segregated expression of AMPA-type glutamate receptors and glutamate
transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci,
2003. 23(5): p. 1750-8.
Bonfanti, L., D.A. Poulain, and D.T. Theodosis, Radial glia-like cells in the supraoptic nucleus
of the adult rat. J Neuroendocrinol, 1993. 5(1): p. 1-5.
Ramon y Cajal, S., Contribucion al conocimiento de la neuroglia del cerebro humano. Trab
Lab Invest Biol (Madrid), 1913. 11: p. 255-315.
Kettenmann, H. and A. Verkhratsky, Neuroglia: the 150 years after. Trends Neurosci, 2008.
31(12): p. 653-9.
Bushong, E.A., et al., Protoplasmic astrocytes in CA1 stratum radiatum occupy separate
anatomical domains. J Neurosci, 2002. 22(1): p. 183-92.
Derouiche, A., et al., Beyond polarity: functional membrane domains in astrocytes and Muller
cells. Neurochem Res, 2012. 37(11): p. 2513-23.
Nagelhus, E.A., T.M. Mathiisen, and O.P. Ottersen, Aquaporin-4 in the central nervous
system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience,
2004. 129(4): p. 905-13.
Forsythe, I.D. and M. Barnes-Davies, Synaptic transmission: well-placed modulators. Curr
Biol, 1997. 7(6): p. R362-5.
Reichenbach, A., A. Derouiche, and F. Kirchhoff, Morphology and dynamics of perisynaptic
glia. Brain Res Rev, 2010. 63(1-2): p. 11-25.
Nico, B. and D. Ribatti, Morphofunctional aspects of the blood-brain barrier. Curr Drug
Metab, 2012. 13(1): p. 50-60.
Dunn, K.M. and M.T. Nelson, Potassium channels and neurovascular coupling. Circ J, 2010.
74(4): p. 608-16.
Iadecola, C. and M. Nedergaard, Glial regulation of the cerebral microvasculature. Nat
Neurosci, 2007. 10(11): p. 1369-76.
Simard, M. and M. Nedergaard, The neurobiology of glia in the context of water and ion
homeostasis. Neuroscience, 2004. 129(4): p. 877-96.
Kreft, M., et al., Aspects of astrocyte energy metabolism, amino acid neurotransmitter
homoeostasis and metabolic compartmentation. ASN Neuro, 2012. 4(3).
Magistretti, P.J., Neuron-glia metabolic coupling and plasticity. J Exp Biol, 2006. 209(Pt 12):
p. 2304-11.
Hertz, L. and H.R. Zielke, Astrocytic control of glutamatergic activity: astrocytes as stars of
the show. Trends Neurosci, 2004. 27(12): p. 735-43.
Kofuji, P. and E.A. Newman, Potassium buffering in the central nervous system.
Neuroscience, 2004. 129(4): p. 1045-56.
Steinhauser, C., G. Seifert, and P. Bedner, Astrocyte dysfunction in temporal lobe epilepsy: K+
channels and gap junction coupling. Glia, 2012. 60(8): p. 1192-202.
Ullian, E.M., et al., Control of synapse number by glia. Science, 2001. 291(5504): p. 657-61.
Allen, N.J., et al., Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via
GluA1 AMPA receptors. Nature, 2012. 486(7403): p. 410-4.
Song, H., C.F. Stevens, and F.H. Gage, Astroglia induce neurogenesis from adult neural stem
cells. Nature, 2002. 417(6884): p. 39-44.
1
References
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
Clarke, L.E. and B.A. Barres, Emerging roles of astrocytes in neural circuit development. Nat
Rev Neurosci, 2013. 14(5): p. 311-21.
Araque, A., et al., Gliotransmitters travel in time and space. Neuron, 2014. 81(4): p. 728-39.
Araque, A., et al., Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci,
1999. 22(5): p. 208-15.
Santello, M., C. Cali, and P. Bezzi, Gliotransmission and the tripartite synapse. Adv Exp Med
Biol, 2012. 970: p. 307-31.
Navarrete, M. and A. Araque, The Cajal school and the physiological role of astrocytes: a way
of thinking. Front Neuroanat, 2014. 8: p. 33.
Chapman, D.B., et al., Osmotic stimulation causes structural plasticity of neurone-glia
relationships of the oxytocin but not vasopressin secreting neurones in the hypothalamic
supraoptic nucleus. Neuroscience, 1986. 17(3): p. 679-86.
Theodosis, D.T., et al., Structural plasticity in the hypothalamic supraoptic nucleus at
lactation affects oxytocin-, but not vasopressin-secreting neurones. Neuroscience, 1986.
17(3): p. 661-78.
Wenzel, J., et al., The influence of long-term potentiation on the spatial relationship between
astrocyte processes and potentiated synapses in the dentate gyrus neuropil of rat brain.
Brain Res, 1991. 560(1-2): p. 122-31.
Adams, I. and D.G. Jones, Synaptic remodelling and astrocytic hypertrophy in rat cerebral
cortex from early to late adulthood. Neurobiol Aging, 1982. 3(3): p. 179-86.
Tsacopoulos, M. and P.J. Magistretti, Metabolic coupling between glia and neurons. J
Neurosci, 1996. 16(3): p. 877-85.
Pellerin, L. and P.J. Magistretti, Glutamate uptake into astrocytes stimulates aerobic
glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U
S A, 1994. 91(22): p. 10625-9.
Verkhratsky, A., Neurotransmitter Receptors in Astrocytes, in Astrocytes in (Patho)Physiology
of the Nervous System, P.G. Haydon and V. Parpura, Editors. 2009, Springer US. p. 49-67.
Mennerick, S. and C.F. Zorumski, Glial contributions to excitatory neurotransmission in
cultured hippocampal cells. Nature, 1994. 368(6466): p. 59-62.
Cornell-Bell, A.H., et al., Glutamate induces calcium waves in cultured astrocytes: long-range
glial signaling. Science, 1990. 247(4941): p. 470-3.
Heizmann, C.W., Calcium signaling in the brain. Acta Neurobiol Exp (Wars), 1993. 53(1): p.
15-23.
Cornell-Bell, A.H. and S.M. Finkbeiner, Ca2+ waves in astrocytes. Cell Calcium, 1991. 12(2-3):
p. 185-204.
De Pitta, M., et al., Computational quest for understanding the role of astrocyte signaling in
synaptic transmission and plasticity. Front Comput Neurosci, 2012. 6: p. 98.
Scemes, E. and C. Giaume, Astrocyte calcium waves: what they are and what they do. Glia,
2006. 54(7): p. 716-25.
Porter, J.T. and K.D. McCarthy, Hippocampal astrocytes in situ respond to glutamate released
from synaptic terminals. J Neurosci, 1996. 16(16): p. 5073-81.
Wang, X., et al., Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat
Neurosci, 2006. 9(6): p. 816-23.
Serrano, A., et al., GABAergic network activation of glial cells underlies hippocampal
heterosynaptic depression. J Neurosci, 2006. 26(20): p. 5370-82.
Kang, J., et al., Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat
Neurosci, 1998. 1(8): p. 683-92.
Piet, R. and C.E. Jahr, Glutamatergic and purinergic receptor-mediated calcium transients in
Bergmann glial cells. J Neurosci, 2007. 27(15): p. 4027-35.
Duffy, S. and B.A. MacVicar, Adrenergic calcium signaling in astrocyte networks within the
hippocampal slice. J Neurosci, 1995. 15(8): p. 5535-50.
2
References
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
Nilsson, M., E. Hansson, and L. Ronnback, Adrenergic and 5-HT2 receptors on the same
astroglial cell. A microspectrofluorimetric study on cytosolic Ca2+ responses in single cells in
primary culture. Brain Res Dev Brain Res, 1991. 63(1-2): p. 33-41.
Navarrete, M. and A. Araque, Endocannabinoids potentiate synaptic transmission through
stimulation of astrocytes. Neuron, 2010. 68(1): p. 113-26.
Bowser, D.N. and B.S. Khakh, Vesicular ATP is the predominant cause of intercellular calcium
waves in astrocytes. J Gen Physiol, 2007. 129(6): p. 485-91.
Shelton, M.K. and K.D. McCarthy, Hippocampal astrocytes exhibit Ca2+-elevating muscarinic
cholinergic and histaminergic receptors in situ. J Neurochem, 2000. 74(2): p. 555-63.
Navarrete, M., et al., Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS
Biol, 2012. 10(2): p. e1001259.
Santello, M., P. Bezzi, and A. Volterra, TNFalpha controls glutamatergic gliotransmission in
the hippocampal dentate gyrus. Neuron, 2011. 69(5): p. 988-1001.
Matyash, V., et al., Nitric oxide signals parallel fiber activity to Bergmann glial cells in the
mouse cerebellar slice. Mol Cell Neurosci, 2001. 18(6): p. 664-70.
MacVicar, B.A., et al., Modulation of intracellular Ca++ in cultured astrocytes by influx
through voltage-activated Ca++ channels. Glia, 1991. 4(5): p. 448-55.
Bourque, C.W., Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev
Neurosci, 2008. 9(7): p. 519-31.
Panatier, A., et al., Astrocytes are endogenous regulators of basal transmission at central
synapses. Cell, 2011. 146(5): p. 785-98.
Di Castro, M.A., et al., Local Ca2+ detection and modulation of synaptic release by astrocytes.
Nat Neurosci, 2011. 14(10): p. 1276-84.
Konietzko, U. and C.M. Muller, Astrocytic dye coupling in rat hippocampus: topography,
developmental onset, and modulation by protein kinase C. Hippocampus, 1994. 4(3): p. 297306.
Houades, V., et al., Gap junction-mediated astrocytic networks in the mouse barrel cortex. J
Neurosci, 2008. 28(20): p. 5207-17.
Wallraff, A., et al., Distinct types of astroglial cells in the hippocampus differ in gap junction
coupling. Glia, 2004. 48(1): p. 36-43.
Charles, A.C., Glia-neuron intercellular calcium signaling. Dev Neurosci, 1994. 16(3-4): p. 196206.
Hulme, S.R., et al., Mechanisms of heterosynaptic metaplasticity. Philos Trans R Soc Lond B
Biol Sci, 2014. 369(1633): p. 20130148.
Sul, J.Y., et al., Astrocytic connectivity in the hippocampus. Neuron Glia Biol, 2004. 1(1): p. 311.
Porter, J.T. and K.D. McCarthy, Astrocytic neurotransmitter receptors in situ and in vivo. Prog
Neurobiol, 1997. 51(4): p. 439-55.
Petravicz, J., T.A. Fiacco, and K.D. McCarthy, Loss of IP3 receptor-dependent Ca2+ increases
in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. J
Neurosci, 2008. 28(19): p. 4967-73.
Agulhon, C., et al., What is the role of astrocyte calcium in neurophysiology? Neuron, 2008.
59(6): p. 932-46.
Parpura, V., V. Grubisic, and A. Verkhratsky, Ca(2+) sources for the exocytotic release of
glutamate from astrocytes. Biochim Biophys Acta, 2011. 1813(5): p. 984-91.
Bezzi, P. and A. Volterra, A neuron-glia signalling network in the active brain. Curr Opin
Neurobiol, 2001. 11(3): p. 387-94.
Hassinger, T.D., et al., An extracellular signaling component in propagation of astrocytic
calcium waves. Proc Natl Acad Sci U S A, 1996. 93(23): p. 13268-73.
3
References
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
Minelli, A., et al., Cellular and subcellular localization of Na+-Ca2+ exchanger protein
isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat. Cell
Calcium, 2007. 41(3): p. 221-34.
Paluzzi, S., et al., Adult astroglia is competent for Na+/Ca2+ exchanger-operated exocytotic
glutamate release triggered by mild depolarization. J Neurochem, 2007. 103(3): p. 1196-207.
Malarkey, E.B., Y. Ni, and V. Parpura, Ca2+ entry through TRPC1 channels contributes to
intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia,
2008. 56(8): p. 821-35.
Carmignoto, G., L. Pasti, and T. Pozzan, On the role of voltage-dependent calcium channels in
calcium signaling of astrocytes in situ. J Neurosci, 1998. 18(12): p. 4637-45.
Henneberger, C., et al., Long-term potentiation depends on release of D-serine from
astrocytes. Nature, 2010. 463(7278): p. 232-6.
Jo, S., et al., GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's
disease. Nat Med, 2014.
Le Meur, K., et al., GABA release by hippocampal astrocytes. Front Comput Neurosci, 2012.
6: p. 59.
Gordon, G.R., et al., Norepinephrine triggers release of glial ATP to increase postsynaptic
efficacy. Nat Neurosci, 2005. 8(8): p. 1078-86.
Stellwagen, D. and R.C. Malenka, Synaptic scaling mediated by glial TNF-alpha. Nature, 2006.
440(7087): p. 1054-9.
Choe, K.Y., J.E. Olson, and C.W. Bourque, Taurine release by astrocytes modulates
osmosensitive glycine receptor tone and excitability in the adult supraoptic nucleus. J
Neurosci, 2012. 32(36): p. 12518-27.
Bezzi, P., et al., Astrocytes contain a vesicular compartment that is competent for regulated
exocytosis of glutamate. Nat Neurosci, 2004. 7(6): p. 613-20.
Crippa, D., et al., Synaptobrevin2-expressing vesicles in rat astrocytes: insights into molecular
characterization, dynamics and exocytosis. J Physiol, 2006. 570(Pt 3): p. 567-82.
Montana, V., et al., Vesicular glutamate transporter-dependent glutamate release from
astrocytes. J Neurosci, 2004. 24(11): p. 2633-42.
Szatkowski, M., B. Barbour, and D. Attwell, Non-vesicular release of glutamate from glial
cells by reversed electrogenic glutamate uptake. Nature, 1990. 348(6300): p. 443-6.
Kimelberg, H.K., et al., Swelling-induced release of glutamate, aspartate, and taurine from
astrocyte cultures. J Neurosci, 1990. 10(5): p. 1583-91.
Duan, S., et al., P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J
Neurosci, 2003. 23(4): p. 1320-8.
Bender, A.S., W. Reichelt, and M.D. Norenberg, Characterization of cystine uptake in cultured
astrocytes. Neurochem Int, 2000. 37(2-3): p. 269-76.
Orellana, J.A. and J. Stehberg, Hemichannels: new roles in astroglial function. Front Physiol,
2014. 5: p. 193.
Fiacco, T.A., et al., Selective stimulation of astrocyte calcium in situ does not affect neuronal
excitatory synaptic activity. Neuron, 2007. 54(4): p. 611-26.
Agulhon, C., T.A. Fiacco, and K.D. McCarthy, Hippocampal short- and long-term plasticity are
not modulated by astrocyte Ca2+ signaling. Science, 2010. 327(5970): p. 1250-4.
Hamilton, N.B. and D. Attwell, Do astrocytes really exocytose neurotransmitters? Nat Rev
Neurosci, 2010. 11(4): p. 227-38.
Volterra, A., N. Liaudet, and I. Savtchouk, Astrocyte Ca(2)(+) signalling: an unexpected
complexity. Nat Rev Neurosci, 2014. 15(5): p. 327-35.
Piet, R., et al., Physiological contribution of the astrocytic environment of neurons to
intersynaptic crosstalk. Proc Natl Acad Sci U S A, 2004. 101(7): p. 2151-5.
Sykova, E., Extrasynaptic volume transmission and diffusion parameters of the extracellular
space. Neuroscience, 2004. 129(4): p. 861-76.
4
References
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
Bernardinelli, Y., D. Muller, and I. Nikonenko, Astrocyte-synapse structural plasticity. Neural
Plast, 2014. 2014: p. 232105.
Zhang, J.M., et al., ATP released by astrocytes mediates glutamatergic activity-dependent
heterosynaptic suppression. Neuron, 2003. 40(5): p. 971-82.
Pascual, O., et al., Astrocytic purinergic signaling coordinates synaptic networks. Science,
2005. 310(5745): p. 113-6.
Deng, Q., et al., Astrocytic activation of A1 receptors regulates the surface expression of
NMDA receptors through a Src kinase dependent pathway. Glia, 2011. 59(7): p. 1084-93.
Jourdain, P., et al., Glutamate exocytosis from astrocytes controls synaptic strength. Nat
Neurosci, 2007. 10(3): p. 331-9.
Liu, Q.S., et al., Astrocyte-mediated activation of neuronal kainate receptors. Proc Natl Acad
Sci U S A, 2004. 101(9): p. 3172-7.
Fellin, T., et al., Neuronal synchrony mediated by astrocytic glutamate through activation of
extrasynaptic NMDA receptors. Neuron, 2004. 43(5): p. 729-43.
Beattie, E.C., et al., Control of synaptic strength by glial TNFalpha. Science, 2002. 295(5563):
p. 2282-5.
Perea, G. and A. Araque, Properties of synaptically evoked astrocyte calcium signal reveal
synaptic information processing by astrocytes. J Neurosci, 2005. 25(9): p. 2192-203.
Perea, G. and A. Araque, Synaptic information processing by astrocytes. J Physiol Paris, 2006.
99(2-3): p. 92-7.
Panatier, A. and S.H. Oliet, Neuron-glia interactions in the hypothalamus. Neuron Glia Biol,
2006. 2(1): p. 51-8.
Oliet, S.H., R. Piet, and D.A. Poulain, Control of glutamate clearance and synaptic efficacy by
glial coverage of neurons. Science, 2001. 292(5518): p. 923-6.
Panatier, A., et al., Glia-derived D-serine controls NMDA receptor activity and synaptic
memory. Cell, 2006. 125(4): p. 775-84.
Oliet, S.H. and V.D. Bonfardin, Morphological plasticity of the rat supraoptic nucleus--cellular
consequences. Eur J Neurosci, 2010. 32(12): p. 1989-94.
Haider, B. and D.A. McCormick, Rapid neocortical dynamics: cellular and network
mechanisms. Neuron, 2009. 62(2): p. 171-89.
Hahn, T.T., B. Sakmann, and M.R. Mehta, Phase-locking of hippocampal interneurons'
membrane potential to neocortical up-down states. Nat Neurosci, 2006. 9(11): p. 1359-61.
Cossart, R., D. Aronov, and R. Yuste, Attractor dynamics of network UP states in the
neocortex. Nature, 2003. 423(6937): p. 283-8.
Poskanzer, K.E. and R. Yuste, Astrocytic regulation of cortical UP states. Proc Natl Acad Sci U
S A, 2011. 108(45): p. 18453-8.
Fossat, P., et al., Glial D-serine gates NMDA receptors at excitatory synapses in prefrontal
cortex. Cereb Cortex, 2012. 22(3): p. 595-606.
Takata, N., et al., Astrocyte calcium signaling transforms cholinergic modulation to cortical
plasticity in vivo. J Neurosci, 2011. 31(49): p. 18155-65.
Grosche, J., et al., Microdomains for neuron-glia interaction: parallel fiber signaling to
Bergmann glial cells. Nat Neurosci, 1999. 2(2): p. 139-43.
Takatsuru, Y., et al., Contribution of glutamate transporter GLT-1 to removal of synaptically
released glutamate at climbing fiber-Purkinje cell synapses. Neurosci Lett, 2007. 420(1): p.
85-9.
Iino, M., et al., Glia-synapse interaction through Ca2+-permeable AMPA receptors in
Bergmann glia. Science, 2001. 292(5518): p. 926-9.
Saab, A.S., et al., Bergmann glial AMPA receptors are required for fine motor coordination.
Science, 2012. 337(6095): p. 749-53.
Kakegawa, W., et al., D-serine regulates cerebellar LTD and motor coordination through the
delta2 glutamate receptor. Nat Neurosci, 2011. 14(5): p. 603-11.
5
References
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
Pfrieger, F.W. and B.A. Barres, Synaptic efficacy enhanced by glial cells in vitro. Science,
1997. 277(5332): p. 1684-7.
Christopherson, K.S., et al., Thrombospondins are astrocyte-secreted proteins that promote
CNS synaptogenesis. Cell, 2005. 120(3): p. 421-33.
Kucukdereli, H., et al., Control of excitatory CNS synaptogenesis by astrocyte-secreted
proteins Hevin and SPARC. Proc Natl Acad Sci U S A, 2011. 108(32): p. E440-9.
Xu-Friedman, M.A., K.M. Harris, and W.G. Regehr, Three-dimensional comparison of
ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje
cells. J Neurosci, 2001. 21(17): p. 6666-72.
Xu-Friedman, M.A. and W.G. Regehr, Ultrastructural contributions to desensitization at
cerebellar mossy fiber to granule cell synapses. J Neurosci, 2003. 23(6): p. 2182-92.
Ventura, R. and K.M. Harris, Three-dimensional relationships between hippocampal synapses
and astrocytes. J Neurosci, 1999. 19(16): p. 6897-906.
Haber, M., L. Zhou, and K.K. Murai, Cooperative astrocyte and dendritic spine dynamics at
hippocampal excitatory synapses. J Neurosci, 2006. 26(35): p. 8881-91.
Hirrlinger, J., S. Hulsmann, and F. Kirchhoff, Astroglial processes show spontaneous motility
at active synaptic terminals in situ. Eur J Neurosci, 2004. 20(8): p. 2235-9.
Lehre, K.P. and D.A. Rusakov, Asymmetry of glia near central synapses favors presynaptically
directed glutamate escape. Biophys J, 2002. 83(1): p. 125-34.
Lushnikova, I., et al., Synaptic potentiation induces increased glial coverage of excitatory
synapses in CA1 hippocampus. Hippocampus, 2009. 19(8): p. 753-62.
Pannasch, U., et al., Connexin 30 sets synaptic strength by controlling astroglial synapse
invasion. Nat Neurosci, 2014. 17(4): p. 549-58.
Becquet, D., et al., Ultrastructural plasticity in the rat suprachiasmatic nucleus. Possible
involvement in clock entrainment. Glia, 2008. 56(3): p. 294-305.
Jones, T.A. and W.T. Greenough, Ultrastructural evidence for increased contact between
astrocytes and synapses in rats reared in a complex environment. Neurobiol Learn Mem,
1996. 65(1): p. 48-56.
Genoud, C., et al., Plasticity of astrocytic coverage and glutamate transporter expression in
adult mouse cortex. PLoS Biol, 2006. 4(11): p. e343.
Nishida, H. and S. Okabe, Direct astrocytic contacts regulate local maturation of dendritic
spines. J Neurosci, 2007. 27(2): p. 331-40.
Hama, H., et al., PKC signaling mediates global enhancement of excitatory synaptogenesis in
neurons triggered by local contact with astrocytes. Neuron, 2004. 41(3): p. 405-15.
Molotkov, D., et al., Calcium-induced outgrowth of astrocytic peripheral processes requires
actin binding by Profilin-1. Cell Calcium, 2013. 53(5-6): p. 338-48.
Derouiche, A. and M. Frotscher, Peripheral astrocyte processes: monitoring by selective
immunostaining for the actin-binding ERM proteins. Glia, 2001. 36(3): p. 330-41.
Lavialle, M., et al., Structural plasticity of perisynaptic astrocyte processes involves ezrin and
metabotropic glutamate receptors. Proc Natl Acad Sci U S A, 2011. 108(31): p. 12915-9.
Lee, A., et al., Na+-H+ exchanger regulatory factor 1 is a PDZ scaffold for the astroglial
glutamate transporter GLAST. Glia, 2007. 55(2): p. 119-29.
Haj-Yasein, N.N., et al., Aquaporin-4 regulates extracellular space volume dynamics during
high-frequency synaptic stimulation: a gene deletion study in mouse hippocampus. Glia,
2012. 60(6): p. 867-74.
Scharfman, H.E. and D.K. Binder, Aquaporin-4 water channels and synaptic plasticity in the
hippocampus. Neurochem Int, 2013. 63(7): p. 702-11.
Moseley, A.E., et al., Deficiency in Na,K-ATPase alpha isoform genes alters spatial learning,
motor activity, and anxiety in mice. J Neurosci, 2007. 27(3): p. 616-26.
6
References
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
Djukic, B., et al., Conditional knock-out of Kir4.1 leads to glial membrane depolarization,
inhibition of potassium and glutamate uptake, and enhanced short-term synaptic
potentiation. J Neurosci, 2007. 27(42): p. 11354-65.
Walz, W., Role of astrocytes in the clearance of excess extracellular potassium. Neurochem
Int, 2000. 36(4-5): p. 291-300.
Jirsova, K., et al., Cold jet: a method to obtain pure Schwann cell cultures without the need
for cytotoxic, apoptosis-inducing drug treatment. J Neurosci Methods, 1997. 78(1-2): p. 1337.
Eroglu, C. and B.A. Barres, Regulation of synaptic connectivity by glia. Nature, 2010.
468(7321): p. 223-31.
Giaume, C., et al., Astroglial networks: a step further in neuroglial and gliovascular
interactions. Nat Rev Neurosci, 2010. 11(2): p. 87-99.
Jarjour, A.A., et al., In vitro modeling of central nervous system myelination and
remyelination. Glia, 2012. 60(1): p. 1-12.
Thomson, C.E., et al., Myelinated, synapsing cultures of murine spinal cord--validation as an
in vitro model of the central nervous system. Eur J Neurosci, 2008. 28(8): p. 1518-35.
Camargo, N., A.B. Smit, and M.H. Verheijen, SREBPs: SREBP function in glia-neuron
interactions. Febs J, 2009. 276(3): p. 628-36.
Goritz, C., D.H. Mauch, and F.W. Pfrieger, Multiple mechanisms mediate cholesterol-induced
synaptogenesis in a CNS neuron. Mol Cell Neurosci, 2005. 29(2): p. 190-201.
Medina, J.M. and A. Tabernero, Astrocyte-synthesized oleic acid behaves as a neurotrophic
factor for neurons. J Physiol Paris, 2002. 96(3-4): p. 265-71.
Mauch, D.H., et al., CNS synaptogenesis promoted by glia-derived cholesterol. Science, 2001.
294(5545): p. 1354-7.
Verheijen, M.H., et al., SCAP is required for timely and proper myelin membrane synthesis.
Proc Natl Acad Sci U S A, 2009. 106(50): p. 21383-8.
Mendez, J.A., et al., Glutamate regulates Oct-2 DNA-binding activity through alpha-amino-3hydroxy-5-methylisoxazole-4-propionate receptors in cultured chick Bergmann glia cells. J
Neurochem, 2004. 88(4): p. 835-43.
Lovatt, D., et al., The transcriptome and metabolic gene signature of protoplasmic astrocytes
in the adult murine cortex. J Neurosci, 2007. 27(45): p. 12255-66.
Foo, L.C., Purification of rat and mouse astrocytes by immunopanning. Cold Spring Harb
Protoc, 2013. 2013(5): p. 421-32.
Wierda, K.D., et al., Interdependence of PKC-dependent and PKC-independent pathways for
presynaptic plasticity. Neuron, 2007. 54(2): p. 275-90.
Camargo, N., et al., High-fat diet ameliorates neurological deficits caused by defective
astrocyte lipid metabolism. Faseb J, 2012. 26(10): p. 4302-15.
Futschik, M.E. and T. Crompton, OLIN: optimized normalization, visualization and quality
testing of two-channel microarray data. Bioinformatics, 2005. 21(8): p. 1724-6.
Alexa, A., J. Rahnenfuhrer, and T. Lengauer, Improved scoring of functional groups from gene
expression data by decorrelating GO graph structure. Bioinformatics, 2006. 22(13): p. 16007.
Basarsky, T.A., V. Parpura, and P.G. Haydon, Hippocampal synaptogenesis in cell culture:
developmental time course of synapse formation, calcium influx, and synaptic protein
distribution. J Neurosci, 1994. 14(11 Pt 1): p. 6402-11.
Pfrieger, F.W. and N. Ungerer, Cholesterol metabolism in neurons and astrocytes. Prog Lipid
Res, 2011. 50(4): p. 357-71.
Tournell, C.E., R.A. Bergstrom, and A. Ferreira, Progesterone-induced agrin expression in
astrocytes modulates glia-neuron interactions leading to synapse formation. Neuroscience,
2006. 141(3): p. 1327-38.
7
References
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
Stevens, B., et al., The classical complement cascade mediates CNS synapse elimination. Cell,
2007. 131(6): p. 1164-78.
Acarin, L., B. Gonzalez, and B. Castellano, Glial activation in the immature rat brain:
implication of inflammatory transcription factors and cytokine expression. Prog Brain Res,
2001. 132: p. 375-89.
Halassa, M.M. and P.G. Haydon, Integrated brain circuits: astrocytic networks modulate
neuronal activity and behavior. Annu Rev Physiol, 2010. 72: p. 335-55.
Fan, Q.W., et al., Cholesterol-dependent modulation of dendrite outgrowth and microtubule
stability in cultured neurons. J Neurochem, 2002. 80(1): p. 178-90.
Hayashi, H., et al., Glial lipoproteins stimulate axon growth of central nervous system
neurons in compartmented cultures. J Biol Chem, 2004. 279(14): p. 14009-15.
Engelking, L.J., et al., Schoenheimer effect explained--feedback regulation of cholesterol
synthesis in mice mediated by Insig proteins. J Clin Invest, 2005. 115(9): p. 2489-98.
Mulligan, S.J. and B.A. MacVicar, Calcium transients in astrocyte endfeet cause
cerebrovascular constrictions. Nature, 2004. 431(7005): p. 195-9.
Bergles, D.E. and C.E. Jahr, Glial contribution to glutamate uptake at Schaffer collateralcommissural synapses in the hippocampus. J Neurosci, 1998. 18(19): p. 7709-16.
Araque, A. and M. Navarrete, Glial cells in neuronal network function. Philos Trans R Soc
Lond B Biol Sci, 2010. 365(1551): p. 2375-81.
Chen, J., et al., Heterosynaptic long-term depression mediated by ATP released from
astrocytes. Glia, 2013. 61(2): p. 178-91.
Chaudhry, F.A., et al., Glutamate transporters in glial plasma membranes: highly
differentiated localizations revealed by quantitative ultrastructural immunocytochemistry.
Neuron, 1995. 15(3): p. 711-20.
Cao, X., et al., Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med, 2013.
19(6): p. 773-7.
Halassa, M.M., et al., Astrocytic modulation of sleep homeostasis and cognitive
consequences of sleep loss. Neuron, 2009. 61(2): p. 213-9.
Schubert, V., D. Bouvier, and A. Volterra, SNARE protein expression in synaptic terminals and
astrocytes in the adult hippocampus: a comparative analysis. Glia, 2011. 59(10): p. 1472-88.
Li, K.W., et al., Proteomics analysis of rat brain postsynaptic density. Implications of the
diverse protein functional groups for the integration of synaptic physiology. J Biol Chem,
2004. 279(2): p. 987-1002.
Weingarten, J., et al., The proteome of the presynaptic active zone from mouse brain. Mol
Cell Neurosci, 2014. 59: p. 106-18.
Rao-Ruiz, P., et al., Retrieval-specific endocytosis of GluA2-AMPARs underlies adaptive
reconsolidation of contextual fear. Nat Neurosci, 2011. 14(10): p. 1302-8.
Van den Oever, M.C., et al., A proteomics approach to identify long-term molecular changes
in rat medial prefrontal cortex resulting from sucrose self-administration. J Proteome Res,
2006. 5(1): p. 147-54.
Vegh, M.J., et al., Synaptic proteome changes in a DNA repair deficient ercc1 mouse model of
accelerated aging. J Proteome Res, 2012. 11(3): p. 1855-67.
Stigliani, S., et al., Glia re-sealed particles freshly prepared from adult rat brain are
competent for exocytotic release of glutamate. J Neurochem, 2006. 96(3): p. 656-68.
Milanese, M., et al., In vitro activation of GAT1 transporters expressed in spinal cord
gliosomes stimulates glutamate release that is abnormally elevated in the SOD1/G93A(+)
mouse model of amyotrophic lateral sclerosis. J Neurochem, 2010. 113(2): p. 489-501.
Pedrazzi, M., et al., Stimulation of excitatory amino acid release from adult mouse brain glia
subcellular particles by high mobility group box 1 protein. J Neurochem, 2006. 99(3): p. 82738.
8
References
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
Raiteri, L., et al., Mechanisms of glutamate release elicited in rat cerebrocortical nerve
endings by 'pathologically' elevated extraterminal K+ concentrations. J Neurochem, 2007.
103(3): p. 952-61.
Dosemeci, A., et al., Composition of the synaptic PSD-95 complex. Mol Cell Proteomics, 2007.
6(10): p. 1749-60.
Milanese, M., et al., Glutamate release from astrocytic gliosomes under physiological and
pathological conditions. Int Rev Neurobiol, 2009. 85: p. 295-318.
Kaech, S., et al., Isoform specificity in the relationship of actin to dendritic spines. J Neurosci,
1997. 17(24): p. 9565-72.
Goudriaan, A., et al., Specific Glial Functions Contribute to Schizophrenia Susceptibility.
Schizophr Bull, 2013.
Goudriaan, A., et al., Novel cell separation method for molecular analysis of neuron-astrocyte
co-cultures. Front Cell Neurosci, 2014. 8: p. 12.
Orre, M., et al., Acute isolation and transcriptome characterization of cortical astrocytes and
microglia from young and aged mice. Neurobiol Aging, 2014. 35(1): p. 1-14.
Jungblut, M., et al., Isolation and characterization of living primary astroglial cells using the
new GLAST-specific monoclonal antibody ACSA-1. Glia, 2012. 60(6): p. 894-907.
Heller, M., et al., The immunoglobulin-superfamily molecule basigin is a binding protein for
oligomannosidic carbohydrates: an anti-idiotypic approach. J Neurochem, 2003. 84(3): p.
557-65.
Ruano, D., et al., Functional gene group analysis reveals a role of synaptic heterotrimeric G
proteins in cognitive ability. Am J Hum Genet, 2010. 86(2): p. 113-25.
Chicurel, M.E., D.M. Terrian, and H. Potter, mRNA at the synapse: analysis of a synaptosomal
preparation enriched in hippocampal dendritic spines. J Neurosci, 1993. 13(9): p. 4054-63.
Shavit, E., D.M. Michaelson, and J. Chapman, Anatomical localization of protease-activated
receptor-1 and protease-mediated neuroglial crosstalk on peri-synaptic astrocytic endfeet. J
Neurochem, 2011. 119(3): p. 460-73.
Li, K.W., et al., Identifying true protein complex constituents in interaction proteomics: the
example of the DMXL2 protein complex. Proteomics, 2012. 12(15-16): p. 2428-32.
Ma, B., et al., PEAKS: powerful software for peptide de novo sequencing by tandem mass
spectrometry. Rapid Commun Mass Spectrom, 2003. 17(20): p. 2337-42.
Cox, J. and M. Mann, MaxQuant enables high peptide identification rates, individualized
p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol,
2008. 26(12): p. 1367-72.
Benjamini, Y. and Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful
Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B
(Methodological), 1995. 57(1): p. 289-300.
Ward, J., Hierarchical grouping to optimize an objective function. Journal of the American
Statistical Association, 1963. 58(301): p. 236-244.
Vizcaino, J.A., et al., ProteomeXchange provides globally coordinated proteomics data
submission and dissemination. Nat Biotechnol, 2014. 32(3): p. 223-6.
Leng, G., C. Caquineau, and N. Sabatier, Regulation of oxytocin secretion. Vitam Horm, 2005.
71: p. 27-58.
Bourque, C.W., S.H. Oliet, and D. Richard, Osmoreceptors, osmoreception, and
osmoregulation. Front Neuroendocrinol, 1994. 15(3): p. 231-74.
Brimble, M.J. and R.E. Dyball, Characterization of the responses of oxytocin- and vasopressinsecreting neurones in the supraoptic nucleus to osmotic stimulation. J Physiol, 1977. 271(1):
p. 253-71.
Brown, C.H., et al., Physiological regulation of magnocellular neurosecretory cell activity:
integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol, 2013. 25(8): p.
678-710.
9
References
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
Brownstein, M.J., J.T. Russell, and H. Gainer, Synthesis, transport, and release of posterior
pituitary hormones. Science, 1980. 207(4429): p. 373-8.
Hatton, G.I., Dynamic neuronal-glial interactions: an overview 20 years later. Peptides, 2004.
25(3): p. 403-11.
Theodosis, D.T., Oxytocin-secreting neurons: A physiological model of morphological
neuronal and glial plasticity in the adult hypothalamus. Front Neuroendocrinol, 2002. 23(1):
p. 101-35.
Theodosis, D.T. and D.A. Poulain, Evidence for structural plasticity in the supraoptic nucleus
of the rat hypothalamus in relation to gestation and lactation. Neuroscience, 1984. 11(1): p.
183-93.
Montagnese, C.M., et al., Structural plasticity in the rat supraoptic nucleus during gestation,
post-partum lactation and suckling-induced pseudogestation and lactation. J Endocrinol,
1987. 115(1): p. 97-105.
Tweedle, C.D. and G.I. Hatton, Ultrastructural changes in rat hypothalamic neurosecretory
cells and their associated glia during minimal dehydration and rehydration. Cell Tissue Res,
1977. 181(1): p. 59-72.
Jourdain, P., et al., Evidence for a hypothalamic oxytocin-sensitive pattern-generating
network governing oxytocin neurons in vitro. J Neurosci, 1998. 18(17): p. 6641-9.
Oliet, S.H., Functional consequences of morphological neuroglial changes in the
magnocellular nuclei of the hypothalamus. J Neuroendocrinol, 2002. 14(3): p. 241-6.
Theodosis, D.T., et al., Cell surface expression of polysialic acid on NCAM is a prerequisite for
activity-dependent morphological neuronal and glial plasticity. J Neurosci, 1999. 19(23): p.
10228-36.
Stewart, L., et al., Hypothalamic transcriptome plasticity in two rodent species reveals
divergent differential gene expression but conserved pathways. J Neuroendocrinol, 2011.
23(2): p. 177-85.
Hindmarch, C., et al., A comprehensive description of the transcriptome of the
hypothalamoneurohypophyseal system in euhydrated and dehydrated rats. Proc Natl Acad
Sci U S A, 2006. 103(5): p. 1609-14.
Qiu, J., et al., Transcription factor expression in the hypothalamo-neurohypophyseal system
of the dehydrated rat: upregulation of gonadotrophin inducible transcription factor 1 mRNA
is mediated by cAMP-dependent protein kinase A. J Neurosci, 2007. 27(9): p. 2196-203.
Gouraud, S.S., et al., Dehydration-induced proteome changes in the rat hypothalamoneurohypophyseal system. Endocrinology, 2007. 148(7): p. 3041-52.
Hindmarch, C., et al., The transcriptome of the rat hypothalamic-neurohypophyseal system is
highly strain-dependent. J Neuroendocrinol, 2007. 19(12): p. 1009-12.
Abramova, M.A., et al., The responses of vasopressin- and tyrosine hydroxylase-expressing
neurons of the supraoptic nucleus in rats to chronic osmotic stimulation. Neurosci Behav
Physiol, 2000. 30(6): p. 617-24.
Flugge, G., et al., NDRG2 as a marker protein for brain astrocytes. Cell Tissue Res, 2014.
Ma, Y.L., et al., Estrogen regulates the expression of Ndrg2 in astrocytes. Brain Res, 2014.
1569: p. 1-8.
Yoshinaga, K., R.A. Hawkins, and J.F. Stocker, Estrogen secretion by the rat ovary in vivo
during the estrous cycle and pregnancy. Endocrinology, 1969. 85(1): p. 103-12.
Battin, D.A., et al., Effect of suckling on serum prolactin, luteinizing hormone, folliclestimulating hormone, and estradiol during prolonged lactation. Obstet Gynecol, 1985. 65(6):
p. 785-8.
Takeichi, T., et al., The effect of Ndrg2 expression on astroglial activation. Neurochem Int,
2011. 59(1): p. 21-7.
Salm, A.K., Mechanisms of glial retraction in the hypothalamo-neurohypophysial system of
the rat. Exp Physiol, 2000. 85 Spec No: p. 197S-202S.
10
References
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
Abramova, M., et al., Dynamical study of tyrosine hydroxylase expression and its correlation
with vasopressin turnover in the magnocellular neurons of the supraoptico-posthypophysial
system under long-term salt loading of adult rats. Brain Res, 2002. 925(1): p. 67-75.
Wang, Y.F. and K. Hamilton, Chronic vs. acute interactions between supraoptic oxytocin
neurons and astrocytes during lactation: role of glial fibrillary acidic protein plasticity.
ScientificWorldJournal, 2009. 9: p. 1308-20.
Wang, Y.F. and G.I. Hatton, Astrocytic plasticity and patterned oxytocin neuronal activity:
dynamic interactions. J Neurosci, 2009. 29(6): p. 1743-54.
Wang, Y.F., et al., Hyposmolality differentially and spatiotemporally modulates levels of
glutamine synthetase and serine racemase in rat supraoptic nucleus. Glia, 2013. 61(4): p.
529-38.
Elgot, A., O. El Hiba, and H. Gamrani, Structural and neurochemical plasticity in both
supraoptic and paraventricular nuclei of hypothalamus of a desert rodent Meriones shawi
after a severe dehydration versus opposite treatment by rehydration: GFAP and vasopressin
immunohistochemical study. Neurosci Lett, 2012. 515(1): p. 55-60.
Carlson, S.H., A. Beitz, and J.W. Osborn, Intragastric hypertonic saline increases vasopressin
and central Fos immunoreactivity in conscious rats. Am J Physiol, 1997. 272(3 Pt 2): p. R7508.
Langle, S.L., D.A. Poulain, and D.T. Theodosis, Induction of rapid, activity-dependent
neuronal-glial remodelling in the adult rat hypothalamus in vitro. Eur J Neurosci, 2003. 18(1):
p. 206-14.
Bora, A., et al., Neuropeptidomics of the supraoptic rat nucleus. J Proteome Res, 2008. 7(11):
p. 4992-5003.
Cahoy, J.D., et al., A transcriptome database for astrocytes, neurons, and oligodendrocytes: a
new resource for understanding brain development and function. J Neurosci, 2008. 28(1): p.
264-78.
Hemmings, H.C., Jr., et al., The general anesthetic isoflurane depresses synaptic vesicle
exocytosis. Mol Pharmacol, 2005. 67(5): p. 1591-9.
Tusher, V.G., R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the
ionizing radiation response. Proc Natl Acad Sci U S A, 2001. 98(9): p. 5116-21.
Goosens, K.A., Hippocampal regulation of aversive memories. Curr Opin Neurobiol, 2011.
21(3): p. 460-6.
Fanselow, M.S., Contextual fear, gestalt memories, and the hippocampus. Behav Brain Res,
2000. 110(1-2): p. 73-81.
Fanselow, M.S., Associative vs topographical accounts of the immediate
shock-freezing deficit in rats: Implications for the response selection rules
governing species-specific defensive reactions. Learning and Motivation,
1986. 17(1): p. 16-39.
244.
245.
246.
247.
248.
249.
Lattal, K.M. and T. Abel, An immediate-shock freezing deficit with discrete cues: a possible
role for unconditioned stimulus processing mechanisms. J Exp Psychol Anim Behav Process,
2001. 27(4): p. 394-406.
Frankland, P.W., et al., Consolidation of CS and US representations in associative fear
conditioning. Hippocampus, 2004. 14(5): p. 557-69.
Davis, H.P. and L.R. Squire, Protein synthesis and memory: a review. Psychol Bull, 1984.
96(3): p. 518-59.
Hernandez, P.J. and T. Abel, The role of protein synthesis in memory consolidation: progress
amid decades of debate. Neurobiol Learn Mem, 2008. 89(3): p. 293-311.
McGaugh, J.L., Memory--a century of consolidation. Science, 2000. 287(5451): p. 248-51.
Morgado-Bernal, I., Learning and memory consolidation: linking molecular and behavioral
data. Neuroscience, 2011. 176: p. 12-9.
11
References
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
Freeman, F.M., S.P. Rose, and A.B. Scholey, Two time windows of anisomycin-induced
amnesia for passive avoidance training in the day-old chick. Neurobiol Learn Mem, 1995.
63(3): p. 291-5.
Quevedo, J., et al., Two time windows of anisomycin-induced amnesia for inhibitory
avoidance training in rats: protection from amnesia by pretraining but not pre-exposure to
the task apparatus. Learn Mem, 1999. 6(6): p. 600-7.
Bourtchouladze, R., et al., Different training procedures recruit either one or two critical
periods for contextual memory consolidation, each of which requires protein synthesis and
PKA. Learn Mem, 1998. 5(4-5): p. 365-74.
Matsuo, N., L. Reijmers, and M. Mayford, Spine-type-specific recruitment of newly
synthesized AMPA receptors with learning. Science, 2008. 319(5866): p. 1104-7.
Abel, T. and K.M. Lattal, Molecular mechanisms of memory acquisition, consolidation and
retrieval. Curr Opin Neurobiol, 2001. 11(2): p. 180-7.
Sutton, M.A. and E.M. Schuman, Dendritic protein synthesis, synaptic plasticity, and memory.
Cell, 2006. 127(1): p. 49-58.
Kandel, E.R., The molecular biology of memory storage: a dialog between genes and
synapses. Biosci Rep, 2001. 21(5): p. 565-611.
Cajigas, I.J., T. Will, and E.M. Schuman, Protein homeostasis and synaptic plasticity. EMBO J,
2010. 29(16): p. 2746-52.
Hoeffer, C.A. and E. Klann, mTOR signaling: at the crossroads of plasticity, memory and
disease. Trends Neurosci, 2010. 33(2): p. 67-75.
Landeira-Fernandez, J., et al., Immediate shock deficit in fear conditioning: effects of shock
manipulations. Behav Neurosci, 2006. 120(4): p. 873-9.
Liu, X., et al., Optogenetic stimulation of a hippocampal engram activates fear memory
recall. Nature, 2012. 484(7394): p. 381-5.
Hulme, S.R., O.D. Jones, and W.C. Abraham, Emerging roles of metaplasticity in behaviour
and disease. Trends Neurosci, 2013.
Whitlock, J.R., et al., Learning induces long-term potentiation in the hippocampus. Science,
2006. 313(5790): p. 1093-7.
Cui, Z., et al., Increased NR2A:NR2B ratio compresses long-term depression range and
constrains long-term memory. Sci Rep, 2013. 3: p. 1036.
Biesemann, C., et al., Proteomic screening of glutamatergic mouse brain synaptosomes
isolated by fluorescence activated sorting. EMBO J, 2014. 33(2): p. 157-70.
Halassa, M.M., et al., Synaptic islands defined by the territory of a single astrocyte. J
Neurosci, 2007. 27(24): p. 6473-7.
Caroni, P., F. Donato, and D. Muller, Structural plasticity upon learning: regulation and
functions. Nat Rev Neurosci, 2012. 13(7): p. 478-90.
Huang, C.C., C.H. Yang, and K.S. Hsu, Do stress and long-term potentiation share the same
molecular mechanisms? Mol Neurobiol, 2005. 32(3): p. 223-35.
Howland, J.G. and Y.T. Wang, Synaptic plasticity in learning and memory: stress effects in the
hippocampus. Prog Brain Res, 2008. 169: p. 145-58.
Kim, J.J. and K.S. Yoon, Stress: metaplastic effects in the hippocampus. Trends Neurosci,
1998. 21(12): p. 505-9.
Shors, T.J., et al., Inescapable versus escapable shock modulates long-term potentiation in
the rat hippocampus. Science, 1989. 244(4901): p. 224-6.
Perez-Otano, I., et al., Endocytosis and synaptic removal of NR3A-containing NMDA
receptors by PACSIN1/syndapin1. Nat Neurosci, 2006. 9(5): p. 611-21.
Modregger, J., et al., All three PACSIN isoforms bind to endocytic proteins and inhibit
endocytosis. J Cell Sci, 2000. 113 Pt 24: p. 4511-21.
Koch, D., et al., Proper synaptic vesicle formation and neuronal network activity critically rely
on syndapin I. EMBO J, 2011. 30(24): p. 4955-69.
12
References
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
Andersson, F., et al., Perturbation of syndapin/PACSIN impairs synaptic vesicle recycling
evoked by intense stimulation. J Neurosci, 2008. 28(15): p. 3925-33.
Van den Oever, M.C., et al., Prefrontal cortex AMPA receptor plasticity is crucial for cueinduced relapse to heroin-seeking. Nat Neurosci, 2008. 11(9): p. 1053-8.
Meyer-Arendt, K., et al., IsoformResolver: A peptide-centric algorithm for protein inference. J
Proteome Res, 2011. 10(7): p. 3060-75.
Reiter, L., et al., Protein identification false discovery rates for very large proteomics data
sets generated by tandem mass spectrometry. Mol Cell Proteomics, 2009. 8(11): p. 2405-17.
Karp, N.A., et al., Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell
Proteomics, 2010. 9(9): p. 1885-97.
Lips, E.S., et al., Functional gene group analysis identifies synaptic gene groups as risk factor
for schizophrenia. Mol Psychiatry, 2011.
Counotte, D.S., et al., Changes in molecular composition of rat medial prefrontal cortex
synapses during adolescent development. Eur J Neurosci, 2010. 32(9): p. 1452-60.
Curzon, P., N.R. Rustay, and K.E. Browman, Cued and Contextual Fear Conditioning for
Rodents, in Methods of Behavior Analysis in Neuroscience, J.J. Buccafusco, Editor. 2009: Boca
Raton (FL).
Blitzer, R.D., et al., Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region.
Neuron, 1995. 15(6): p. 1403-14.
Malinow, R., H. Schulman, and R.W. Tsien, Inhibition of postsynaptic PKC or CaMKII blocks
induction but not expression of LTP. Science, 1989. 245(4920): p. 862-6.
Bourtchuladze, R., et al., Deficient long-term memory in mice with a targeted mutation of the
cAMP-responsive element-binding protein. Cell, 1994. 79(1): p. 59-68.
Lee, H.K., et al., Regulation of distinct AMPA receptor phosphorylation sites during
bidirectional synaptic plasticity. Nature, 2000. 405(6789): p. 955-9.
Barco, A., C.H. Bailey, and E.R. Kandel, Common molecular mechanisms in explicit and
implicit memory. J Neurochem, 2006. 97(6): p. 1520-33.
Rodriguez, J.J., et al., Long-term potentiation in the rat dentate gyrus is associated with
enhanced Arc/Arg3.1 protein expression in spines, dendrites and glia. Eur J Neurosci, 2005.
21(9): p. 2384-96.
Rodriguez, J.J., et al., ARG3.1/ARC expression in hippocampal dentate gyrus astrocytes:
ultrastructural evidence and co-localization with glial fibrillary acidic protein. J Cell Mol Med,
2008. 12(2): p. 671-8.
Nagerl, U.V., et al., Bidirectional activity-dependent morphological plasticity in hippocampal
neurons. Neuron, 2004. 44(5): p. 759-67.
Ostroff, L.E., et al., Fear and safety learning differentially affect synapse size and dendritic
translation in the lateral amygdala. Proc Natl Acad Sci U S A, 2010. 107(20): p. 9418-23.
Malinow, R. and R.C. Malenka, AMPA receptor trafficking and synaptic plasticity. Annu Rev
Neurosci, 2002. 25: p. 103-26.
Rumpel, S., et al., Postsynaptic receptor trafficking underlying a form of associative learning.
Science, 2005. 308(5718): p. 83-8.
Hayashi, Y., et al., Driving AMPA receptors into synapses by LTP and CaMKII: requirement for
GluR1 and PDZ domain interaction. Science, 2000. 287(5461): p. 2262-7.
Plant, K., et al., Transient incorporation of native GluR2-lacking AMPA receptors during
hippocampal long-term potentiation. Nat Neurosci, 2006. 9(5): p. 602-4.
Shi, S.H., et al., Rapid spine delivery and redistribution of AMPA receptors after synaptic
NMDA receptor activation. Science, 1999. 284(5421): p. 1811-6.
Nayak, A., et al., Maintenance of late-phase LTP is accompanied by PKA-dependent increase
in AMPA receptor synthesis. Nature, 1998. 394(6694): p. 680-3.
Igaz, L.M., et al., Two time periods of hippocampal mRNA synthesis are required for memory
consolidation of fear-motivated learning. J Neurosci, 2002. 22(15): p. 6781-9.
13
References
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
Shadmehr, R. and H.H. Holcomb, Neural correlates of motor memory consolidation. Science,
1997. 277(5327): p. 821-5.
Bontempi, B., et al., Time-dependent reorganization of brain circuitry underlying long-term
memory storage. Nature, 1999. 400(6745): p. 671-5.
Anagnostaras, S.G., S. Maren, and M.S. Fanselow, Temporally graded retrograde amnesia of
contextual fear after hippocampal damage in rats: within-subjects examination. J Neurosci,
1999. 19(3): p. 1106-14.
Frankland, P.W. and B. Bontempi, The organization of recent and remote memories. Nat Rev
Neurosci, 2005. 6(2): p. 119-30.
Goshen, I., et al., Dynamics of retrieval strategies for remote memories. Cell, 2011. 147(3): p.
678-89.
Ding, H.K., C.M. Teixeira, and P.W. Frankland, Inactivation of the anterior cingulate cortex
blocks expression of remote, but not recent, conditioned taste aversion memory. Learn Mem,
2008. 15(5): p. 290-3.
Wiltgen, B.J., et al., New circuits for old memories: the role of the neocortex in consolidation.
Neuron, 2004. 44(1): p. 101-8.
Tetzlaff, C., et al., Synaptic scaling enables dynamically distinct short- and long-term memory
formation. PLoS Comput Biol, 2013. 9(10): p. e1003307.
Wang, G., J. Gilbert, and H.Y. Man, AMPA receptor trafficking in homeostatic synaptic
plasticity: functional molecules and signaling cascades. Neural Plast, 2012. 2012: p. 825364.
McGaugh, J.L. and B. Roozendaal, Drug enhancement of memory consolidation: historical
perspective and neurobiological implications. Psychopharmacology (Berl), 2009. 202(1-3): p.
3-14.
Izquierdo, I., et al., Mechanisms for memory types differ. Nature, 1998. 393(6686): p. 635-6.
Suzuki, A., et al., Memory reconsolidation and extinction have distinct temporal and
biochemical signatures. J Neurosci, 2004. 24(20): p. 4787-95.
Gold, P.E. and R.B. Van Buskirk, Facilitation of time-dependent memory processes with
posttrial epinephrine injections. Behav Biol, 1975. 13(2): p. 145-53.
Roozendaal, B., 1999 Curt P. Richter award. Glucocorticoids and the regulation of memory
consolidation. Psychoneuroendocrinology, 2000. 25(3): p. 213-38.
Karni, A., et al., Dependence on REM sleep of overnight improvement of a perceptual skill.
Science, 1994. 265(5172): p. 679-82.
Ben Achour, S. and O. Pascual, Glia: the many ways to modulate synaptic plasticity.
Neurochem Int, 2010. 57(4): p. 440-5.
Skucas, V.A., et al., Impairment of select forms of spatial memory and neurotrophindependent synaptic plasticity by deletion of glial aquaporin-4. J Neurosci, 2011. 31(17): p.
6392-7.
Li, Y.K., et al., Aquaporin-4 deficiency impairs synaptic plasticity and associative fear memory
in the lateral amygdala: involvement of downregulation of glutamate transporter-1
expression. Neuropsychopharmacology, 2012. 37(8): p. 1867-78.
Ben Menachem-Zidon, O., et al., Astrocytes support hippocampal-dependent memory and
long-term potentiation via interleukin-1 signaling. Brain Behav Immun, 2011. 25(5): p. 100816.
Nishiyama, H., et al., Glial protein S100B modulates long-term neuronal synaptic plasticity.
Proc Natl Acad Sci U S A, 2002. 99(6): p. 4037-42.
Galvan, V.V. and N.M. Weinberger, Long-term consolidation and retention of learninginduced tuning plasticity in the auditory cortex of the guinea pig. Neurobiol Learn Mem,
2002. 77(1): p. 78-108.
Ridder, M.C., et al., Megalencephalic leucoencephalopathy with cysts: defect in chloride
currents and cell volume regulation. Brain, 2011. 134(Pt 11): p. 3342-54.
14
References
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
Rao-Ruiz, P.C., K.E. ; Pandya, N.J. ; van der Loo, R.J. ; Verheijen, M.H.G.; van Nierop, P. ; Smit,
A.B.; Spijker, S., Time-dependent changes in the hippocampal synaptic membrane proteome
after contextual fear conditioning. J Proteome Res, submmitted, 2014.
Gupta-Agarwal, S., et al., G9a/GLP histone lysine dimethyltransferase complex activity in the
hippocampus and the entorhinal cortex is required for gene activation and silencing during
memory consolidation. J Neurosci, 2012. 32(16): p. 5440-53.
Henninger, N., et al., Spatial learning induces predominant downregulation of cytosolic
proteins in the rat hippocampus. Genes Brain Behav, 2007. 6(2): p. 128-40.
Levenson, J.M., et al., A bioinformatics analysis of memory consolidation reveals involvement
of the transcription factor c-rel. J Neurosci, 2004. 24(16): p. 3933-43.
Luo, Y., et al., Identification of maze learning-associated genes in rat hippocampus by cDNA
microarray. J Mol Neurosci, 2001. 17(3): p. 397-404.
Mei, B., et al., Distinct gene expression profiles in hippocampus and amygdala after fear
conditioning. Brain Res Bull, 2005. 67(1-2): p. 1-12.
Monopoli, M.P., et al., Temporal proteomic profile of memory consolidation in the rat
hippocampal dentate gyrus. Proteomics, 2011. 11(21): p. 4189-201.
O'Sullivan, N.C., et al., Temporal change in gene expression in the rat dentate gyrus following
passive avoidance learning. J Neurochem, 2007. 101(4): p. 1085-98.
Patil, S.S., et al., Proteins linked to spatial memory formation of CD1 mice in the multiple Tmaze. Hippocampus, 2012. 22(5): p. 1075-86.
Peleg, S., et al., Altered histone acetylation is associated with age-dependent memory
impairment in mice. Science, 2010. 328(5979): p. 753-6.
Sirri, A., et al., Temporal gene expression profile of the hippocampus following trace fear
conditioning. Brain Res, 2010. 1308: p. 14-23.
Fanselow, M., Associative vs topographical accounts of the immediate shock-freezing deficit
in rats: Implications for the response selection rules governing species-specific defensive
reactions. Learning and Motivation, 1985. 17(1): p. 16-39.
Brindley, D.N., et al., Phosphatidate degradation: phosphatidate phosphatases (lipins) and
lipid phosphate phosphatases. Biochim Biophys Acta, 2009. 1791(9): p. 956-61.
Lopez-Juarez, A., et al., Expression of LPP3 in Bergmann glia is required for proper cerebellar
sphingosine-1-phosphate metabolism/signaling and development. Glia, 2011. 59(4): p. 57789.
Cholet, N., et al., Similar perisynaptic glial localization for the Na+,K+-ATPase alpha 2 subunit
and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex. Cereb
Cortex, 2002. 12(5): p. 515-25.
Ikeda, K., et al., Degeneration of the amygdala/piriform cortex and enhanced fear/anxiety
behaviors in sodium pump alpha2 subunit (Atp1a2)-deficient mice. J Neurosci, 2003. 23(11):
p. 4667-76.
Ludwin, S.K., J.C. Kosek, and L.F. Eng, The topographical distribution of S-100 and GFA
proteins in the adult rat brain: an immunohistochemical study using horseradish peroxidaselabelled antibodies. J Comp Neurol, 1976. 165(2): p. 197-207.
McCall, M.A., et al., Targeted deletion in astrocyte intermediate filament (Gfap) alters
neuronal physiology. Proc Natl Acad Sci U S A, 1996. 93(13): p. 6361-6.
Shibuki, K., et al., Deficient cerebellar long-term depression, impaired eyeblink conditioning,
and normal motor coordination in GFAP mutant mice. Neuron, 1996. 16(3): p. 587-99.
Beenhakker, M.P. and J.R. Huguenard, Astrocytes as gatekeepers of GABAB receptor
function. J Neurosci, 2010. 30(45): p. 15262-76.
Park, J.B., et al., Regulation of tonic GABA inhibitory function, presympathetic neuronal
activity and sympathetic outflow from the paraventricular nucleus by astroglial GABA
transporters. J Physiol, 2009. 587(Pt 19): p. 4645-60.
15
References
341.
342.
343.
344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
Wu, Z., et al., Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in
an Alzhiemer's disease model. Nat Commun, 2014. 5: p. 4159.
Kersante, F., et al., A functional role for both -aminobutyric acid (GABA) transporter-1 and
GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic
conductances in the rat hippocampus. J Physiol, 2013. 591(Pt 10): p. 2429-41.
Janssen, U., et al., Human mitochondrial enoyl-CoA hydratase gene (ECHS1): structural
organization and assignment to chromosome 10q26.2-q26.3. Genomics, 1997. 40(3): p. 4705.
Yeh, C.S., et al., Fatty acid metabolism pathway play an important role in carcinogenesis of
human colorectal cancers by Microarray-Bioinformatics analysis. Cancer Lett, 2006. 233(2):
p. 297-308.
Zhu, X.S., et al., Knockdown of ECHS1 protein expression inhibits hepatocellular carcinoma
cell proliferation via suppression of Akt activity. Crit Rev Eukaryot Gene Expr, 2013. 23(3): p.
275-82.
Anlauf, E. and A. Derouiche, Glutamine synthetase as an astrocytic marker: its cell type and
vesicle localization. Front Endocrinol (Lausanne), 2013. 4: p. 144.
Norenberg, M.D. and A. Martinez-Hernandez, Fine structural localization of glutamine
synthetase in astrocytes of rat brain. Brain Res, 1979. 161(2): p. 303-10.
Hertz, L., et al., Astrocytes: glutamate producers for neurons. J Neurosci Res, 1999. 57(4): p.
417-28.
Gibbs, M.E., et al., Inhibition of glutamine synthetase activity prevents memory
consolidation. Brain Res Cogn Brain Res, 1996. 4(1): p. 57-64.
Kleene, R., et al., Prion protein regulates glutamate-dependent lactate transport of
astrocytes. J Neurosci, 2007. 27(45): p. 12331-40.
Maekawa, F., et al., Basal and stimulated lactate fluxes in primary cultures of astrocytes are
differentially controlled by distinct proteins. J Neurochem, 2008. 107(3): p. 789-98.
Naruhashi, K., et al., Abnormalities of sensory and memory functions in mice lacking Bsg
gene. Biochem Biophys Res Commun, 1997. 236(3): p. 733-7.
Rothstein, J.D., et al., Knockout of glutamate transporters reveals a major role for astroglial
transport in excitotoxicity and clearance of glutamate. Neuron, 1996. 16(3): p. 675-86.
Chen, Z., S.G. Kujawa, and W.F. Sewell, Functional roles of high-affinity glutamate
transporters in cochlear afferent synaptic transmission in the mouse. J Neurophysiol, 2010.
103(5): p. 2581-6.
Karlsson, R.M., et al., Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for
phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia.
Neuropsychopharmacology, 2009. 34(6): p. 1578-89.
Lehre, K.P., et al., Differential expression of two glial glutamate transporters in the rat brain:
quantitative and immunocytochemical observations. J Neurosci, 1995. 15(3 Pt 1): p. 1835-53.
Boor, P.K., et al., MLC1: a novel protein in distal astroglial processes. J Neuropathol Exp
Neurol, 2005. 64(5): p. 412-9.
Lanciotti, A., et al., Megalencephalic leukoencephalopathy with subcortical cysts protein 1
functionally cooperates with the TRPV4 cation channel to activate the response of astrocytes
to osmotic stress: dysregulation by pathological mutations. Hum Mol Genet, 2012. 21(10): p.
2166-80.
Vegh, M.J., et al., Reducing hippocampal extracellular matrix reverses early memory deficits
in a mouse model of Alzheimer's disease. Acta Neuropathol Commun, 2014. 2(1): p. 76.
Deacon, R.M. and J.N. Rawlins, T-maze alternation in the rodent. Nat Protoc, 2006. 1(1): p. 712.
Stiedl, O., et al., Impairment of conditioned contextual fear of C57BL/6J mice by intracerebral
injections of the NMDA receptor antagonist APV. Behav Brain Res, 2000. 116(2): p. 157-68.
16
References
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
Daumas, S., et al., Encoding, consolidation, and retrieval of contextual memory: differential
involvement of dorsal CA3 and CA1 hippocampal subregions. Learn Mem, 2005. 12(4): p.
375-82.
Zelikowsky, M., S. Bissiere, and M.S. Fanselow, Contextual fear memories formed in the
absence of the dorsal hippocampus decay across time. J Neurosci, 2012. 32(10): p. 3393-7.
Moser, M.B., et al., Spatial learning with a minislab in the dorsal hippocampus. Proc Natl
Acad Sci U S A, 1995. 92(21): p. 9697-701.
Fanselow, M.S. and H.W. Dong, Are the dorsal and ventral hippocampus functionally distinct
structures? Neuron, 2010. 65(1): p. 7-19.
O'Brien, R.J., et al., Activity-dependent modulation of synaptic AMPA receptor accumulation.
Neuron, 1998. 21(5): p. 1067-78.
Turrigiano, G.G., et al., Activity-dependent scaling of quantal amplitude in neocortical
neurons. Nature, 1998. 391(6670): p. 892-6.
Turrigiano, G.G., The self-tuning neuron: synaptic scaling of excitatory synapses. Cell, 2008.
135(3): p. 422-35.
Ibata, K., Q. Sun, and G.G. Turrigiano, Rapid synaptic scaling induced by changes in
postsynaptic firing. Neuron, 2008. 57(6): p. 819-26.
Sutton, M.A., et al., Miniature neurotransmission stabilizes synaptic function via tonic
suppression of local dendritic protein synthesis. Cell, 2006. 125(4): p. 785-99.
Weinstein, D.E., M.L. Shelanski, and R.K. Liem, Suppression by antisense mRNA demonstrates
a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic
processes in response to neurons. J Cell Biol, 1991. 112(6): p. 1205-13.
Bohn, M.C., et al., Glial cells express both mineralocorticoid and glucocorticoid receptors. J
Steroid Biochem Mol Biol, 1991. 40(1-3): p. 105-11.
Middeldorp, J. and E.M. Hol, GFAP in health and disease. Prog Neurobiol, 2011. 93(3): p. 42143.
Chatterjee, S. and S.K. Sikdar, Corticosterone treatment results in enhanced release of
peptidergic vesicles in astrocytes via cytoskeletal rearrangements. Glia, 2013. 61(12): p.
2050-62.
Ho, K.W., W.S. Lambert, and D.J. Calkins, Activation of the TRPV1 cation channel contributes
to stress-induced astrocyte migration. Glia, 2014.
Sacchetti, B., et al., Long-lasting hippocampal potentiation and contextual memory
consolidation. Eur J Neurosci, 2001. 13(12): p. 2291-8.
Fa, M., et al., Stress modulation of hippocampal activity - Spotlight on the dentate gyrus.
Neurobiol Learn Mem, 2014. 112C: p. 53-60.
Verkhratsky, A. and H. Kettenmann, Calcium signalling in glial cells. Trends Neurosci, 1996.
19(8): p. 346-52.
Leegwater, P.A., et al., Mutations of MLC1 (KIAA0027), encoding a putative membrane
protein, cause megalencephalic leukoencephalopathy with subcortical cysts. Am J Hum
Genet, 2001. 68(4): p. 831-8.
van der Knaap, M.S., et al., Leukoencephalopathy with swelling and a discrepantly mild
clinical course in eight children. Ann Neurol, 1995. 37(3): p. 324-34.
van der Knaap, M.S., I. Boor, and R. Estevez, Megalencephalic leukoencephalopathy with
subcortical cysts: chronic white matter oedema due to a defect in brain ion and water
homoeostasis. Lancet Neurol, 2012. 11(11): p. 973-85.
Hoegg-Beiler, M.B., et al., Disrupting MLC1 and GlialCAM and ClC-2 interactions in
leukodystrophy entails glial chloride channel dysfunction. Nat Commun, 2014. 5: p. 3475.
Macaulay, N. and T. Zeuthen, Glial K(+) clearance and cell swelling: key roles for
cotransporters and pumps. Neurochem Res, 2012. 37(11): p. 2299-309.
Pasantes-Morales, H. and A. Schousboe, Release of taurine from astrocytes during
potassium-evoked swelling. Glia, 1989. 2(1): p. 45-50.
17
References
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
Frankenhaeuser, B. and A.L. Hodgkin, The after-effects of impulses in the giant nerve fibres of
Loligo. J Physiol, 1956. 131(2): p. 341-76.
D'Ambrosio, R., D.S. Gordon, and H.R. Winn, Differential role of KIR channel and Na(+)/K(+)pump in the regulation of extracellular K(+) in rat hippocampus. J Neurophysiol, 2002. 87(1):
p. 87-102.
Ransom, C.B., B.R. Ransom, and H. Sontheimer, Activity-dependent extracellular K+
accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol, 2000. 522
Pt 3: p. 427-42.
Haj-Yasein, N.N., et al., Evidence that compromised K+ spatial buffering contributes to the
epileptogenic effect of mutations in the human Kir4.1 gene (KCNJ10). Glia, 2011. 59(11): p.
1635-42.
Su, G., D.B. Kintner, and D. Sun, Contribution of Na(+)-K(+)-Cl(-) cotransporter to high[K(+)](o)- induced swelling and EAA release in astrocytes. Am J Physiol Cell Physiol, 2002.
282(5): p. C1136-46.
Janigro, D., et al., Reduction of K+ uptake in glia prevents long-term depression maintenance
and causes epileptiform activity. J Neurosci, 1997. 17(8): p. 2813-24.
Scholl, U.I., et al., Seizures, sensorineural deafness, ataxia, mental retardation, and
electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci
U S A, 2009. 106(14): p. 5842-7.
Tong, X., et al., Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in
Huntington's disease model mice. Nat Neurosci, 2014. 17(5): p. 694-703.
Bataveljic, D., et al., Changes in the astrocytic aquaporin-4 and inwardly rectifying potassium
channel expression in the brain of the amyotrophic lateral sclerosis SOD1(G93A) rat model.
Glia, 2012. 60(12): p. 1991-2003.
Dibaj, P., et al., Kir4.1 channels regulate swelling of astroglial processes in experimental
spinal cord edema. J Neurochem, 2007. 103(6): p. 2620-8.
MacVicar, B.A., et al., Intrinsic optical signals in the rat optic nerve: role for K(+) uptake via
NKCC1 and swelling of astrocytes. Glia, 2002. 37(2): p. 114-23.
Hamann, S., et al., Cotransport of water by the Na+-K+-2Cl(-) cotransporter NKCC1 in
mammalian epithelial cells. J Physiol, 2010. 588(Pt 21): p. 4089-101.
Mulligan, S.J. and B.A. MacVicar, VRACs CARVe a path for novel mechanisms of
communication in the CNS. Sci STKE, 2006. 2006(357): p. pe42.
Rosenberg, D., et al., Neuronal release of D-serine: a physiological pathway controlling
extracellular D-serine concentration. FASEB J, 2010. 24(8): p. 2951-61.
Haskew-Layton, R.E., et al., Two distinct modes of hypoosmotic medium-induced release of
excitatory amino acids and taurine in the rat brain in vivo. PLoS One, 2008. 3(10): p. e3543.
Dubey, M.e.a., Mice with Megalencephalic Leukoencephalopathy with Cysts: a
developmental angle. Submitted. 2014.
Misane, I., et al., GABA(A) receptor activation in the CA1 area of the dorsal hippocampus
impairs consolidation of conditioned contextual fear in C57BL/6J mice. Behav Brain Res,
2013. 238: p. 160-9.
Vegh, M.J., et al., Hippocampal extracellular matrix levels and stochasticity in synaptic
protein expression increase with age and are associated with age-dependent cognitive
decline. Mol Cell Proteomics, 2014.
Murai, K.K., et al., Control of hippocampal dendritic spine morphology through ephrinA3/EphA4 signaling. Nat Neurosci, 2003. 6(2): p. 153-60.
Whittaker, V.P., The morphology of fractions of rat forebrain synaptosomes separated on
continuous sucrose density gradients. Biochem J, 1968. 106(2): p. 412-7.
Panatier, A.O., S.H. ; Nagerl, U.V, Live imaging of the triparatite synapse using STED
microscopy, in FENS. 2014: Milan, Italy.
18
References
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
Araque, A.N., M. ; Covelo, A. ; Martin, E.D. ; Perez-Alvarez, A. Activity-dependent plasticity of
astrocyte processes and dendritic spine interactions. in FENS. 2014. Milan, Italy.
Andersson, M., F. Blomstrand, and E. Hanse, Astrocytes play a critical role in transient
heterosynaptic depression in the rat hippocampal CA1 region. J Physiol, 2007. 585(Pt 3): p.
843-52.
Albrecht, J., et al., Roles of glutamine in neurotransmission. Neuron Glia Biol, 2010. 6(4): p.
263-76.
Suzuki, A., et al., Astrocyte-neuron lactate transport is required for long-term memory
formation. Cell, 2011. 144(5): p. 810-23.
Ros, J., et al., Metabolic activation pattern of distinct hippocampal subregions during spatial
learning and memory retrieval. J Cereb Blood Flow Metab, 2006. 26(4): p. 468-77.
Han, J., et al., Acute cannabinoids impair working memory through astroglial CB1 receptor
modulation of hippocampal LTD. Cell, 2012. 148(5): p. 1039-50.
Kawamura, Y., et al., The CB1 cannabinoid receptor is the major cannabinoid receptor at
excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci, 2006. 26(11): p.
2991-3001.
Navarrete, M. and A. Araque, Endocannabinoids mediate neuron-astrocyte communication.
Neuron, 2008. 57(6): p. 883-93.
Sossin, W.S., T.C. Sacktor, and J.H. Schwartz, Persistent activation of protein kinase C during
the development of long-term facilitation in Aplysia. Learn Mem, 1994. 1(3): p. 189-202.
Foran, E., et al., Sumoylation of the astroglial glutamate transporter EAAT2 governs its
intracellular compartmentalization. Glia, 2014. 62(8): p. 1241-53.
19
References
20