Jim Lambers MAT 280 Summer Semester 2012-13 Practice Final Exam Solution 1. Evaluate the line integral Z where C is given by r(t) = √ C 4 2 ht , t , t3 i, xy dx + ey dy + xz dz, 0 ≤ t ≤ 1. Solution From r0 (t) = h4t3 , 2t, 3t2 i, we obtain Z Z 1p dx dy dz √ y xy dx + e dy + xz dz = x(t)y(t) + ey(t) + x(t)z(z) dt dt dt dt C 0 Z 1 2 = t3 (4t3 ) + et (2t) + t7 (3t2 ) dt 0 Z 1 2 = 4t6 + 2tet + 3t9 dt 0 1 3t10 4t7 t2 +e + = 7 10 0 3 4 +e+ − 1. = 7 10 2. Show that the vector field F(x, y, z) = hey , xey + ez , yez i R is conservative, and use this fact to evaluate C F· dr where C is the line segment from (0, 2, 0) to (4, 0, 3). Solution A vector field F = hP, Q, Ri is conservative if Ry = Qz , Pz = Rx , Qx = Py . From Ry = ez = Qz , Pz = 0 = Rx , Qx = ey = Py , we find that F is in fact conservative. To evaluate the line integral efficiently, we need to find a function f such that ∇f = F. To that end, we obtain Z f (x, y, z) = P dx = xey + g(y, z). The requirement that fy = Q yields the equation gy (y, z) = Q(x, y, z) − (xey )y = ez . Solving the equation for gy yields g(y, z) = yez + h(z). The requirement that fz = R yields the equation h0 (z) = R(x, y, z) − (xey + yez )z = 0. It follows that h(z) = K where K is an arbitrary constant, and therefore f (x, y, z) = xey + yez + K. From the Fundamental Theorem of Line Integrals, we obtain Z Z ∇f · dr F · dr = C C = f (4, 0, 3) − f (0, 2, 0) = (4e0 + 0e3 ) − (0e2 + 2e0 ) = 2. 3. Use Green’s Theorem to evaluate Z x2 y dx − xy 2 dy, C where C is the circle x2 + y 2 = 4 with counterclockwise orientation. Solution Let D = { (x, y) | x2 + y 2 ≤ 4 } be the interior of C. Then, by Green’s Theorem, Z Z Z Z Z 2 2 2 2 x y dx − xy dy = (−xy )x − (x y)y dA = −y 2 − x2 dA. C D D Converting to polar coordinates, we obtain Z Z 2π Z 2 2 2 x y dx − xy dy = (−r2 )r dr dθ C 0 0 Z 2π Z 2 = dθ −r3 dr 0 0 2 = 2π − 4 0 = −8π. r4 4. If f (x, y, z) and g(x, y, z) are twice differentiable functions, show that ∇2 (f g) = f ∇2 g + g∇2 f + 2∇f · ∇g, where ∇2 f = ∇ · (∇f ). Solution We have ∇2 (f g) = ∇ · (∇(f g)) = ∇ · h(f g)x , (f g)y , (f g)z i = ∇ · hfx g + f gx , fy g + f gy , fz g + f gz i = (fx g + f gx )x + (fy g + f gy )y + (fz g + f gz )z = fxx g + 2fx gx + f gxx + fyy g + 2fy gy + f gyy + fzz g + 2fz gz + f gzz = f (gxx + gyy + gzz ) + g(fxx + fyy + fzz ) + 2(fx gx + fy gy + fz gz ) = f ∇ · (∇g) + g∇ · (∇g) + 2∇f · ∇g = f ∇2 g + g∇2 f + 2∇f · ∇g. 5. Evaluate the surface integral Z Z (x2 z + y 2 z) dS, S where S is the part of the plane z = 4 + x + y that lies inside the cylinder x2 + y 2 = 4. Solution We use the parametric equations x = u cos v, y = u sin v, 0 ≤ u ≤ 2, z = 4 + u cos v + u sin v, 0 ≤ v ≤ 2π, for which ru = hcos v, sin v, cos v + sin vi, rv = h−u sin v, u cos v, −u sin v + u cos vi, √ ru × rv = h−u, −u, ui, kru × rv k = 3|u|. This yields Z Z Z 2 2 (x z + y z) dS = √ [(u cos v)2 + (u sin v)2 ](4 + u cos v + u sin v) 3u du dv 0 0 √ Z 2π Z 2 3 = 3 4u + u4 cos v + u4 sin v du dv S 2π Z 2 0 √ Z = 3 0 2π 0 √ Z = 3 2 u5 u + (cos v + sin v) dv 5 0 4 2π 32 (cos v + sin v) dv 5 0 √ 32 = 16 3(2π) + (sin v − cos v)|2π 0 5 √ = 32 3π. 16 + 6. Evaluate the surface integral Z Z F · dS, S where F(x, y, z) = hxz, −2y, 3xi and S is the sphere x2 + y 2 + z 2 = 4 with outward orientation. Solution We use spherical coordinates x = 2 sin φ cos θ, y = 2 sin φ sin θ, z = 2 cos φ, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, which yields rφ = h2 cos φ cos θ, 2 cos φ sin θ, −2 sin φi, rθ = h−2 sin φ sin θ, 2 sin φ cos θ, 0i, rφ × rθ = 4 sin φhsin φ cos θ, sin φ sin θ, cos φi, which has outward orientation since 4 sin φ ≥ 0 for 0 ≤ φ ≤ π. We then have Z 2π Z π Z Z 2 sin φh2 cos θ cos φ, −2 sin θ, 3 cos θi · 4 sin φhsin φ cos θ, sin φ sin θ, cos φi dφ dθ F · dS = 0 0 S Z 2π Z π = 8 sin2 φ(2 cos2 θ sin φ cos φ − 2 sin2 θ sin φ + 3 cos θ cos φ) dφ dθ 0 0 Z 2π Z π Z 2π Z π = 16 cos2 θ dθ sin3 φ cos φ dφ − 16 sin2 θ dθ sin3 φ dφ + 0 0 0 0 Z π Z 2π sin2 φ cos φ dφ cos θ dθ 24 0 0 Z Z 2π 1 + cos 2θ dθ u3 du − (u = sin φ, du = cos φ dφ) = 8 0 Z 2π Z π Z π 8 1 − cos 2θ dθ (1 − cos2 φ) sin φ dφ + 24 sin θ|2π sin2 φ cos φ dφ 0 0 0 0 π Z 1 sin4 φ = 16π + 16π (1 − v 2 ) dv (v = cos φ, dv = − sin φ dφ) 4 0 −1 π cos3 φ = 16π cos φ − 3 0 2 = 16π −2 + 3 64π . = − 3 R 7. Use Stokes’ Theorem to evaluate C F· dr, where F(x, y, z) = hxy, yz, xzi and C is the triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1), oriented counterclockwise as viewed from above. Hint: to obtain an equation for the surface enclosed by C, compute the equation of a plane containing the vertices. Solution Using the given vertices, it can be determined that S is contained within the plane x + y + z = 1. We therefore describe S using the parametric equations x = u, y = v, z = 1 − u − v, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 − u, which yields ru = h1, 0, −1i, rv = h0, 1, −1i, and the normal vector ru × rv = h1, 1, 1i, which is consistent with the counterclockwise orientation of C (that is, when traversing C such that this normal vector, which points upward, is visible, then the region S is on the left. Applying Stokes’ Theorem yields Z Z 1 Z 1−u F · dr = curl F(u, v) · (ru × rv ) dv du. C 0 0 From curl F = hRy − Qz , Pz − Rx , Qx − Py i = h(xz)y − (yz)z , (xy)z − (xz)x , (yz)x − (xy)y i = h−y, −z, −xi. We then have curl F · (ru × rv ) = h−y, −z, −xi · h1, 1, 1i = −(x + y + z), and thus curl F(u, v) · (ru × rv ) = −(u + v + 1 − u − v) = −1. We conclude that Z 1 Z 1−u Z F · dr = − C 1 dv du = −A(D), 0 0 where D is the triangle { (u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 − u }. This triangle has base and height 1, which yields Z 1 F · dr = − . 2 C RR 8. Use the Divergence Theorem to evaluate the surface integral S F · dS, where F(x, y, z) = hx3 , y 3 , z 3 i and S is the surface of the solid E bounded by the cylinder x2 + y 2 = 1 and the planes z = 0 and z = 2. Solution Using cylindrical coordinates, Z Z Z F · dS = S Z = Z = we obtain Z Z div F dV Z ZE [(x3 )x + (y 3 )y + (z 3 )z ] dV Z ZE 3(x2 + y 2 + z 2 ) dV E Z 2π Z 1 Z 2 = 3 (r2 + z 2 )r dz dr dθ 0 0 0 2 z 3 3 dr dθ = 3 r z+r 3 0 0 0 Z 2π Z 1 8 = 3 dθ 2r3 + r dr 3 0 0 1 4 2 4r r = 6π + 2 3 Z 2π Z 1 0 = 11π. 9. (Bonus) Let f (x, y, z) = x2 y 3 z 4 , g(x, y, z) = x4 + y 3 + z 2 , and let ω = f dx + g dy, η = f dx dz + g dy dz be a 1-form and a 2-form, respectively. Compute ω ∧ η and dω. Solution We have ω ∧ η = (f dx + g dy)(f dx dz + g dy dz) = f 2 dx dx dz + f g dy dx dz + f g dx dy dz + g 2 dy dy dz = 0 − f g dx dy dz + f g dx dy dz + 0 = 0, and dω = df dx + dg dy = (fx dx + fy dy + fz dz) dx + (gx dx + gy dy + gz dz) dy = fx dx dx + fy dy dx + fz dz dx + gx dx dy + gy dy dy + gz dz dy = (gx − fy ) dx dy + fz dz dx − gz dy dz = (4x3 − 3x2 y 2 z 4 ) dx dy + 4x2 y 3 z 3 dz dx − 2z dy dz.
© Copyright 2024