Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Discussion References Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Discussion References Plan of the Session Session II: Heterogeneity in Meta-Analysis The aim of this session is to: James Carpenter1 , Ulrike Krahn2,3 , Gerta R¨ ucker4 , Guido Schwarzer4 1 London School of Hygiene and Tropical Medicine & MRC Clinical Trials Unit, London, UK 2 Institute of Medical Biostatistics, Epidemiology and Informatics, Mainz, Germany 3 Institute of Medical Informatics, Biometry and Epidemiology, Duisburg-Essen, Germany 4 Institute for Medical Biometry and Statistics, Freiburg, Germany [email protected] 1 Subgroup Analysis introduce random effects model and sources of heterogeneity, and its consequences; I discuss how to detect heterogeneity; I introduce statistical methods which attempt to allow for for heterogeneity (e.g. subgroup analysis and meta-regression), and I illustrate with examples. At the end of this session the objectives are that you should IBC Short Course Florence, 6 July 2014 Heterogeneity in Meta-Analysis I Meta-Regression Discussion References I understand the sources, and potential consequences of heterogeneity; I understand, and be able to perform subgroup analysis and meta-regression, and I be able to summarise the results for a clinical audience. Carpenter/Krahn/R¨ ucker/Schwarzer Heterogeneity in Meta-Analysis Random effects model Session II: Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Florence, 6 July 2014 Discussion 2 References Random Effects Model – Graphical Presentation Average effect DerSimonian and Laird (1986); Fleiss (1993): iid θˆk ∼ N(θk , σ2k ) I I I Study 1 θˆk observed treatment effect in study i θk true mean in study i, σk standard error in study i True study means θk vary randomly around a fixed global mean θ with a between-study (heterogeneity) variance τ2 : Study 2 Study 3 iid θk ∼ N(θ, τ2 ) Alternative notation Study 4 q θˆk = θ + σ2k + τ2 k , I iid k ∼ N(0, 1) Study 5 Two variance components: σ2k within-study sampling variance, τ2 between-study (heterogeneity) variance 0.1 0.2 0.5 1 2 5 10 Odds ratio Carpenter/Krahn/R¨ ucker/Schwarzer Session II: Heterogeneity in Meta-Analysis Florence, 6 July 2014 3 Carpenter/Krahn/R¨ ucker/Schwarzer Session II: Heterogeneity in Meta-Analysis Florence, 6 July 2014 4 Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Discussion References Heterogeneity in Meta-Analysis Random Effects Model – Graphical Presentation Subgroup Analysis Meta-Regression Discussion References Inverse variance weighting (both models) I Pooled effect estimate: Weighted mean of the study estimates P ˆ wk θk θˆ = P wk I Weights in fixed effect model: Study 1 Study 2 wk = Study 3 I 1 σ ˆ 2k Weights in random effects model: Study 4 wk = Study 5 I 0.1 0.2 0.5 1 2 5 10 σ ˆ 2k 1 + ˆτ2 Large heterogeneity ⇒ Weights tend to be more similar ⇒ Smaller studies get larger weights Odds ratio Carpenter/Krahn/R¨ ucker/Schwarzer Heterogeneity in Meta-Analysis Session II: Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Florence, 6 July 2014 Discussion 5 References Carpenter/Krahn/R¨ ucker/Schwarzer Heterogeneity in Meta-Analysis Overall Survival – Forestplot (example from first talk) Session II: Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Florence, 6 July 2014 Discussion 6 References Comparison of Random and Fixed Effect Model > forest(m1, hetstat=FALSE, comb.random=TRUE) Study De Souza Gianni Gisselbrecht Haioun Intragumtornchai Kaiser Kluin−Nelemans Martelli Martelli 2003 Milpied Rodriguez 2003 Santini Verdonck Vitolo TE seTE −0.08 −0.65 0.37 −0.04 −0.45 0.08 0.20 −0.38 0.01 −0.44 0.29 −0.21 0.34 0.34 0.3672 0.3850 0.1487 0.1529 0.3852 0.1834 0.2697 0.4473 0.2748 0.2481 0.3482 0.2697 0.3290 0.2749 Hazard Ratio HR 0.92 0.52 1.45 0.96 0.64 1.08 1.23 0.69 1.01 0.64 1.34 0.81 1.40 1.41 Fixed effect model Random effects model 0.5 Carpenter/Krahn/R¨ ucker/Schwarzer 1 95%−CI W(fixed) W(random) [0.45; 1.89] [0.24; 1.11] [1.08; 1.93] [0.71; 1.30] [0.30; 1.36] [0.75; 1.55] [0.72; 2.08] [0.29; 1.65] [0.59; 1.73] [0.40; 1.05] [0.68; 2.65] [0.48; 1.37] [0.73; 2.67] [0.82; 2.41] 3.2% 2.9% 19.5% 18.5% 2.9% 12.9% 5.9% 2.2% 5.7% 7.0% 3.6% 5.9% 4.0% 5.7% 4.3% 4.0% 14.2% 13.8% 4.0% 11.5% 7.0% 3.1% 6.8% 7.9% 4.7% 7.0% 5.1% 6.8% 1.05 [0.92; 1.19] 1.02 [0.86; 1.20] 100% −− −− 100% I Random effects model: Effects vary randomly around a global mean I Exchangeability: Effects are assumed to be exchangeable a-priori (Higgins et al., 2009) I I I I Study-treatment interactions (contrasts) interpreted as a random sample from a ‘population of potential treatment effects’ (Senn, 2000, 2010) Confidence intervals for random effects model at least as wide as those for fixed effect model In addition, Higgins et al. (2009) proposed a prediction interval that gives a range of effects of future studies Fixed effect model I Special case of random effects model for τ2 = 0 ⇒ Often no difference in pooled estimates since often τ2 ≈ 0 2 Session II: Heterogeneity in Meta-Analysis Florence, 6 July 2014 7 Carpenter/Krahn/R¨ ucker/Schwarzer Session II: Heterogeneity in Meta-Analysis Florence, 6 July 2014 8 Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Discussion References Heterogeneity in Meta-Analysis Sources of Heterogeneity I I Clinical baseline heterogeneity between patients from different studies (e.g. baseline characteristics); not necessarily reflected on outcome measurement scale I Heterogeneity from other sources, e.g. design-related heterogeneity I Heterogeneity reporting and related bias, e.g. selective publication of small studies if they show an effect I I Subgroup Analysis I I Discussion 9 References High risk vs low risk patients High quality vs low quality studies Meta-regression I Florence, 6 July 2014 Meta-Regression Use categorical variable (with limited number of possible values) to define subgroups – ideally pre-specified variable Explains heterogeneity well if large variation exists between subgroup means and little variation within subgroups Examples: I I Session II: Heterogeneity in Meta-Analysis Adjusts for unexplained heterogeneity (via wider confidence interval) Does not explain heterogeneity I Statistical heterogeneity quantified on the outcome measurement scale (may or may not be clinically relevant and may or may not be statistically significant) ⇒ Random effects modelling, subgroup analysis, meta-regression Heterogeneity in Meta-Analysis Extension of subgroup analysis by allowing for continuous variables Example: Geographical latitude as effect modifier for efficacy of vaccine in tuberculosis prevention (Colditz et al., 1994) Risk of ecological bias if continuous variable measured on study-level (e.g. mean age) (Higgins and Thompson, 2004) Carpenter/Krahn/R¨ ucker/Schwarzer Heterogeneity in Meta-Analysis Session II: Heterogeneity in Meta-Analysis Subgroup Analysis Florence, 6 July 2014 Meta-Regression Discussion Example: Amiodarone for Conversion of Atrial Fibrillation Amiodarone example – Forest plot Letelier et al. (2003), Arch Intern Med: > forest(m1, leftcols="studlab", xlim=c(0.05, 20), + print.tau2=TRUE, print.I2=FALSE, print.pval.Q=TRUE) I 21 randomised or quasi-randomised controlled trials Patients with atrial fibrillation (AF) of any etiology and duration I Amiodarone compared with placebo, digoxin, CCB, or no treatment I Primary outcome: conversion to sinus rhythm within 4 weeks (binary outcome) Cowan 1986 Noc 1990 Capucci 1992 Cochrane 1994 Hou 1995 Kondili 1995 Donovan 1994 Galve 1996 Kontoyannis 1998 Bellandi 1999 Kochidiakis 1999 Cotter 1999 Peuhkurinen 2000 Vardas 2000 Joseph 2000 Cybulski 2001 Galperin 2000 Bianconi 2000 Villani 2000 Hohnloser 2000 Natale 2000 > amio <- read.table(file="Amiodarone.csv", header=TRUE, sep = ",", + quote="\"", dec=".", fill = TRUE) > names(amio) > > > > "afduration" "RR" "LL" "UL" "N" amio$logRR <- log(amio$RR) # Recalculation of standard errors amio$SE <- (log(amio$UL)-log(amio$LL))/2/1.96 m1 <- metagen(logRR, SE, data=amio, sm="RR", studlab=Study) Carpenter/Krahn/R¨ ucker/Schwarzer Session II: Heterogeneity in Meta-Analysis Risk Ratio Study I [1] "Study" References Subgroup analysis I I Carpenter/Krahn/R¨ ucker/Schwarzer Discussion Random effects model Principal sources of heterogeneity in meta-analysis: I Meta-Regression Explaining heterogeneity in meta-analysis I I Subgroup Analysis Florence, 6 July 2014 RR 1.11 18.00 0.77 1.15 1.29 1.33 1.05 1.13 1.42 1.41 1.46 1.43 2.45 2.01 1.32 1.87 33.70 2.04 4.75 3.13 5.12 Fixed effect model Random effects model 10 References 95%−CI W(fixed) W(random) [0.78; 1.58] [1.17; 276.45] [0.37; 1.61] [0.91; 1.45] [0.97; 1.72] [0.71; 2.48] [0.69; 1.60] [0.84; 1.52] [1.08; 1.86] [1.15; 1.72] [1.19; 1.79] [1.14; 1.79] [1.49; 4.02] [1.55; 2.60] [0.96; 1.82] [1.37; 2.55] [2.08; 545.97] [0.19; 21.95] [1.61; 14.05] [1.48; 6.62] [2.61; 10.04] 4.3% 0.1% 1.0% 10.1% 6.5% 1.4% 3.0% 6.0% 7.3% 13.1% 13.1% 10.6% 2.2% 7.9% 5.2% 5.5% 0.1% 0.1% 0.5% 0.9% 1.2% 5.9% 0.3% 2.7% 7.4% 6.7% 3.4% 5.1% 6.6% 6.9% 7.8% 7.8% 7.5% 4.4% 7.1% 6.3% 6.4% 0.3% 0.3% 1.5% 2.6% 3.0% 1.45 [1.35; 1.56] 1.53 [1.32; 1.76] 100% −− −− 100% Heterogeneity: tau−squared=0.0581, p<0.0001 0.05 11 0.5 1 Carpenter/Krahn/R¨ ucker/Schwarzer 2 10 20 Session II: Heterogeneity in Meta-Analysis Florence, 6 July 2014 12 Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Discussion References Amiodarone example – Inverse Variance Method Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Discussion References Amiodarone example – Subgroup Analysis > print(summary(m1), digits=2) A priori specified subgroup analyses: Number of studies combined: k=21 1. Mean duration of the current AF episode (≤ 48 vs > 48 hours) RR 95%-CI z p.value Fixed effect model 1.45 [1.35; 1.56] 9.93 < 0.0001 Random effects model 1.53 [1.32; 1.76] 5.77 < 0.0001 2. Mean left atrial size (< 45 vs ≥ 45 mm) 3. Proportion of patients with underlying cardiovascular disease (< 50% vs ≥ 50%) Quantifying heterogeneity: tau^2 = 0.0581; H = 1.71 [1.36; 2.15]; I^2 = 65.8% [45.8%; 78.4%] 4. Type of control treatment (placebo or no treatment vs digoxin vs CCB) Test of heterogeneity: Q d.f. p.value 58.46 20 < 0.0001 5. Amiodarone regimen (single vs continuous oral or intravenous dosage) 6. Time to outcome measurement (< 12 vs ≥ 12 hours) > m2 <- update(m1, byvar=afduration, print.byvar=FALSE) > m3 <- update(m1, byvar=afduration, print.byvar=FALSE, tau.common=TRUE) Details on meta-analytical method: - Inverse variance method - DerSimonian-Laird estimator for tau^2 Carpenter/Krahn/R¨ ucker/Schwarzer Heterogeneity in Meta-Analysis Session II: Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Florence, 6 July 2014 Discussion 13 References Notation for Subgroup Analysis (like Analysis of Variance) I I I wsk θˆsk k=1 I I I wsk Weight wsk is the inverse variance of study k in subgroup s P s Denominator is the subgroup weight Ws = K w k=1 sk Global mean Pp Meta-Regression PKs ˆ s=1 k=1 wsk θsk θˆ = P PKs p s=1 k=1 wsk Session II: Heterogeneity in Meta-Analysis Florence, 6 July 2014 15 RR Discussion 14 References 95%−CI AF Duration <= 48h Cowan 1986 Noc 1990 Capucci 1992 Cochrane 1994 Hou 1995 Kondili 1995 Donovan 1994 Galve 1996 Kontoyannis 1998 Bellandi 1999 Kochidiakis 1999 Cotter 1999 Peuhkurinen 2000 Vardas 2000 Joseph 2000 Cybulski 2001 Fixed effect model Random effects model 1.11 [0.78; 1.58] 18.00 [1.17; 276.45] 0.77 [0.37; 1.61] 1.15 [0.91; 1.45] 1.29 [0.97; 1.72] 1.33 [0.71; 2.48] 1.05 [0.69; 1.60] 1.13 [0.84; 1.52] 1.42 [1.08; 1.86] 1.41 [1.15; 1.72] 1.46 [1.19; 1.79] 1.43 [1.14; 1.79] 2.45 [1.49; 4.02] 2.01 [1.55; 2.60] 1.32 [0.96; 1.82] 1.87 [1.37; 2.55] 1.40 [1.30; 1.51] 1.40 [1.25; 1.57] AF Duration > 48h Galperin 2000 Bianconi 2000 Villani 2000 Hohnloser 2000 Natale 2000 Fixed effect model Random effects model 33.70 2.04 4.75 3.13 5.12 4.33 4.33 0.05 Carpenter/Krahn/R¨ ucker/Schwarzer Subgroup Analysis Risk Ratio Study Weighted mean estimate for subgroup s (s = 1, . . . , p): k=1 θˆs = P Ks Heterogeneity in Meta-Analysis Florence, 6 July 2014 > forest(m2, leftcols="studlab", xlim=c(0.05, 20), + hetstat=FALSE, overall=FALSE, col.by="darkblue") Within subgroup s, Ks studies (k = 1, . . . , Ks ) P K = ps=1 Ks total number of studies over all subgroups PKs Session II: Heterogeneity in Meta-Analysis Amiodarone example – Forest plot with subgroups p subgroups of studies (s = 1, . . . , p) I Carpenter/Krahn/R¨ ucker/Schwarzer 0.5 1 Carpenter/Krahn/R¨ ucker/Schwarzer 2 [2.08; 545.97] [0.19; 21.95] [1.61; 14.05] [1.48; 6.62] [2.61; 10.04] [2.79; 6.73] [2.79; 6.73] 10 20 Session II: Heterogeneity in Meta-Analysis Florence, 6 July 2014 16 Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Discussion References Heterogeneity Statistics I Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Discussion References Partition of Q (in Fixed Effect Model) Between-groups heterogeneity statistic QB : QB = p X I QW can be partitioned into subgroup-specific parts QWs by 2 Ws θˆs − θˆ QW = s=1 p X QWs , s=1 I Under homogeneity between subgroups, QB follows a χ2 -distribution with p − 1 degrees of freedom each with Ks − 1 degrees of freedom I I Within-group heterogeneity statistic QW : QW = p X Ks X I I 2 wsk θˆsk − θˆs with (p − 1) + (K − p) = K − 1 degrees of freedom (Cooper et al., 2009) Under homogeneity within all subgroups, QW follows a χ2 -distribution with K − p degrees of freedom Carpenter/Krahn/R¨ ucker/Schwarzer Heterogeneity in Meta-Analysis Session II: Heterogeneity in Meta-Analysis Subgroup Analysis In total, we have Q = QB + QW s=1 k=1 I P P QW has ps=1 (Ks − 1) = ps=1 Ks − p = K − p degrees of freedom QWs measures the extent of heterogeneity attributed to subgroup s Florence, 6 July 2014 Meta-Regression Discussion 17 References Carpenter/Krahn/R¨ ucker/Schwarzer Heterogeneity in Meta-Analysis Session II: Heterogeneity in Meta-Analysis Subgroup Analysis Florence, 6 July 2014 Meta-Regression Amiodarone example – Partition of Q Amiodarone example: AF subgroup results > print(summary(m2, comb.random=FALSE), digits=2) Fixed effect model (Qb = 24.42, df = 1, p < 0.0001, Qw = 34.04, df = 19, p = 0.018): *** Output truncated *** Subgroup AF Duration ≤ 48h AF Duration > 48h Test of heterogeneity: Q d.f. p.value 58.46 20 < 0.0001 RR 1.40 4.33 95%-CI [1.30; 1.51] [2.79; 6.73] Q 30.58 3.46 References ˆτ2 0.0243 0 I2 50.9% 0% ˆτ2 0.0243 0 I2 50.9% 0% Random effects model (Qb = 23.69, df = 1, p < 0.0001): Results for subgroups (fixed effect model): k RR 95%-CI Q AF Duration <= 48h 16 1.40 [1.30; 1.51] 30.58 AF Duration > 48h 5 4.33 [2.79; 6.73] 3.46 Subgroup AF Duration ≤ 48h AF Duration > 48h tau^2 I^2 0.0243 50.9% 0 0% Session II: Heterogeneity in Meta-Analysis k 16 5 RR 1.40 4.33 95%-CI [1.25; 1.57] [2.79; 6.73] Q 30.58 3.46 Random effects model with common τ2 (Qb = 20.92, df = 1, p < 0.0001): Test for subgroup differences (fixed effect model): Q d.f. p.value Between groups 24.42 1 < 0.0001 Within groups 34.04 19 0.0182 Carpenter/Krahn/R¨ ucker/Schwarzer k 16 5 Discussion 18 Subgroup AF Duration ≤ 48h AF Duration > 48h Florence, 6 July 2014 19 Carpenter/Krahn/R¨ ucker/Schwarzer k 16 5 RR 1.40 4.34 95%-CI [1.25; 1.57] [2.71; 6.96] Session II: Heterogeneity in Meta-Analysis Q 30.58 3.46 ˆτ2 0.023 0.023 I2 50.9% 0% Florence, 6 July 2014 20 Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Discussion References Meta-Regression Meta-Regression Discussion References > mr2 <- metareg(m2) > print(mr2) Mixed-Effects Model (k = 21; tau^2 estimator: DL) i.i.d. θˆk = θ + βxk + σ ˆ k k , k ∼ N(0, 1), k = 1, . . . , K *** Output truncated *** Test for Residual Heterogeneity: QE(df = 19) = 34.0399, p-val = 0.0182 Random effects meta-regression: θˆk = θ + βxk + uk + σk k , i.i.d. i.i.d. k ∼ N(0, 1); uk ∼ N(0, τ2 ) Test of Moderators (coefficient(s) 2): QM(df = 1) = 20.9197, p-val < .0001 with covariate xk and regression parameter β Model Results: Meta-regression of AF duration in amiodarone example: I xk = 1 if AF duration > 48 hours I xk = 0 if AF duration ≤ 48 hours Heterogeneity in Meta-Analysis Subgroup Analysis Amiodarone example – Meta-regression Fixed effect meta-regression: Carpenter/Krahn/R¨ ucker/Schwarzer Heterogeneity in Meta-Analysis 0.3353 1.1330 se 0.0571 0.2477 zval 5.8746 4.5738 pval <.0001 <.0001 ci.lb 0.2234 0.6475 ci.ub 0.4471 1.6185 ˆ = exp(0.3353) = 1.40 Risk Ratio (AF ≤ 48 hours): exp(θ) ˆ + β) ˆ = exp(0.3353 + 1.1330) = 4.34 I Risk Ratio (AF > 48 hours): exp(θ I Session II: Heterogeneity in Meta-Analysis Subgroup Analysis intrcpt AF Duration > 48h Meta-Regression Florence, 6 July 2014 Discussion 21 References Amiodarone example – Bubble plot Carpenter/Krahn/R¨ ucker/Schwarzer Heterogeneity in Meta-Analysis Session II: Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Florence, 6 July 2014 Discussion 22 References Example: Vaccine for the prevention of tuberculosis > bubble(mr2, lwd=2, col.line="blue") ● 3 Colditz et al. (1994), JAMA: Efficacy of vaccine for the prevention of tuberculosis I 13 prospective trials 2 I ● ● > data(dat.colditz1994, package="metafor") > m4 <- metabin(tpos, tpos+tneg, cpos, cpos+cneg, + data=dat.colditz1994, studlab=paste(author, year)) > forest(m4, rightcols=c("effect", "ci"), print.pval.Q=FALSE, + label.left="Vaccine better", label.right="Vaccine worse") ● 1 Treatment effect (log risk ratio) ● ● ● 0 ● ● ● AF Duration <= 48h AF Duration > 48h Covariate afduration Carpenter/Krahn/R¨ ucker/Schwarzer Session II: Heterogeneity in Meta-Analysis Florence, 6 July 2014 23 Carpenter/Krahn/R¨ ucker/Schwarzer Session II: Heterogeneity in Meta-Analysis Florence, 6 July 2014 24 Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Discussion References Vaccination example – Forest plot Study Aronson 1948 Ferguson & Simes 1949 Rosenthal et al 1960 Hart & Sutherland 1977 Frimodt−Moller et al 1973 Stein & Aronson 1953 Vandiviere et al 1973 TPT Madras 1980 Coetzee & Berjak 1968 Rosenthal et al 1961 Comstock et al 1974 Comstock & Webster 1969 Comstock et al 1976 4 6 3 62 33 180 8 505 29 17 186 5 27 Fixed effect model Random effects model 123 306 231 13598 5069 1541 2545 88391 7499 1716 50634 2498 16913 11 29 11 248 47 372 10 499 45 65 141 3 29 191064 139 303 220 12867 5808 1451 629 88391 7277 1665 27338 2341 17854 166283 RR 95%−CI 0.41 0.20 0.26 0.24 0.80 0.46 0.20 1.01 0.63 0.25 0.71 1.56 0.98 [0.13; 1.26] [0.09; 0.49] [0.07; 0.92] [0.18; 0.31] [0.52; 1.25] [0.39; 0.54] [0.08; 0.50] [0.89; 1.14] [0.39; 1.00] [0.15; 0.43] [0.57; 0.89] [0.37; 6.53] [0.58; 1.66] I I I I I I I 0.64 [0.59; 0.69] 0.49 [0.34; 0.70] Session II: Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Florence, 6 July 2014 Discussion 25 References Vaccination example – Forestplot (Sorted by Latitude) Study Frimodt−Moller et al 1973 TPT Madras 1980 Comstock et al 1974 Vandiviere et al 1973 Coetzee & Berjak 1968 Comstock & Webster 1969 Comstock et al 1976 Rosenthal et al 1960 Rosenthal et al 1961 Aronson 1948 Stein & Aronson 1953 Hart & Sutherland 1977 Ferguson & Simes 1949 Latitude Risk Ratio 13 13 18 19 27 33 33 42 42 44 44 52 55 Fixed effect model Random effects model References Absolute geographical latitude (i.e. distance from the equator) Study validity score Mean age at vaccination Study design Year of publication Year trial began Follow-up time (in years) RR 95%−CI 0.80 1.01 0.71 0.20 0.63 1.56 0.98 0.26 0.25 0.41 0.46 0.24 0.20 [0.52; 1.25] [0.89; 1.14] [0.57; 0.89] [0.08; 0.50] [0.39; 1.00] [0.37; 6.53] [0.58; 1.66] [0.07; 0.92] [0.15; 0.43] [0.13; 1.26] [0.39; 0.54] [0.18; 0.31] [0.09; 0.49] Carpenter/Krahn/R¨ ucker/Schwarzer Heterogeneity in Meta-Analysis Session II: Heterogeneity in Meta-Analysis Subgroup Analysis Florence, 6 July 2014 Meta-Regression Discussion 26 References Vaccination example – Meta-Regression Random effects meta-regression: θˆk = θ + βxk + uk + σk k , i.i.d. i.i.d. k ∼ N(0, 1); uk ∼ N(0, τ2 ) where covariate xk is the absolute geographical latitude Results:1 Intercept Latitude Estimate SE z-value p-value θˆ = 0.2595 βˆ = −0.0292 0.2323 0.0067 1.12 -4.34 0.264 < 0.0001 0.64 [0.59; 0.69] 0.49 [0.34; 0.70] ˆ τ2 = 0.0633 (estimated according to DerSimonian and Laird (1986)) Parameter β is a log risk ratio Heterogeneity: I−squared=92.1%, tau−squared=0.3095 0.1 0.5 1 2 10 Vaccine better Vaccine worse Carpenter/Krahn/R¨ ucker/Schwarzer Discussion > forest(m4, sortvar=m4$data$ablat, + leftcols=c("studlab", "ablat"), leftlabs=c(NA, "Latitude"), + rightcols=c("effect", "ci"), print.pval.Q=FALSE, + label.left="Vaccine better", label.right="Vaccine worse") 0.1 0.5 1 2 10 Vaccine better Vaccine worse Heterogeneity in Meta-Analysis Meta-Regression Colditz et al. (1994), JAMA: I Efficacy of vaccine for the prevention of tuberculosis I 13 prospective trials I Random effects meta-regression I Variables considered in meta-regression: Heterogeneity: I−squared=92.1%, tau−squared=0.3095 Carpenter/Krahn/R¨ ucker/Schwarzer Subgroup Analysis Example: Vaccine for the prevention of tuberculosis Risk Ratio Experimental Control Events Total Events Total Heterogeneity in Meta-Analysis Session II: Heterogeneity in Meta-Analysis 1 Florence, 6 July 2014 27 R command: mr4 <- metareg(m4, ablat) Carpenter/Krahn/R¨ ucker/Schwarzer Session II: Heterogeneity in Meta-Analysis Florence, 6 July 2014 28 Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Discussion References Vaccination example – Bubble plot Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Discussion References Caveats with Meta-Regression and Subgroup Analysis 0.5 > bubble(mr4, lwd=2, col.line="blue") ● −0.5 I Visual presentation of relationship essential I Often meta-regression does not explain all observed heterogeneity ⇒ Meta-regression should be based on random effects model Risk of spurious findings from meta-regression/subgroup analysis I I I ● −1.0 Treatment effect (log risk ratio) 0.0 Thompson and Higgins (2002); Higgins and Thompson (2004): I I −1.5 ● ● ● 20 30 40 Avoid meta-regression if there are less than five studies Limit the number of covariates used in meta-regression Use only pre-specified characteristics; avoid ‘data-dredging’ Be careful to interpret the coefficient estimates correctly. E.g. if the outcome is the (log) odds ratio, they are (log) odds ratios of odds ratios. 50 Covariate ablat Carpenter/Krahn/R¨ ucker/Schwarzer Heterogeneity in Meta-Analysis Session II: Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Florence, 6 July 2014 Discussion 29 References Caveats with Meta-Regression and Subgroup Analysis I I Not for averages of patient characteristics within trials, for example average age or proportion of women Not for ‘baseline risk’ = control group risk: Potential regression to the mean Meta-regression at individual-patient level possible if individual patient data are available (Lambert et al., 2002; Riley et al., 2007, 2008; Jones et al., 2009; Riley et al., 2010) Carpenter/Krahn/R¨ ucker/Schwarzer Session II: Heterogeneity in Meta-Analysis Florence, 6 July 2014 Subgroup Analysis Meta-Regression Florence, 6 July 2014 Discussion 30 References I Understanding and – as far as possible – explaining heterogeneity is important if we are to have confidence in the results of our meta-analysis. I Decomposition of the heterogeneity statistic, Q, helps pinpoint the causes. I Subgroup analyses and meta-regression can help explain heterogeneity, but really need to be pre-specified; I If heterogeneity is present then the random effects model should be used instead of the fixed effects model – principally because of the larger standard error, which reflects the heterogeneity. I However, if there is a contextually important difference between the fixed and random effect estimates, this may indicate that smaller studies are systematically different, and further investigation is needed – see the next session. Use meta-regression only for study-level covariates I I Heterogeneity in Meta-Analysis Session II: Heterogeneity in Meta-Analysis Summary For aggregate data: Possible bias by confounding (Berlin et al., 2002; Thompson and Higgins, 2002; Higgins and Thompson, 2004) I Carpenter/Krahn/R¨ ucker/Schwarzer 31 Carpenter/Krahn/R¨ ucker/Schwarzer Session II: Heterogeneity in Meta-Analysis Florence, 6 July 2014 32 Heterogeneity in Meta-Analysis Subgroup Analysis Meta-Regression Discussion References References Session II: Heterogeneity in Meta-Analysis Florence, 6 July 2014 Subgroup Analysis Meta-Regression Discussion References Lambert, P. C., Sutton, A. J., Abrams, K. R., and Jones, D. R. (2002). A comparison of summary patient-level covariates in meta-regression with individual patient data meta-analysis. Journal of Clinical Epidemiology, 55:86–94. Berlin, J. A., Santanna, J., Schmid, C. H., Szczech, L. A., and Feldman, H. I. (2002). Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: Ecological bias rears its ugly head. Statistics in Medicine, 21:371–387. Colditz, G. A., Brewer, T., Berkey, C., Wilson, M., Burdick, E., Fineberg, H., and Mosteller, F. (1994). Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA, 271(9):698–702. Cooper, H., Hedges, L. V., and Valentine, J. C. (2009). The Handbook of Research Synthesis and Meta-analysis. Russell Sage Foundation, New York, 2nd edition. DerSimonian, R. and Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7:177–188. Fleiss, J. L. (1993). The statistical basis of meta-analysis. Statistical Methods in Medical Research, 2:121–145. Higgins, J. P., Thompson, S. G., and Spiegelhalter, D. J. (2009). A re-evaluation of random-effects meta-analysis. Journal of the Royal Statistical Society, 172:137–159. Higgins, J. P. T. and Thompson, S. G. (2004). Controlling the risk of spurious findings from meta-regression. Statistics in Medicine, 23:1663–1682. Jones, A. P., Riley, R. D., Williamson, P. R., and Whitehead, A. (2009). Meta-analysis of individual patient data versus aggregate data from longitudinal clinical trials. Clinical Trials, 6(1):16–27. Carpenter/Krahn/R¨ ucker/Schwarzer Heterogeneity in Meta-Analysis Letelier, L., Udol, K., Ena, J., Weaver, B., and Guyatt, G. (2003). Effectiveness of amiodarone for conversion of atrial fibrillation to sinus rhythm - a meta-analysis. Archives of Internal Medicine, 163:777–85. Riley, R., Lambert, P., Staessen, J., Wang, J., Gueyffier, F., Thijs, L., and Boutitie, F. (2008). Meta-analysis of continuous outcomes combining individual patient data and aggregate data. Statistics in Medicine, 27(11):1870–1893. Riley, R. D., Lambert, P., and Abo-Zaid, G. (2010). Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ, 340. Riley, R. D., Simmonds, M. C., and Look, M. P. (2007). Evidence synthesis combining individual patient data and aggregate data: a systematic review identified current practice and possible methods. Journal of Clinical Epidemiology, 60(5):431–439. Senn, S. (2000). The many modes of meta. Drug Information Journal, 34:535–549. Senn, S. (2010). Hans van Houwelingen and the art of summing up. Biometrical Journal, 52(1):85–94. Thompson, S. G. and Higgins, J. P. T. (2002). How should meta-regression analyses be undertaken and interpreted? Statistics in Medicine, 21:1559–1573. 32 Carpenter/Krahn/R¨ ucker/Schwarzer Session II: Heterogeneity in Meta-Analysis Florence, 6 July 2014 32
© Copyright 2024