References REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. Kandel, E., Nerve cell and behavior, in Principles of neuroscience. 1991, Appelton & Lange: Norwalk, CT. p. 18-32. Oberheim, N.A., S.A. Goldman, and M. Nedergaard, Heterogeneity of astrocytic form and function. Methods Mol Biol, 2012. 814: p. 23-45. Matthias, K., et al., Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci, 2003. 23(5): p. 1750-8. Bonfanti, L., D.A. Poulain, and D.T. Theodosis, Radial glia-like cells in the supraoptic nucleus of the adult rat. J Neuroendocrinol, 1993. 5(1): p. 1-5. Ramon y Cajal, S., Contribucion al conocimiento de la neuroglia del cerebro humano. Trab Lab Invest Biol (Madrid), 1913. 11: p. 255-315. Kettenmann, H. and A. Verkhratsky, Neuroglia: the 150 years after. Trends Neurosci, 2008. 31(12): p. 653-9. Bushong, E.A., et al., Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci, 2002. 22(1): p. 183-92. Derouiche, A., et al., Beyond polarity: functional membrane domains in astrocytes and Muller cells. Neurochem Res, 2012. 37(11): p. 2513-23. Nagelhus, E.A., T.M. Mathiisen, and O.P. Ottersen, Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience, 2004. 129(4): p. 905-13. Forsythe, I.D. and M. Barnes-Davies, Synaptic transmission: well-placed modulators. Curr Biol, 1997. 7(6): p. R362-5. Reichenbach, A., A. Derouiche, and F. Kirchhoff, Morphology and dynamics of perisynaptic glia. Brain Res Rev, 2010. 63(1-2): p. 11-25. Nico, B. and D. Ribatti, Morphofunctional aspects of the blood-brain barrier. Curr Drug Metab, 2012. 13(1): p. 50-60. Dunn, K.M. and M.T. Nelson, Potassium channels and neurovascular coupling. Circ J, 2010. 74(4): p. 608-16. Iadecola, C. and M. Nedergaard, Glial regulation of the cerebral microvasculature. Nat Neurosci, 2007. 10(11): p. 1369-76. Simard, M. and M. Nedergaard, The neurobiology of glia in the context of water and ion homeostasis. Neuroscience, 2004. 129(4): p. 877-96. Kreft, M., et al., Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation. ASN Neuro, 2012. 4(3). Magistretti, P.J., Neuron-glia metabolic coupling and plasticity. J Exp Biol, 2006. 209(Pt 12): p. 2304-11. Hertz, L. and H.R. Zielke, Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci, 2004. 27(12): p. 735-43. Kofuji, P. and E.A. Newman, Potassium buffering in the central nervous system. Neuroscience, 2004. 129(4): p. 1045-56. Steinhauser, C., G. Seifert, and P. Bedner, Astrocyte dysfunction in temporal lobe epilepsy: K+ channels and gap junction coupling. Glia, 2012. 60(8): p. 1192-202. Ullian, E.M., et al., Control of synapse number by glia. Science, 2001. 291(5504): p. 657-61. Allen, N.J., et al., Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature, 2012. 486(7403): p. 410-4. Song, H., C.F. Stevens, and F.H. Gage, Astroglia induce neurogenesis from adult neural stem cells. Nature, 2002. 417(6884): p. 39-44. 1 References 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. Clarke, L.E. and B.A. Barres, Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci, 2013. 14(5): p. 311-21. Araque, A., et al., Gliotransmitters travel in time and space. Neuron, 2014. 81(4): p. 728-39. Araque, A., et al., Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci, 1999. 22(5): p. 208-15. Santello, M., C. Cali, and P. Bezzi, Gliotransmission and the tripartite synapse. Adv Exp Med Biol, 2012. 970: p. 307-31. Navarrete, M. and A. Araque, The Cajal school and the physiological role of astrocytes: a way of thinking. Front Neuroanat, 2014. 8: p. 33. Chapman, D.B., et al., Osmotic stimulation causes structural plasticity of neurone-glia relationships of the oxytocin but not vasopressin secreting neurones in the hypothalamic supraoptic nucleus. Neuroscience, 1986. 17(3): p. 679-86. Theodosis, D.T., et al., Structural plasticity in the hypothalamic supraoptic nucleus at lactation affects oxytocin-, but not vasopressin-secreting neurones. Neuroscience, 1986. 17(3): p. 661-78. Wenzel, J., et al., The influence of long-term potentiation on the spatial relationship between astrocyte processes and potentiated synapses in the dentate gyrus neuropil of rat brain. Brain Res, 1991. 560(1-2): p. 122-31. Adams, I. and D.G. Jones, Synaptic remodelling and astrocytic hypertrophy in rat cerebral cortex from early to late adulthood. Neurobiol Aging, 1982. 3(3): p. 179-86. Tsacopoulos, M. and P.J. Magistretti, Metabolic coupling between glia and neurons. J Neurosci, 1996. 16(3): p. 877-85. Pellerin, L. and P.J. Magistretti, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A, 1994. 91(22): p. 10625-9. Verkhratsky, A., Neurotransmitter Receptors in Astrocytes, in Astrocytes in (Patho)Physiology of the Nervous System, P.G. Haydon and V. Parpura, Editors. 2009, Springer US. p. 49-67. Mennerick, S. and C.F. Zorumski, Glial contributions to excitatory neurotransmission in cultured hippocampal cells. Nature, 1994. 368(6466): p. 59-62. Cornell-Bell, A.H., et al., Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science, 1990. 247(4941): p. 470-3. Heizmann, C.W., Calcium signaling in the brain. Acta Neurobiol Exp (Wars), 1993. 53(1): p. 15-23. Cornell-Bell, A.H. and S.M. Finkbeiner, Ca2+ waves in astrocytes. Cell Calcium, 1991. 12(2-3): p. 185-204. De Pitta, M., et al., Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comput Neurosci, 2012. 6: p. 98. Scemes, E. and C. Giaume, Astrocyte calcium waves: what they are and what they do. Glia, 2006. 54(7): p. 716-25. Porter, J.T. and K.D. McCarthy, Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci, 1996. 16(16): p. 5073-81. Wang, X., et al., Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci, 2006. 9(6): p. 816-23. Serrano, A., et al., GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci, 2006. 26(20): p. 5370-82. Kang, J., et al., Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci, 1998. 1(8): p. 683-92. Piet, R. and C.E. Jahr, Glutamatergic and purinergic receptor-mediated calcium transients in Bergmann glial cells. J Neurosci, 2007. 27(15): p. 4027-35. Duffy, S. and B.A. MacVicar, Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J Neurosci, 1995. 15(8): p. 5535-50. 2 References 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. Nilsson, M., E. Hansson, and L. Ronnback, Adrenergic and 5-HT2 receptors on the same astroglial cell. A microspectrofluorimetric study on cytosolic Ca2+ responses in single cells in primary culture. Brain Res Dev Brain Res, 1991. 63(1-2): p. 33-41. Navarrete, M. and A. Araque, Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron, 2010. 68(1): p. 113-26. Bowser, D.N. and B.S. Khakh, Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol, 2007. 129(6): p. 485-91. Shelton, M.K. and K.D. McCarthy, Hippocampal astrocytes exhibit Ca2+-elevating muscarinic cholinergic and histaminergic receptors in situ. J Neurochem, 2000. 74(2): p. 555-63. Navarrete, M., et al., Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol, 2012. 10(2): p. e1001259. Santello, M., P. Bezzi, and A. Volterra, TNFalpha controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron, 2011. 69(5): p. 988-1001. Matyash, V., et al., Nitric oxide signals parallel fiber activity to Bergmann glial cells in the mouse cerebellar slice. Mol Cell Neurosci, 2001. 18(6): p. 664-70. MacVicar, B.A., et al., Modulation of intracellular Ca++ in cultured astrocytes by influx through voltage-activated Ca++ channels. Glia, 1991. 4(5): p. 448-55. Bourque, C.W., Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci, 2008. 9(7): p. 519-31. Panatier, A., et al., Astrocytes are endogenous regulators of basal transmission at central synapses. Cell, 2011. 146(5): p. 785-98. Di Castro, M.A., et al., Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat Neurosci, 2011. 14(10): p. 1276-84. Konietzko, U. and C.M. Muller, Astrocytic dye coupling in rat hippocampus: topography, developmental onset, and modulation by protein kinase C. Hippocampus, 1994. 4(3): p. 297306. Houades, V., et al., Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci, 2008. 28(20): p. 5207-17. Wallraff, A., et al., Distinct types of astroglial cells in the hippocampus differ in gap junction coupling. Glia, 2004. 48(1): p. 36-43. Charles, A.C., Glia-neuron intercellular calcium signaling. Dev Neurosci, 1994. 16(3-4): p. 196206. Hulme, S.R., et al., Mechanisms of heterosynaptic metaplasticity. Philos Trans R Soc Lond B Biol Sci, 2014. 369(1633): p. 20130148. Sul, J.Y., et al., Astrocytic connectivity in the hippocampus. Neuron Glia Biol, 2004. 1(1): p. 311. Porter, J.T. and K.D. McCarthy, Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol, 1997. 51(4): p. 439-55. Petravicz, J., T.A. Fiacco, and K.D. McCarthy, Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. J Neurosci, 2008. 28(19): p. 4967-73. Agulhon, C., et al., What is the role of astrocyte calcium in neurophysiology? Neuron, 2008. 59(6): p. 932-46. Parpura, V., V. Grubisic, and A. Verkhratsky, Ca(2+) sources for the exocytotic release of glutamate from astrocytes. Biochim Biophys Acta, 2011. 1813(5): p. 984-91. Bezzi, P. and A. Volterra, A neuron-glia signalling network in the active brain. Curr Opin Neurobiol, 2001. 11(3): p. 387-94. Hassinger, T.D., et al., An extracellular signaling component in propagation of astrocytic calcium waves. Proc Natl Acad Sci U S A, 1996. 93(23): p. 13268-73. 3 References 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. Minelli, A., et al., Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat. Cell Calcium, 2007. 41(3): p. 221-34. Paluzzi, S., et al., Adult astroglia is competent for Na+/Ca2+ exchanger-operated exocytotic glutamate release triggered by mild depolarization. J Neurochem, 2007. 103(3): p. 1196-207. Malarkey, E.B., Y. Ni, and V. Parpura, Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia, 2008. 56(8): p. 821-35. Carmignoto, G., L. Pasti, and T. Pozzan, On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ. J Neurosci, 1998. 18(12): p. 4637-45. Henneberger, C., et al., Long-term potentiation depends on release of D-serine from astrocytes. Nature, 2010. 463(7278): p. 232-6. Jo, S., et al., GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nat Med, 2014. Le Meur, K., et al., GABA release by hippocampal astrocytes. Front Comput Neurosci, 2012. 6: p. 59. Gordon, G.R., et al., Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci, 2005. 8(8): p. 1078-86. Stellwagen, D. and R.C. Malenka, Synaptic scaling mediated by glial TNF-alpha. Nature, 2006. 440(7087): p. 1054-9. Choe, K.Y., J.E. Olson, and C.W. Bourque, Taurine release by astrocytes modulates osmosensitive glycine receptor tone and excitability in the adult supraoptic nucleus. J Neurosci, 2012. 32(36): p. 12518-27. Bezzi, P., et al., Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci, 2004. 7(6): p. 613-20. Crippa, D., et al., Synaptobrevin2-expressing vesicles in rat astrocytes: insights into molecular characterization, dynamics and exocytosis. J Physiol, 2006. 570(Pt 3): p. 567-82. Montana, V., et al., Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci, 2004. 24(11): p. 2633-42. Szatkowski, M., B. Barbour, and D. Attwell, Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature, 1990. 348(6300): p. 443-6. Kimelberg, H.K., et al., Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci, 1990. 10(5): p. 1583-91. Duan, S., et al., P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci, 2003. 23(4): p. 1320-8. Bender, A.S., W. Reichelt, and M.D. Norenberg, Characterization of cystine uptake in cultured astrocytes. Neurochem Int, 2000. 37(2-3): p. 269-76. Orellana, J.A. and J. Stehberg, Hemichannels: new roles in astroglial function. Front Physiol, 2014. 5: p. 193. Fiacco, T.A., et al., Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron, 2007. 54(4): p. 611-26. Agulhon, C., T.A. Fiacco, and K.D. McCarthy, Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science, 2010. 327(5970): p. 1250-4. Hamilton, N.B. and D. Attwell, Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci, 2010. 11(4): p. 227-38. Volterra, A., N. Liaudet, and I. Savtchouk, Astrocyte Ca(2)(+) signalling: an unexpected complexity. Nat Rev Neurosci, 2014. 15(5): p. 327-35. Piet, R., et al., Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci U S A, 2004. 101(7): p. 2151-5. Sykova, E., Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience, 2004. 129(4): p. 861-76. 4 References 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. Bernardinelli, Y., D. Muller, and I. Nikonenko, Astrocyte-synapse structural plasticity. Neural Plast, 2014. 2014: p. 232105. Zhang, J.M., et al., ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron, 2003. 40(5): p. 971-82. Pascual, O., et al., Astrocytic purinergic signaling coordinates synaptic networks. Science, 2005. 310(5745): p. 113-6. Deng, Q., et al., Astrocytic activation of A1 receptors regulates the surface expression of NMDA receptors through a Src kinase dependent pathway. Glia, 2011. 59(7): p. 1084-93. Jourdain, P., et al., Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci, 2007. 10(3): p. 331-9. Liu, Q.S., et al., Astrocyte-mediated activation of neuronal kainate receptors. Proc Natl Acad Sci U S A, 2004. 101(9): p. 3172-7. Fellin, T., et al., Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron, 2004. 43(5): p. 729-43. Beattie, E.C., et al., Control of synaptic strength by glial TNFalpha. Science, 2002. 295(5563): p. 2282-5. Perea, G. and A. Araque, Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci, 2005. 25(9): p. 2192-203. Perea, G. and A. Araque, Synaptic information processing by astrocytes. J Physiol Paris, 2006. 99(2-3): p. 92-7. Panatier, A. and S.H. Oliet, Neuron-glia interactions in the hypothalamus. Neuron Glia Biol, 2006. 2(1): p. 51-8. Oliet, S.H., R. Piet, and D.A. Poulain, Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science, 2001. 292(5518): p. 923-6. Panatier, A., et al., Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell, 2006. 125(4): p. 775-84. Oliet, S.H. and V.D. Bonfardin, Morphological plasticity of the rat supraoptic nucleus--cellular consequences. Eur J Neurosci, 2010. 32(12): p. 1989-94. Haider, B. and D.A. McCormick, Rapid neocortical dynamics: cellular and network mechanisms. Neuron, 2009. 62(2): p. 171-89. Hahn, T.T., B. Sakmann, and M.R. Mehta, Phase-locking of hippocampal interneurons' membrane potential to neocortical up-down states. Nat Neurosci, 2006. 9(11): p. 1359-61. Cossart, R., D. Aronov, and R. Yuste, Attractor dynamics of network UP states in the neocortex. Nature, 2003. 423(6937): p. 283-8. Poskanzer, K.E. and R. Yuste, Astrocytic regulation of cortical UP states. Proc Natl Acad Sci U S A, 2011. 108(45): p. 18453-8. Fossat, P., et al., Glial D-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cereb Cortex, 2012. 22(3): p. 595-606. Takata, N., et al., Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci, 2011. 31(49): p. 18155-65. Grosche, J., et al., Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci, 1999. 2(2): p. 139-43. Takatsuru, Y., et al., Contribution of glutamate transporter GLT-1 to removal of synaptically released glutamate at climbing fiber-Purkinje cell synapses. Neurosci Lett, 2007. 420(1): p. 85-9. Iino, M., et al., Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science, 2001. 292(5518): p. 926-9. Saab, A.S., et al., Bergmann glial AMPA receptors are required for fine motor coordination. Science, 2012. 337(6095): p. 749-53. Kakegawa, W., et al., D-serine regulates cerebellar LTD and motor coordination through the delta2 glutamate receptor. Nat Neurosci, 2011. 14(5): p. 603-11. 5 References 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. Pfrieger, F.W. and B.A. Barres, Synaptic efficacy enhanced by glial cells in vitro. Science, 1997. 277(5332): p. 1684-7. Christopherson, K.S., et al., Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell, 2005. 120(3): p. 421-33. Kucukdereli, H., et al., Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc Natl Acad Sci U S A, 2011. 108(32): p. E440-9. Xu-Friedman, M.A., K.M. Harris, and W.G. Regehr, Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J Neurosci, 2001. 21(17): p. 6666-72. Xu-Friedman, M.A. and W.G. Regehr, Ultrastructural contributions to desensitization at cerebellar mossy fiber to granule cell synapses. J Neurosci, 2003. 23(6): p. 2182-92. Ventura, R. and K.M. Harris, Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci, 1999. 19(16): p. 6897-906. Haber, M., L. Zhou, and K.K. Murai, Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci, 2006. 26(35): p. 8881-91. Hirrlinger, J., S. Hulsmann, and F. Kirchhoff, Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci, 2004. 20(8): p. 2235-9. Lehre, K.P. and D.A. Rusakov, Asymmetry of glia near central synapses favors presynaptically directed glutamate escape. Biophys J, 2002. 83(1): p. 125-34. Lushnikova, I., et al., Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus. Hippocampus, 2009. 19(8): p. 753-62. Pannasch, U., et al., Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci, 2014. 17(4): p. 549-58. Becquet, D., et al., Ultrastructural plasticity in the rat suprachiasmatic nucleus. Possible involvement in clock entrainment. Glia, 2008. 56(3): p. 294-305. Jones, T.A. and W.T. Greenough, Ultrastructural evidence for increased contact between astrocytes and synapses in rats reared in a complex environment. Neurobiol Learn Mem, 1996. 65(1): p. 48-56. Genoud, C., et al., Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol, 2006. 4(11): p. e343. Nishida, H. and S. Okabe, Direct astrocytic contacts regulate local maturation of dendritic spines. J Neurosci, 2007. 27(2): p. 331-40. Hama, H., et al., PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron, 2004. 41(3): p. 405-15. Molotkov, D., et al., Calcium-induced outgrowth of astrocytic peripheral processes requires actin binding by Profilin-1. Cell Calcium, 2013. 53(5-6): p. 338-48. Derouiche, A. and M. Frotscher, Peripheral astrocyte processes: monitoring by selective immunostaining for the actin-binding ERM proteins. Glia, 2001. 36(3): p. 330-41. Lavialle, M., et al., Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors. Proc Natl Acad Sci U S A, 2011. 108(31): p. 12915-9. Lee, A., et al., Na+-H+ exchanger regulatory factor 1 is a PDZ scaffold for the astroglial glutamate transporter GLAST. Glia, 2007. 55(2): p. 119-29. Haj-Yasein, N.N., et al., Aquaporin-4 regulates extracellular space volume dynamics during high-frequency synaptic stimulation: a gene deletion study in mouse hippocampus. Glia, 2012. 60(6): p. 867-74. Scharfman, H.E. and D.K. Binder, Aquaporin-4 water channels and synaptic plasticity in the hippocampus. Neurochem Int, 2013. 63(7): p. 702-11. Moseley, A.E., et al., Deficiency in Na,K-ATPase alpha isoform genes alters spatial learning, motor activity, and anxiety in mice. J Neurosci, 2007. 27(3): p. 616-26. 6 References 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153. 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. Djukic, B., et al., Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci, 2007. 27(42): p. 11354-65. Walz, W., Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int, 2000. 36(4-5): p. 291-300. Jirsova, K., et al., Cold jet: a method to obtain pure Schwann cell cultures without the need for cytotoxic, apoptosis-inducing drug treatment. J Neurosci Methods, 1997. 78(1-2): p. 1337. Eroglu, C. and B.A. Barres, Regulation of synaptic connectivity by glia. Nature, 2010. 468(7321): p. 223-31. Giaume, C., et al., Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci, 2010. 11(2): p. 87-99. Jarjour, A.A., et al., In vitro modeling of central nervous system myelination and remyelination. Glia, 2012. 60(1): p. 1-12. Thomson, C.E., et al., Myelinated, synapsing cultures of murine spinal cord--validation as an in vitro model of the central nervous system. Eur J Neurosci, 2008. 28(8): p. 1518-35. Camargo, N., A.B. Smit, and M.H. Verheijen, SREBPs: SREBP function in glia-neuron interactions. Febs J, 2009. 276(3): p. 628-36. Goritz, C., D.H. Mauch, and F.W. Pfrieger, Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol Cell Neurosci, 2005. 29(2): p. 190-201. Medina, J.M. and A. Tabernero, Astrocyte-synthesized oleic acid behaves as a neurotrophic factor for neurons. J Physiol Paris, 2002. 96(3-4): p. 265-71. Mauch, D.H., et al., CNS synaptogenesis promoted by glia-derived cholesterol. Science, 2001. 294(5545): p. 1354-7. Verheijen, M.H., et al., SCAP is required for timely and proper myelin membrane synthesis. Proc Natl Acad Sci U S A, 2009. 106(50): p. 21383-8. Mendez, J.A., et al., Glutamate regulates Oct-2 DNA-binding activity through alpha-amino-3hydroxy-5-methylisoxazole-4-propionate receptors in cultured chick Bergmann glia cells. J Neurochem, 2004. 88(4): p. 835-43. Lovatt, D., et al., The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci, 2007. 27(45): p. 12255-66. Foo, L.C., Purification of rat and mouse astrocytes by immunopanning. Cold Spring Harb Protoc, 2013. 2013(5): p. 421-32. Wierda, K.D., et al., Interdependence of PKC-dependent and PKC-independent pathways for presynaptic plasticity. Neuron, 2007. 54(2): p. 275-90. Camargo, N., et al., High-fat diet ameliorates neurological deficits caused by defective astrocyte lipid metabolism. Faseb J, 2012. 26(10): p. 4302-15. Futschik, M.E. and T. Crompton, OLIN: optimized normalization, visualization and quality testing of two-channel microarray data. Bioinformatics, 2005. 21(8): p. 1724-6. Alexa, A., J. Rahnenfuhrer, and T. Lengauer, Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics, 2006. 22(13): p. 16007. Basarsky, T.A., V. Parpura, and P.G. Haydon, Hippocampal synaptogenesis in cell culture: developmental time course of synapse formation, calcium influx, and synaptic protein distribution. J Neurosci, 1994. 14(11 Pt 1): p. 6402-11. Pfrieger, F.W. and N. Ungerer, Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res, 2011. 50(4): p. 357-71. Tournell, C.E., R.A. Bergstrom, and A. Ferreira, Progesterone-induced agrin expression in astrocytes modulates glia-neuron interactions leading to synapse formation. Neuroscience, 2006. 141(3): p. 1327-38. 7 References 165. 166. 167. 168. 169. 170. 171. 172. 173. 174. 175. 176. 177. 178. 179. 180. 181. 182. 183. 184. 185. 186. Stevens, B., et al., The classical complement cascade mediates CNS synapse elimination. Cell, 2007. 131(6): p. 1164-78. Acarin, L., B. Gonzalez, and B. Castellano, Glial activation in the immature rat brain: implication of inflammatory transcription factors and cytokine expression. Prog Brain Res, 2001. 132: p. 375-89. Halassa, M.M. and P.G. Haydon, Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol, 2010. 72: p. 335-55. Fan, Q.W., et al., Cholesterol-dependent modulation of dendrite outgrowth and microtubule stability in cultured neurons. J Neurochem, 2002. 80(1): p. 178-90. Hayashi, H., et al., Glial lipoproteins stimulate axon growth of central nervous system neurons in compartmented cultures. J Biol Chem, 2004. 279(14): p. 14009-15. Engelking, L.J., et al., Schoenheimer effect explained--feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. J Clin Invest, 2005. 115(9): p. 2489-98. Mulligan, S.J. and B.A. MacVicar, Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature, 2004. 431(7005): p. 195-9. Bergles, D.E. and C.E. Jahr, Glial contribution to glutamate uptake at Schaffer collateralcommissural synapses in the hippocampus. J Neurosci, 1998. 18(19): p. 7709-16. Araque, A. and M. Navarrete, Glial cells in neuronal network function. Philos Trans R Soc Lond B Biol Sci, 2010. 365(1551): p. 2375-81. Chen, J., et al., Heterosynaptic long-term depression mediated by ATP released from astrocytes. Glia, 2013. 61(2): p. 178-91. Chaudhry, F.A., et al., Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron, 1995. 15(3): p. 711-20. Cao, X., et al., Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med, 2013. 19(6): p. 773-7. Halassa, M.M., et al., Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron, 2009. 61(2): p. 213-9. Schubert, V., D. Bouvier, and A. Volterra, SNARE protein expression in synaptic terminals and astrocytes in the adult hippocampus: a comparative analysis. Glia, 2011. 59(10): p. 1472-88. Li, K.W., et al., Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. J Biol Chem, 2004. 279(2): p. 987-1002. Weingarten, J., et al., The proteome of the presynaptic active zone from mouse brain. Mol Cell Neurosci, 2014. 59: p. 106-18. Rao-Ruiz, P., et al., Retrieval-specific endocytosis of GluA2-AMPARs underlies adaptive reconsolidation of contextual fear. Nat Neurosci, 2011. 14(10): p. 1302-8. Van den Oever, M.C., et al., A proteomics approach to identify long-term molecular changes in rat medial prefrontal cortex resulting from sucrose self-administration. J Proteome Res, 2006. 5(1): p. 147-54. Vegh, M.J., et al., Synaptic proteome changes in a DNA repair deficient ercc1 mouse model of accelerated aging. J Proteome Res, 2012. 11(3): p. 1855-67. Stigliani, S., et al., Glia re-sealed particles freshly prepared from adult rat brain are competent for exocytotic release of glutamate. J Neurochem, 2006. 96(3): p. 656-68. Milanese, M., et al., In vitro activation of GAT1 transporters expressed in spinal cord gliosomes stimulates glutamate release that is abnormally elevated in the SOD1/G93A(+) mouse model of amyotrophic lateral sclerosis. J Neurochem, 2010. 113(2): p. 489-501. Pedrazzi, M., et al., Stimulation of excitatory amino acid release from adult mouse brain glia subcellular particles by high mobility group box 1 protein. J Neurochem, 2006. 99(3): p. 82738. 8 References 187. 188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 198. 199. 200. 201. 202. 203. 204. 205. 206. 207. 208. Raiteri, L., et al., Mechanisms of glutamate release elicited in rat cerebrocortical nerve endings by 'pathologically' elevated extraterminal K+ concentrations. J Neurochem, 2007. 103(3): p. 952-61. Dosemeci, A., et al., Composition of the synaptic PSD-95 complex. Mol Cell Proteomics, 2007. 6(10): p. 1749-60. Milanese, M., et al., Glutamate release from astrocytic gliosomes under physiological and pathological conditions. Int Rev Neurobiol, 2009. 85: p. 295-318. Kaech, S., et al., Isoform specificity in the relationship of actin to dendritic spines. J Neurosci, 1997. 17(24): p. 9565-72. Goudriaan, A., et al., Specific Glial Functions Contribute to Schizophrenia Susceptibility. Schizophr Bull, 2013. Goudriaan, A., et al., Novel cell separation method for molecular analysis of neuron-astrocyte co-cultures. Front Cell Neurosci, 2014. 8: p. 12. Orre, M., et al., Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiol Aging, 2014. 35(1): p. 1-14. Jungblut, M., et al., Isolation and characterization of living primary astroglial cells using the new GLAST-specific monoclonal antibody ACSA-1. Glia, 2012. 60(6): p. 894-907. Heller, M., et al., The immunoglobulin-superfamily molecule basigin is a binding protein for oligomannosidic carbohydrates: an anti-idiotypic approach. J Neurochem, 2003. 84(3): p. 557-65. Ruano, D., et al., Functional gene group analysis reveals a role of synaptic heterotrimeric G proteins in cognitive ability. Am J Hum Genet, 2010. 86(2): p. 113-25. Chicurel, M.E., D.M. Terrian, and H. Potter, mRNA at the synapse: analysis of a synaptosomal preparation enriched in hippocampal dendritic spines. J Neurosci, 1993. 13(9): p. 4054-63. Shavit, E., D.M. Michaelson, and J. Chapman, Anatomical localization of protease-activated receptor-1 and protease-mediated neuroglial crosstalk on peri-synaptic astrocytic endfeet. J Neurochem, 2011. 119(3): p. 460-73. Li, K.W., et al., Identifying true protein complex constituents in interaction proteomics: the example of the DMXL2 protein complex. Proteomics, 2012. 12(15-16): p. 2428-32. Ma, B., et al., PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom, 2003. 17(20): p. 2337-42. Cox, J. and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol, 2008. 26(12): p. 1367-72. Benjamini, Y. and Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological), 1995. 57(1): p. 289-300. Ward, J., Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 1963. 58(301): p. 236-244. Vizcaino, J.A., et al., ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol, 2014. 32(3): p. 223-6. Leng, G., C. Caquineau, and N. Sabatier, Regulation of oxytocin secretion. Vitam Horm, 2005. 71: p. 27-58. Bourque, C.W., S.H. Oliet, and D. Richard, Osmoreceptors, osmoreception, and osmoregulation. Front Neuroendocrinol, 1994. 15(3): p. 231-74. Brimble, M.J. and R.E. Dyball, Characterization of the responses of oxytocin- and vasopressinsecreting neurones in the supraoptic nucleus to osmotic stimulation. J Physiol, 1977. 271(1): p. 253-71. Brown, C.H., et al., Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol, 2013. 25(8): p. 678-710. 9 References 209. 210. 211. 212. 213. 214. 215. 216. 217. 218. 219. 220. 221. 222. 223. 224. 225. 226. 227. 228. 229. Brownstein, M.J., J.T. Russell, and H. Gainer, Synthesis, transport, and release of posterior pituitary hormones. Science, 1980. 207(4429): p. 373-8. Hatton, G.I., Dynamic neuronal-glial interactions: an overview 20 years later. Peptides, 2004. 25(3): p. 403-11. Theodosis, D.T., Oxytocin-secreting neurons: A physiological model of morphological neuronal and glial plasticity in the adult hypothalamus. Front Neuroendocrinol, 2002. 23(1): p. 101-35. Theodosis, D.T. and D.A. Poulain, Evidence for structural plasticity in the supraoptic nucleus of the rat hypothalamus in relation to gestation and lactation. Neuroscience, 1984. 11(1): p. 183-93. Montagnese, C.M., et al., Structural plasticity in the rat supraoptic nucleus during gestation, post-partum lactation and suckling-induced pseudogestation and lactation. J Endocrinol, 1987. 115(1): p. 97-105. Tweedle, C.D. and G.I. Hatton, Ultrastructural changes in rat hypothalamic neurosecretory cells and their associated glia during minimal dehydration and rehydration. Cell Tissue Res, 1977. 181(1): p. 59-72. Jourdain, P., et al., Evidence for a hypothalamic oxytocin-sensitive pattern-generating network governing oxytocin neurons in vitro. J Neurosci, 1998. 18(17): p. 6641-9. Oliet, S.H., Functional consequences of morphological neuroglial changes in the magnocellular nuclei of the hypothalamus. J Neuroendocrinol, 2002. 14(3): p. 241-6. Theodosis, D.T., et al., Cell surface expression of polysialic acid on NCAM is a prerequisite for activity-dependent morphological neuronal and glial plasticity. J Neurosci, 1999. 19(23): p. 10228-36. Stewart, L., et al., Hypothalamic transcriptome plasticity in two rodent species reveals divergent differential gene expression but conserved pathways. J Neuroendocrinol, 2011. 23(2): p. 177-85. Hindmarch, C., et al., A comprehensive description of the transcriptome of the hypothalamoneurohypophyseal system in euhydrated and dehydrated rats. Proc Natl Acad Sci U S A, 2006. 103(5): p. 1609-14. Qiu, J., et al., Transcription factor expression in the hypothalamo-neurohypophyseal system of the dehydrated rat: upregulation of gonadotrophin inducible transcription factor 1 mRNA is mediated by cAMP-dependent protein kinase A. J Neurosci, 2007. 27(9): p. 2196-203. Gouraud, S.S., et al., Dehydration-induced proteome changes in the rat hypothalamoneurohypophyseal system. Endocrinology, 2007. 148(7): p. 3041-52. Hindmarch, C., et al., The transcriptome of the rat hypothalamic-neurohypophyseal system is highly strain-dependent. J Neuroendocrinol, 2007. 19(12): p. 1009-12. Abramova, M.A., et al., The responses of vasopressin- and tyrosine hydroxylase-expressing neurons of the supraoptic nucleus in rats to chronic osmotic stimulation. Neurosci Behav Physiol, 2000. 30(6): p. 617-24. Flugge, G., et al., NDRG2 as a marker protein for brain astrocytes. Cell Tissue Res, 2014. Ma, Y.L., et al., Estrogen regulates the expression of Ndrg2 in astrocytes. Brain Res, 2014. 1569: p. 1-8. Yoshinaga, K., R.A. Hawkins, and J.F. Stocker, Estrogen secretion by the rat ovary in vivo during the estrous cycle and pregnancy. Endocrinology, 1969. 85(1): p. 103-12. Battin, D.A., et al., Effect of suckling on serum prolactin, luteinizing hormone, folliclestimulating hormone, and estradiol during prolonged lactation. Obstet Gynecol, 1985. 65(6): p. 785-8. Takeichi, T., et al., The effect of Ndrg2 expression on astroglial activation. Neurochem Int, 2011. 59(1): p. 21-7. Salm, A.K., Mechanisms of glial retraction in the hypothalamo-neurohypophysial system of the rat. Exp Physiol, 2000. 85 Spec No: p. 197S-202S. 10 References 230. 231. 232. 233. 234. 235. 236. 237. 238. 239. 240. 241. 242. 243. Abramova, M., et al., Dynamical study of tyrosine hydroxylase expression and its correlation with vasopressin turnover in the magnocellular neurons of the supraoptico-posthypophysial system under long-term salt loading of adult rats. Brain Res, 2002. 925(1): p. 67-75. Wang, Y.F. and K. Hamilton, Chronic vs. acute interactions between supraoptic oxytocin neurons and astrocytes during lactation: role of glial fibrillary acidic protein plasticity. ScientificWorldJournal, 2009. 9: p. 1308-20. Wang, Y.F. and G.I. Hatton, Astrocytic plasticity and patterned oxytocin neuronal activity: dynamic interactions. J Neurosci, 2009. 29(6): p. 1743-54. Wang, Y.F., et al., Hyposmolality differentially and spatiotemporally modulates levels of glutamine synthetase and serine racemase in rat supraoptic nucleus. Glia, 2013. 61(4): p. 529-38. Elgot, A., O. El Hiba, and H. Gamrani, Structural and neurochemical plasticity in both supraoptic and paraventricular nuclei of hypothalamus of a desert rodent Meriones shawi after a severe dehydration versus opposite treatment by rehydration: GFAP and vasopressin immunohistochemical study. Neurosci Lett, 2012. 515(1): p. 55-60. Carlson, S.H., A. Beitz, and J.W. Osborn, Intragastric hypertonic saline increases vasopressin and central Fos immunoreactivity in conscious rats. Am J Physiol, 1997. 272(3 Pt 2): p. R7508. Langle, S.L., D.A. Poulain, and D.T. Theodosis, Induction of rapid, activity-dependent neuronal-glial remodelling in the adult rat hypothalamus in vitro. Eur J Neurosci, 2003. 18(1): p. 206-14. Bora, A., et al., Neuropeptidomics of the supraoptic rat nucleus. J Proteome Res, 2008. 7(11): p. 4992-5003. Cahoy, J.D., et al., A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci, 2008. 28(1): p. 264-78. Hemmings, H.C., Jr., et al., The general anesthetic isoflurane depresses synaptic vesicle exocytosis. Mol Pharmacol, 2005. 67(5): p. 1591-9. Tusher, V.G., R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A, 2001. 98(9): p. 5116-21. Goosens, K.A., Hippocampal regulation of aversive memories. Curr Opin Neurobiol, 2011. 21(3): p. 460-6. Fanselow, M.S., Contextual fear, gestalt memories, and the hippocampus. Behav Brain Res, 2000. 110(1-2): p. 73-81. Fanselow, M.S., Associative vs topographical accounts of the immediate shock-freezing deficit in rats: Implications for the response selection rules governing species-specific defensive reactions. Learning and Motivation, 1986. 17(1): p. 16-39. 244. 245. 246. 247. 248. 249. Lattal, K.M. and T. Abel, An immediate-shock freezing deficit with discrete cues: a possible role for unconditioned stimulus processing mechanisms. J Exp Psychol Anim Behav Process, 2001. 27(4): p. 394-406. Frankland, P.W., et al., Consolidation of CS and US representations in associative fear conditioning. Hippocampus, 2004. 14(5): p. 557-69. Davis, H.P. and L.R. Squire, Protein synthesis and memory: a review. Psychol Bull, 1984. 96(3): p. 518-59. Hernandez, P.J. and T. Abel, The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiol Learn Mem, 2008. 89(3): p. 293-311. McGaugh, J.L., Memory--a century of consolidation. Science, 2000. 287(5451): p. 248-51. Morgado-Bernal, I., Learning and memory consolidation: linking molecular and behavioral data. Neuroscience, 2011. 176: p. 12-9. 11 References 250. 251. 252. 253. 254. 255. 256. 257. 258. 259. 260. 261. 262. 263. 264. 265. 266. 267. 268. 269. 270. 271. 272. 273. Freeman, F.M., S.P. Rose, and A.B. Scholey, Two time windows of anisomycin-induced amnesia for passive avoidance training in the day-old chick. Neurobiol Learn Mem, 1995. 63(3): p. 291-5. Quevedo, J., et al., Two time windows of anisomycin-induced amnesia for inhibitory avoidance training in rats: protection from amnesia by pretraining but not pre-exposure to the task apparatus. Learn Mem, 1999. 6(6): p. 600-7. Bourtchouladze, R., et al., Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA. Learn Mem, 1998. 5(4-5): p. 365-74. Matsuo, N., L. Reijmers, and M. Mayford, Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science, 2008. 319(5866): p. 1104-7. Abel, T. and K.M. Lattal, Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol, 2001. 11(2): p. 180-7. Sutton, M.A. and E.M. Schuman, Dendritic protein synthesis, synaptic plasticity, and memory. Cell, 2006. 127(1): p. 49-58. Kandel, E.R., The molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep, 2001. 21(5): p. 565-611. Cajigas, I.J., T. Will, and E.M. Schuman, Protein homeostasis and synaptic plasticity. EMBO J, 2010. 29(16): p. 2746-52. Hoeffer, C.A. and E. Klann, mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci, 2010. 33(2): p. 67-75. Landeira-Fernandez, J., et al., Immediate shock deficit in fear conditioning: effects of shock manipulations. Behav Neurosci, 2006. 120(4): p. 873-9. Liu, X., et al., Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 2012. 484(7394): p. 381-5. Hulme, S.R., O.D. Jones, and W.C. Abraham, Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci, 2013. Whitlock, J.R., et al., Learning induces long-term potentiation in the hippocampus. Science, 2006. 313(5790): p. 1093-7. Cui, Z., et al., Increased NR2A:NR2B ratio compresses long-term depression range and constrains long-term memory. Sci Rep, 2013. 3: p. 1036. Biesemann, C., et al., Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO J, 2014. 33(2): p. 157-70. Halassa, M.M., et al., Synaptic islands defined by the territory of a single astrocyte. J Neurosci, 2007. 27(24): p. 6473-7. Caroni, P., F. Donato, and D. Muller, Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci, 2012. 13(7): p. 478-90. Huang, C.C., C.H. Yang, and K.S. Hsu, Do stress and long-term potentiation share the same molecular mechanisms? Mol Neurobiol, 2005. 32(3): p. 223-35. Howland, J.G. and Y.T. Wang, Synaptic plasticity in learning and memory: stress effects in the hippocampus. Prog Brain Res, 2008. 169: p. 145-58. Kim, J.J. and K.S. Yoon, Stress: metaplastic effects in the hippocampus. Trends Neurosci, 1998. 21(12): p. 505-9. Shors, T.J., et al., Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus. Science, 1989. 244(4901): p. 224-6. Perez-Otano, I., et al., Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1. Nat Neurosci, 2006. 9(5): p. 611-21. Modregger, J., et al., All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J Cell Sci, 2000. 113 Pt 24: p. 4511-21. Koch, D., et al., Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I. EMBO J, 2011. 30(24): p. 4955-69. 12 References 274. 275. 276. 277. 278. 279. 280. 281. 282. 283. 284. 285. 286. 287. 288. 289. 290. 291. 292. 293. 294. 295. 296. 297. Andersson, F., et al., Perturbation of syndapin/PACSIN impairs synaptic vesicle recycling evoked by intense stimulation. J Neurosci, 2008. 28(15): p. 3925-33. Van den Oever, M.C., et al., Prefrontal cortex AMPA receptor plasticity is crucial for cueinduced relapse to heroin-seeking. Nat Neurosci, 2008. 11(9): p. 1053-8. Meyer-Arendt, K., et al., IsoformResolver: A peptide-centric algorithm for protein inference. J Proteome Res, 2011. 10(7): p. 3060-75. Reiter, L., et al., Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol Cell Proteomics, 2009. 8(11): p. 2405-17. Karp, N.A., et al., Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics, 2010. 9(9): p. 1885-97. Lips, E.S., et al., Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Mol Psychiatry, 2011. Counotte, D.S., et al., Changes in molecular composition of rat medial prefrontal cortex synapses during adolescent development. Eur J Neurosci, 2010. 32(9): p. 1452-60. Curzon, P., N.R. Rustay, and K.E. Browman, Cued and Contextual Fear Conditioning for Rodents, in Methods of Behavior Analysis in Neuroscience, J.J. Buccafusco, Editor. 2009: Boca Raton (FL). Blitzer, R.D., et al., Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron, 1995. 15(6): p. 1403-14. Malinow, R., H. Schulman, and R.W. Tsien, Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science, 1989. 245(4920): p. 862-6. Bourtchuladze, R., et al., Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 1994. 79(1): p. 59-68. Lee, H.K., et al., Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature, 2000. 405(6789): p. 955-9. Barco, A., C.H. Bailey, and E.R. Kandel, Common molecular mechanisms in explicit and implicit memory. J Neurochem, 2006. 97(6): p. 1520-33. Rodriguez, J.J., et al., Long-term potentiation in the rat dentate gyrus is associated with enhanced Arc/Arg3.1 protein expression in spines, dendrites and glia. Eur J Neurosci, 2005. 21(9): p. 2384-96. Rodriguez, J.J., et al., ARG3.1/ARC expression in hippocampal dentate gyrus astrocytes: ultrastructural evidence and co-localization with glial fibrillary acidic protein. J Cell Mol Med, 2008. 12(2): p. 671-8. Nagerl, U.V., et al., Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron, 2004. 44(5): p. 759-67. Ostroff, L.E., et al., Fear and safety learning differentially affect synapse size and dendritic translation in the lateral amygdala. Proc Natl Acad Sci U S A, 2010. 107(20): p. 9418-23. Malinow, R. and R.C. Malenka, AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci, 2002. 25: p. 103-26. Rumpel, S., et al., Postsynaptic receptor trafficking underlying a form of associative learning. Science, 2005. 308(5718): p. 83-8. Hayashi, Y., et al., Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science, 2000. 287(5461): p. 2262-7. Plant, K., et al., Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci, 2006. 9(5): p. 602-4. Shi, S.H., et al., Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science, 1999. 284(5421): p. 1811-6. Nayak, A., et al., Maintenance of late-phase LTP is accompanied by PKA-dependent increase in AMPA receptor synthesis. Nature, 1998. 394(6694): p. 680-3. Igaz, L.M., et al., Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning. J Neurosci, 2002. 22(15): p. 6781-9. 13 References 298. 299. 300. 301. 302. 303. 304. 305. 306. 307. 308. 309. 310. 311. 312. 313. 314. 315. 316. 317. 318. 319. Shadmehr, R. and H.H. Holcomb, Neural correlates of motor memory consolidation. Science, 1997. 277(5327): p. 821-5. Bontempi, B., et al., Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature, 1999. 400(6745): p. 671-5. Anagnostaras, S.G., S. Maren, and M.S. Fanselow, Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J Neurosci, 1999. 19(3): p. 1106-14. Frankland, P.W. and B. Bontempi, The organization of recent and remote memories. Nat Rev Neurosci, 2005. 6(2): p. 119-30. Goshen, I., et al., Dynamics of retrieval strategies for remote memories. Cell, 2011. 147(3): p. 678-89. Ding, H.K., C.M. Teixeira, and P.W. Frankland, Inactivation of the anterior cingulate cortex blocks expression of remote, but not recent, conditioned taste aversion memory. Learn Mem, 2008. 15(5): p. 290-3. Wiltgen, B.J., et al., New circuits for old memories: the role of the neocortex in consolidation. Neuron, 2004. 44(1): p. 101-8. Tetzlaff, C., et al., Synaptic scaling enables dynamically distinct short- and long-term memory formation. PLoS Comput Biol, 2013. 9(10): p. e1003307. Wang, G., J. Gilbert, and H.Y. Man, AMPA receptor trafficking in homeostatic synaptic plasticity: functional molecules and signaling cascades. Neural Plast, 2012. 2012: p. 825364. McGaugh, J.L. and B. Roozendaal, Drug enhancement of memory consolidation: historical perspective and neurobiological implications. Psychopharmacology (Berl), 2009. 202(1-3): p. 3-14. Izquierdo, I., et al., Mechanisms for memory types differ. Nature, 1998. 393(6686): p. 635-6. Suzuki, A., et al., Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci, 2004. 24(20): p. 4787-95. Gold, P.E. and R.B. Van Buskirk, Facilitation of time-dependent memory processes with posttrial epinephrine injections. Behav Biol, 1975. 13(2): p. 145-53. Roozendaal, B., 1999 Curt P. Richter award. Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology, 2000. 25(3): p. 213-38. Karni, A., et al., Dependence on REM sleep of overnight improvement of a perceptual skill. Science, 1994. 265(5172): p. 679-82. Ben Achour, S. and O. Pascual, Glia: the many ways to modulate synaptic plasticity. Neurochem Int, 2010. 57(4): p. 440-5. Skucas, V.A., et al., Impairment of select forms of spatial memory and neurotrophindependent synaptic plasticity by deletion of glial aquaporin-4. J Neurosci, 2011. 31(17): p. 6392-7. Li, Y.K., et al., Aquaporin-4 deficiency impairs synaptic plasticity and associative fear memory in the lateral amygdala: involvement of downregulation of glutamate transporter-1 expression. Neuropsychopharmacology, 2012. 37(8): p. 1867-78. Ben Menachem-Zidon, O., et al., Astrocytes support hippocampal-dependent memory and long-term potentiation via interleukin-1 signaling. Brain Behav Immun, 2011. 25(5): p. 100816. Nishiyama, H., et al., Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci U S A, 2002. 99(6): p. 4037-42. Galvan, V.V. and N.M. Weinberger, Long-term consolidation and retention of learninginduced tuning plasticity in the auditory cortex of the guinea pig. Neurobiol Learn Mem, 2002. 77(1): p. 78-108. Ridder, M.C., et al., Megalencephalic leucoencephalopathy with cysts: defect in chloride currents and cell volume regulation. Brain, 2011. 134(Pt 11): p. 3342-54. 14 References 320. 321. 322. 323. 324. 325. 326. 327. 328. 329. 330. 331. 332. 333. 334. 335. 336. 337. 338. 339. 340. Rao-Ruiz, P.C., K.E. ; Pandya, N.J. ; van der Loo, R.J. ; Verheijen, M.H.G.; van Nierop, P. ; Smit, A.B.; Spijker, S., Time-dependent changes in the hippocampal synaptic membrane proteome after contextual fear conditioning. J Proteome Res, submmitted, 2014. Gupta-Agarwal, S., et al., G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J Neurosci, 2012. 32(16): p. 5440-53. Henninger, N., et al., Spatial learning induces predominant downregulation of cytosolic proteins in the rat hippocampus. Genes Brain Behav, 2007. 6(2): p. 128-40. Levenson, J.M., et al., A bioinformatics analysis of memory consolidation reveals involvement of the transcription factor c-rel. J Neurosci, 2004. 24(16): p. 3933-43. Luo, Y., et al., Identification of maze learning-associated genes in rat hippocampus by cDNA microarray. J Mol Neurosci, 2001. 17(3): p. 397-404. Mei, B., et al., Distinct gene expression profiles in hippocampus and amygdala after fear conditioning. Brain Res Bull, 2005. 67(1-2): p. 1-12. Monopoli, M.P., et al., Temporal proteomic profile of memory consolidation in the rat hippocampal dentate gyrus. Proteomics, 2011. 11(21): p. 4189-201. O'Sullivan, N.C., et al., Temporal change in gene expression in the rat dentate gyrus following passive avoidance learning. J Neurochem, 2007. 101(4): p. 1085-98. Patil, S.S., et al., Proteins linked to spatial memory formation of CD1 mice in the multiple Tmaze. Hippocampus, 2012. 22(5): p. 1075-86. Peleg, S., et al., Altered histone acetylation is associated with age-dependent memory impairment in mice. Science, 2010. 328(5979): p. 753-6. Sirri, A., et al., Temporal gene expression profile of the hippocampus following trace fear conditioning. Brain Res, 2010. 1308: p. 14-23. Fanselow, M., Associative vs topographical accounts of the immediate shock-freezing deficit in rats: Implications for the response selection rules governing species-specific defensive reactions. Learning and Motivation, 1985. 17(1): p. 16-39. Brindley, D.N., et al., Phosphatidate degradation: phosphatidate phosphatases (lipins) and lipid phosphate phosphatases. Biochim Biophys Acta, 2009. 1791(9): p. 956-61. Lopez-Juarez, A., et al., Expression of LPP3 in Bergmann glia is required for proper cerebellar sphingosine-1-phosphate metabolism/signaling and development. Glia, 2011. 59(4): p. 57789. Cholet, N., et al., Similar perisynaptic glial localization for the Na+,K+-ATPase alpha 2 subunit and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex. Cereb Cortex, 2002. 12(5): p. 515-25. Ikeda, K., et al., Degeneration of the amygdala/piriform cortex and enhanced fear/anxiety behaviors in sodium pump alpha2 subunit (Atp1a2)-deficient mice. J Neurosci, 2003. 23(11): p. 4667-76. Ludwin, S.K., J.C. Kosek, and L.F. Eng, The topographical distribution of S-100 and GFA proteins in the adult rat brain: an immunohistochemical study using horseradish peroxidaselabelled antibodies. J Comp Neurol, 1976. 165(2): p. 197-207. McCall, M.A., et al., Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci U S A, 1996. 93(13): p. 6361-6. Shibuki, K., et al., Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron, 1996. 16(3): p. 587-99. Beenhakker, M.P. and J.R. Huguenard, Astrocytes as gatekeepers of GABAB receptor function. J Neurosci, 2010. 30(45): p. 15262-76. Park, J.B., et al., Regulation of tonic GABA inhibitory function, presympathetic neuronal activity and sympathetic outflow from the paraventricular nucleus by astroglial GABA transporters. J Physiol, 2009. 587(Pt 19): p. 4645-60. 15 References 341. 342. 343. 344. 345. 346. 347. 348. 349. 350. 351. 352. 353. 354. 355. 356. 357. 358. 359. 360. 361. Wu, Z., et al., Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzhiemer's disease model. Nat Commun, 2014. 5: p. 4159. Kersante, F., et al., A functional role for both -aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus. J Physiol, 2013. 591(Pt 10): p. 2429-41. Janssen, U., et al., Human mitochondrial enoyl-CoA hydratase gene (ECHS1): structural organization and assignment to chromosome 10q26.2-q26.3. Genomics, 1997. 40(3): p. 4705. Yeh, C.S., et al., Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by Microarray-Bioinformatics analysis. Cancer Lett, 2006. 233(2): p. 297-308. Zhu, X.S., et al., Knockdown of ECHS1 protein expression inhibits hepatocellular carcinoma cell proliferation via suppression of Akt activity. Crit Rev Eukaryot Gene Expr, 2013. 23(3): p. 275-82. Anlauf, E. and A. Derouiche, Glutamine synthetase as an astrocytic marker: its cell type and vesicle localization. Front Endocrinol (Lausanne), 2013. 4: p. 144. Norenberg, M.D. and A. Martinez-Hernandez, Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res, 1979. 161(2): p. 303-10. Hertz, L., et al., Astrocytes: glutamate producers for neurons. J Neurosci Res, 1999. 57(4): p. 417-28. Gibbs, M.E., et al., Inhibition of glutamine synthetase activity prevents memory consolidation. Brain Res Cogn Brain Res, 1996. 4(1): p. 57-64. Kleene, R., et al., Prion protein regulates glutamate-dependent lactate transport of astrocytes. J Neurosci, 2007. 27(45): p. 12331-40. Maekawa, F., et al., Basal and stimulated lactate fluxes in primary cultures of astrocytes are differentially controlled by distinct proteins. J Neurochem, 2008. 107(3): p. 789-98. Naruhashi, K., et al., Abnormalities of sensory and memory functions in mice lacking Bsg gene. Biochem Biophys Res Commun, 1997. 236(3): p. 733-7. Rothstein, J.D., et al., Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron, 1996. 16(3): p. 675-86. Chen, Z., S.G. Kujawa, and W.F. Sewell, Functional roles of high-affinity glutamate transporters in cochlear afferent synaptic transmission in the mouse. J Neurophysiol, 2010. 103(5): p. 2581-6. Karlsson, R.M., et al., Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology, 2009. 34(6): p. 1578-89. Lehre, K.P., et al., Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci, 1995. 15(3 Pt 1): p. 1835-53. Boor, P.K., et al., MLC1: a novel protein in distal astroglial processes. J Neuropathol Exp Neurol, 2005. 64(5): p. 412-9. Lanciotti, A., et al., Megalencephalic leukoencephalopathy with subcortical cysts protein 1 functionally cooperates with the TRPV4 cation channel to activate the response of astrocytes to osmotic stress: dysregulation by pathological mutations. Hum Mol Genet, 2012. 21(10): p. 2166-80. Vegh, M.J., et al., Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease. Acta Neuropathol Commun, 2014. 2(1): p. 76. Deacon, R.M. and J.N. Rawlins, T-maze alternation in the rodent. Nat Protoc, 2006. 1(1): p. 712. Stiedl, O., et al., Impairment of conditioned contextual fear of C57BL/6J mice by intracerebral injections of the NMDA receptor antagonist APV. Behav Brain Res, 2000. 116(2): p. 157-68. 16 References 362. 363. 364. 365. 366. 367. 368. 369. 370. 371. 372. 373. 374. 375. 376. 377. 378. 379. 380. 381. 382. 383. 384. Daumas, S., et al., Encoding, consolidation, and retrieval of contextual memory: differential involvement of dorsal CA3 and CA1 hippocampal subregions. Learn Mem, 2005. 12(4): p. 375-82. Zelikowsky, M., S. Bissiere, and M.S. Fanselow, Contextual fear memories formed in the absence of the dorsal hippocampus decay across time. J Neurosci, 2012. 32(10): p. 3393-7. Moser, M.B., et al., Spatial learning with a minislab in the dorsal hippocampus. Proc Natl Acad Sci U S A, 1995. 92(21): p. 9697-701. Fanselow, M.S. and H.W. Dong, Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 2010. 65(1): p. 7-19. O'Brien, R.J., et al., Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron, 1998. 21(5): p. 1067-78. Turrigiano, G.G., et al., Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature, 1998. 391(6670): p. 892-6. Turrigiano, G.G., The self-tuning neuron: synaptic scaling of excitatory synapses. Cell, 2008. 135(3): p. 422-35. Ibata, K., Q. Sun, and G.G. Turrigiano, Rapid synaptic scaling induced by changes in postsynaptic firing. Neuron, 2008. 57(6): p. 819-26. Sutton, M.A., et al., Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell, 2006. 125(4): p. 785-99. Weinstein, D.E., M.L. Shelanski, and R.K. Liem, Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons. J Cell Biol, 1991. 112(6): p. 1205-13. Bohn, M.C., et al., Glial cells express both mineralocorticoid and glucocorticoid receptors. J Steroid Biochem Mol Biol, 1991. 40(1-3): p. 105-11. Middeldorp, J. and E.M. Hol, GFAP in health and disease. Prog Neurobiol, 2011. 93(3): p. 42143. Chatterjee, S. and S.K. Sikdar, Corticosterone treatment results in enhanced release of peptidergic vesicles in astrocytes via cytoskeletal rearrangements. Glia, 2013. 61(12): p. 2050-62. Ho, K.W., W.S. Lambert, and D.J. Calkins, Activation of the TRPV1 cation channel contributes to stress-induced astrocyte migration. Glia, 2014. Sacchetti, B., et al., Long-lasting hippocampal potentiation and contextual memory consolidation. Eur J Neurosci, 2001. 13(12): p. 2291-8. Fa, M., et al., Stress modulation of hippocampal activity - Spotlight on the dentate gyrus. Neurobiol Learn Mem, 2014. 112C: p. 53-60. Verkhratsky, A. and H. Kettenmann, Calcium signalling in glial cells. Trends Neurosci, 1996. 19(8): p. 346-52. Leegwater, P.A., et al., Mutations of MLC1 (KIAA0027), encoding a putative membrane protein, cause megalencephalic leukoencephalopathy with subcortical cysts. Am J Hum Genet, 2001. 68(4): p. 831-8. van der Knaap, M.S., et al., Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol, 1995. 37(3): p. 324-34. van der Knaap, M.S., I. Boor, and R. Estevez, Megalencephalic leukoencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain ion and water homoeostasis. Lancet Neurol, 2012. 11(11): p. 973-85. Hoegg-Beiler, M.B., et al., Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction. Nat Commun, 2014. 5: p. 3475. Macaulay, N. and T. Zeuthen, Glial K(+) clearance and cell swelling: key roles for cotransporters and pumps. Neurochem Res, 2012. 37(11): p. 2299-309. Pasantes-Morales, H. and A. Schousboe, Release of taurine from astrocytes during potassium-evoked swelling. Glia, 1989. 2(1): p. 45-50. 17 References 385. 386. 387. 388. 389. 390. 391. 392. 393. 394. 395. 396. 397. 398. 399. 400. 401. 402. 403. 404. 405. Frankenhaeuser, B. and A.L. Hodgkin, The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol, 1956. 131(2): p. 341-76. D'Ambrosio, R., D.S. Gordon, and H.R. Winn, Differential role of KIR channel and Na(+)/K(+)pump in the regulation of extracellular K(+) in rat hippocampus. J Neurophysiol, 2002. 87(1): p. 87-102. Ransom, C.B., B.R. Ransom, and H. Sontheimer, Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol, 2000. 522 Pt 3: p. 427-42. Haj-Yasein, N.N., et al., Evidence that compromised K+ spatial buffering contributes to the epileptogenic effect of mutations in the human Kir4.1 gene (KCNJ10). Glia, 2011. 59(11): p. 1635-42. Su, G., D.B. Kintner, and D. Sun, Contribution of Na(+)-K(+)-Cl(-) cotransporter to high[K(+)](o)- induced swelling and EAA release in astrocytes. Am J Physiol Cell Physiol, 2002. 282(5): p. C1136-46. Janigro, D., et al., Reduction of K+ uptake in glia prevents long-term depression maintenance and causes epileptiform activity. J Neurosci, 1997. 17(8): p. 2813-24. Scholl, U.I., et al., Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci U S A, 2009. 106(14): p. 5842-7. Tong, X., et al., Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. Nat Neurosci, 2014. 17(5): p. 694-703. Bataveljic, D., et al., Changes in the astrocytic aquaporin-4 and inwardly rectifying potassium channel expression in the brain of the amyotrophic lateral sclerosis SOD1(G93A) rat model. Glia, 2012. 60(12): p. 1991-2003. Dibaj, P., et al., Kir4.1 channels regulate swelling of astroglial processes in experimental spinal cord edema. J Neurochem, 2007. 103(6): p. 2620-8. MacVicar, B.A., et al., Intrinsic optical signals in the rat optic nerve: role for K(+) uptake via NKCC1 and swelling of astrocytes. Glia, 2002. 37(2): p. 114-23. Hamann, S., et al., Cotransport of water by the Na+-K+-2Cl(-) cotransporter NKCC1 in mammalian epithelial cells. J Physiol, 2010. 588(Pt 21): p. 4089-101. Mulligan, S.J. and B.A. MacVicar, VRACs CARVe a path for novel mechanisms of communication in the CNS. Sci STKE, 2006. 2006(357): p. pe42. Rosenberg, D., et al., Neuronal release of D-serine: a physiological pathway controlling extracellular D-serine concentration. FASEB J, 2010. 24(8): p. 2951-61. Haskew-Layton, R.E., et al., Two distinct modes of hypoosmotic medium-induced release of excitatory amino acids and taurine in the rat brain in vivo. PLoS One, 2008. 3(10): p. e3543. Dubey, M.e.a., Mice with Megalencephalic Leukoencephalopathy with Cysts: a developmental angle. Submitted. 2014. Misane, I., et al., GABA(A) receptor activation in the CA1 area of the dorsal hippocampus impairs consolidation of conditioned contextual fear in C57BL/6J mice. Behav Brain Res, 2013. 238: p. 160-9. Vegh, M.J., et al., Hippocampal extracellular matrix levels and stochasticity in synaptic protein expression increase with age and are associated with age-dependent cognitive decline. Mol Cell Proteomics, 2014. Murai, K.K., et al., Control of hippocampal dendritic spine morphology through ephrinA3/EphA4 signaling. Nat Neurosci, 2003. 6(2): p. 153-60. Whittaker, V.P., The morphology of fractions of rat forebrain synaptosomes separated on continuous sucrose density gradients. Biochem J, 1968. 106(2): p. 412-7. Panatier, A.O., S.H. ; Nagerl, U.V, Live imaging of the triparatite synapse using STED microscopy, in FENS. 2014: Milan, Italy. 18 References 406. 407. 408. 409. 410. 411. 412. 413. 414. 415. Araque, A.N., M. ; Covelo, A. ; Martin, E.D. ; Perez-Alvarez, A. Activity-dependent plasticity of astrocyte processes and dendritic spine interactions. in FENS. 2014. Milan, Italy. Andersson, M., F. Blomstrand, and E. Hanse, Astrocytes play a critical role in transient heterosynaptic depression in the rat hippocampal CA1 region. J Physiol, 2007. 585(Pt 3): p. 843-52. Albrecht, J., et al., Roles of glutamine in neurotransmission. Neuron Glia Biol, 2010. 6(4): p. 263-76. Suzuki, A., et al., Astrocyte-neuron lactate transport is required for long-term memory formation. Cell, 2011. 144(5): p. 810-23. Ros, J., et al., Metabolic activation pattern of distinct hippocampal subregions during spatial learning and memory retrieval. J Cereb Blood Flow Metab, 2006. 26(4): p. 468-77. Han, J., et al., Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell, 2012. 148(5): p. 1039-50. Kawamura, Y., et al., The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci, 2006. 26(11): p. 2991-3001. Navarrete, M. and A. Araque, Endocannabinoids mediate neuron-astrocyte communication. Neuron, 2008. 57(6): p. 883-93. Sossin, W.S., T.C. Sacktor, and J.H. Schwartz, Persistent activation of protein kinase C during the development of long-term facilitation in Aplysia. Learn Mem, 1994. 1(3): p. 189-202. Foran, E., et al., Sumoylation of the astroglial glutamate transporter EAAT2 governs its intracellular compartmentalization. Glia, 2014. 62(8): p. 1241-53. 19 References 20
© Copyright 2024