Final Exam Semiconductor Devices (ELCT503) Time allowed : Three hours Faculty of Information Engineering & Technology (IET) Electronics Engineering Dept. Semiconductor Devices: ELCT 503 Final Exam (Fall 2014) Course Instructor: Dr. Hassan Mostafa Bar Code Instructions: 1. Answer all questions. 2. The exam consists of x questions in x pages including this page. 3. A cheat sheet is attached at end of this booklet. 4. The exam allowed time is Three hours. 5. Electronic calculators are allowed. 6. Clearly show all steps used in your solutions. 7. This is a closed book exam. Please, do not write anything on this page Final Exam Semiconductor Devices (ELCT503) Time allowed : Three hours Cheat Sheet Intrinsic Si: F (E) Carriers Transport: 1 3 mn vth2 kT 2 2 1 e ( E EF )/kT 1 vn μ n E n f(E)N(E)dE v p μ pE EC N(E) N(E) 4π ( 2me )3 / 2(E Ec )1/ 2 h3 4π ( 2mh )3 / 2(Ev E)1/ 2 h3 n p ni f(E)N(E)dE J J n J p e nμn p μ p E σ e nμn p μ p J n eDn n NC e J n eμn nE eDn (EC EF )/kT 2π mn kT N C 12 2 h 3/ 2 p NV e (EF EV )/kT 2π mh kT NV 2 2 h 3/ 2 Extrinsic Si: n ni exp (E F Ei )/kT p ni exp (Ei EF )/kT Mass Action Law: pn n 2 i Charge neutrality: n N A p N D J p eμ p pE eDp dn dx dp dx Quasi Fermi Level: Ei EFp p p0 p ni exp kT E Ei n n0 n ni exp Fn kT Continuity equation: n 1 Jn Gn Rn t e x p 1 Jp G p R p dt e x N A x p N D xn kT N D N A ln e ni 2 xd xd Dn D p kT VT μn μp e pn junction: Vbi 2 N A N D Vbi e ND N A pn with forward bias V=Va: dp dx EC e 2 2 N D xn N A x p 2 xd xn x p dn dx J p eDp Vbi Cj 2 N A N D Vbi V e ND N A e N A N D 2N A N D Vbi V xd w D p ni2 Dn ni2 qVa J t e 1 exp L p N d Ln N a kT Ln Dn n L p D p p qV I d J t A I sd exp a 1 kT Reverse bias pn junction: D p ni2 Dn ni2 I (Va ) qA I sd L p N d Ln N a Diffusion capacitance: Cd Ae 2 L p pn 0 kT eV exp a kT Final Exam Semiconductor Devices (ELCT503) Time allowed : Three hours Diode DC model: Transistor in Saturation region Constants: Exponential model: (VBE >= 0.7V) and (VBC >= 0.4V) VCE =0.2V KT = 0.026 eV at T=300OK ICsat = βforced IB IE = IC + IB = (βforced+1) IB VD 2 VD1 nVT * ln( I D2 ) I D1 q = 1.6 *10-19 C 0 = 8.85*10-12 F m-1 Diode small signal model: BJT small signal: nV rd T ID I gm C VT Eg = 1.12 eV V V r T T IB IC gm NV = 3.08*1019 cm-3 BJT Physics: γ I pE IE T α0 I pC I pE I pE I pE I nE 1 D N W 1 n B B D p N EW E 2 1 I BB W 1 B 2 I pE 2Lp For Si: Sio2 = 3.9 s = 4.05 V V V re T T IE IC gm ψ S inv 2ψ B IE 2 W Base _ Transit _ Time : D B 2Dp wm 2 2kT N A ln e ni ε0 εS kT ln N A /ni e2 N A Diffusion_ length : L p D p p Lp Si = 11.7 |V | ro A IC MOSFET Physics: I pC Diffusion_ life _ time : p NC = 2.84*1019 cm-3 2 Dp BJT DC Models: Transistor OFF 2eε0 ε S N A 2 ψ B Vth VFB 2 ψ B VFB ms Cox Qox Cox MOSFET DC models: (VBE < 0.7V) and (VBC < 0.4V) VGS < Vtn OFF ID=0 IB = 0 VGS >= Vtn ON VDS < (VGS – Vtn) (Triode) IC = 0 IE = 0 Transistor in Active region (VBE >= 0.7V) and (VBC < 0.4V) VCE >=0.3V ID = n Cox (W/L) [(VGS - Vtn) VDS – VDS2/2] VDS << (VGS – Vtn) (Linear) IC = IS exp (VBE/VT) IC = β IB = IE ID = n Cox (W/L) [(VGS - Vtn) VDS] IE = IC + IB = (β+1) IB RON = VDS/ID = 1/[n Cox (W/L) (VGS - Vtn) ] β = / (1- ) and β >> 1 = β / (β+1) and <= 1 ID =0.5* n Cox (W/L) (VGS - Vtn)2 VDS >= (VGS – Vtn) (Saturation)
© Copyright 2025