GUIDED PRACTICE THINK AND DISCUSS 4-8 SEE EXAMPLE p. 274 Vocabulary Draw isosceles ∠K as the vertex angle. Name 1.1. Explain why each of the angles!JKL in an with equilateral triangle measures 60°. the legs, base, and base angles of the triangle. 2. GET ORGANIZED Copy and complete the /À>}i organizer. In each box, draw 2. graphic Surveying To find the distance QRand across a river, a surveyor locates three points Q, 1 KEYWORD: MG7 4-8 mark a diagram form, each of= triangle. R, and S. QS = 41 andtype m∠S 35°. The measure of exterior ∠PQS = 70°. Draw a µÕ>ÌiÀ> µÕ>}Õ>À diagram and can find QR. explain how you Worksheet 4-‐8 Exercises KEYWORD: MG7 Parent 2 SEE EXAMPLE p. 274 4-8 SEE EXAMPLE p. 274 SEE EXAMPLE Find each angle measure. GUIDED PRACTICE 3. Vocabulary m∠ECD 1. Draw isosceles !JKL with ∠K4.asm∠K the vertex angle. Name the legs, base, and base angles of the triangle. 1 nÓ Σ QR across a river, a surveyor locates three points Q, 2. SurveyingTo find the distance R, and S. QS = 41 m, and m∠S = 35°. The measure of exterior ∠PQS = 70°. Draw a Exercises 5. diagram m∠X and explain how you can find QR. 6. m∠A 2 SEE EXAMPLE 3 p. 275 1 SEE EXAMPLE p. 274 SEE EXAMPLE 8 measure. Find each angle xÌÊʣή 9 ÎÌÊÊή 3. m∠ECD PRACTICE GUIDED p. 274 2 S E E E X A Mp.P274 LE 3 p. 275 SEE EXAMPLE 4 p. 275 4. m∠K TAKS SEE EXAMPLE 4 Skills Practice p. S11 Application Practice p. S31 0273_0279.indd 276 276 {Ý KEYWORD: MG7 Parent each value. Draw isosceles !JKL with ∠K as the vertex angle. Name the legs, base, Find 1. Vocabulary nÓ Σ base of the 7. and y 8. x , angles - triangle. £ÓÞ 2. Surveying To find the distance QR across a river, a surveyor locates three points Q, 5. m∠X 6. m∠A of exterior∠PQS = 70°. Draw a R, and S. QS = 41<m, and m∠S = 35°. The measure £äÝÊÊÓä®Â {Ý diagram 8 and /explain how9 you can find QR. xÌÊʣή ÎÌÊÊή ÓÝ each angle measure. 9. BC 10. JK Find ÇÌÊÊ£x 3. m∠ECD Find each value. 7. y ÞÊÊÓÎ , £ÓÞ ÈÞÊÊÓ Î£Â £äÌ 8. x 11. Given: !ABC is right isosceles. X is the −− −− −− midpoint of AC. AB $ BC FindProve: each angle !AXBmeasure. is isosceles. 13. m∠E £äÝÊÊÓä®Â 10. JK 8 8 Ó°{Ê ä]Ê䮣äÌ ÊÊÝÊ Ê Ê 12/7/05 1:59:55 PM nä¨ {ä¨ Þ / 8 , 12/7/05 1:59:55 PM Ý ä]Êä® - Ó>]Êä® xÇ ÎÝÊÊ£ä®Â 16. m∠A / 1 ÈÞÊÊ£®Â Find each value. Ý ÇÌÊÊ£x Ó>]Êä® _0273_0279.indd 276 17. z ÊÓä®Â £äÝÊ Ý Ó>]Êä® ä]ÊÓ>® {Ý ÇÌÊÊ£x ÓÝ Â 14. m∠TRU Ó nÓÂ Þ 6. m∠A ä]ÊÓ>® È 15. m∠F 11. Given: !ABC is right isosceles. X is the < −− −− −− 5. m∠X / midpoint of AC. AB $ BC Chapter 4 Triangle Congruence 4. m∠K plane is at A, an air-traffic controller 12 1 9. BC in tower T measures the angle to 13–16 2 _0273_0279.indd 276 ÞÊAfter ÊÓÎ the plane has the plane as 40°. 17–20 3 traveled 2.4 mi to B, the angle to the 21 4 plane is 80°. How ÈÞÊ ÊÓ can you find BT? 76 Chapter 4 Triangle Congruence p. 275 KEYWORD: MG7 4-8 ÓÝ 8 is isosceles.9 9. BC 10. JK Prove: !AXB xÌÊ Ê£Î® ÎÌÊ Êή   ÞÊÊÓÎ £äÌ S E E E X A M P L E 3 Find each value. ä]Êä® 7. y p. 275 8. x , ÈÞÊÊÓ £ÓÞ 276 Chapter 4 Triangle Congruence AND PROBLEM SOLVING Þ PRACTICE Given: !ABC is right isosceles. X is the S E E E X A M P L E 4 11. −− ä]ÊÓ>® −− −− A plane is flying Independent midpoint of AC . AB $parallel BC 12. Aviation p. Practice 275 For See !!". When the to the !AXB ground/isalong AC Prove: isosceles. Exercises Example TEKS < 18. y Ó£ÞÊʣή 12/7/05 1:59:55 PM TEKS 12 TAKS1 {ä¨ in tower T measures angle to PRACTICE AND the PROBLEM SOLVING / 2 the plane as 40°. After the plane has Application Practice p. S31 12. Aviation A plane is flying parallel Independent Practice 17–20 3 Find each angle measure. traveled 2.4 mi to B, the angle to the For See 21 4 !!". When the to the ground along AC Exercises Example 13. m∠E , 14. m∠TRU Ó°{Ê plane is 80°. How can you find BT? nä¨ plane is at A, an air-traffic controller 12 1 È Â TEKS TAKS in tower T measures the angle to {ä¨ 13–16 2 the plane as 40°. After the plane has / Skills Practice p. S11 17–20 3 angle to the xÇ traveled 2.4 mi to B, the Application Practice p. S31 1 each angle measure. 21 4 Find / plane is 80°. How can you find BT? nä¨ , 13. m∠E 14. m∠TRU TEKS TAKS {ä¨ Â Ó ÈÞÊÊ£® 15. m∠F 16. m∠A ÊÊÝÊ Ê Ê È ÎÝÊÊ£ä®Â / Skills Practice p. S11 Skills Practice p. S11 13–16 Application Practice p. S31 _0279.indd 277 0273_0279.indd 277 0273_0279.indd 277 Find each angle measure. 13. m∠E Find each value. ÈÂ Ó m∠F 17. 15. ÚÚâ ÊÊÝÊ Ê Ê z ÊÊ ÊÊÊÊ Ê£{ ÊÂ Ó m∠F Ó 15. ÊÊÝÊ Ê Ê Find each value. - ÎÝÊÊ£ä®Â xÇ 14. m∠TRU ÎÝÊÊ£ä®Â 16. m∠A 18. y - 1Ó£ÞÊʣή ÈÞÊÊ£®Â xÇ £°xÞÊÊ£Ó®Â1 / 16. m∠A / , Ó£ÞÊʣή ÈÞÊÊ£®Â ÚÚâ 17. z 18. y ÊÊ ÊÊÊÊÊ£{ Ê ÚÚÊÎÊÊÊÊÝÊÊÓ Ó 8 19. BC 20. XZ Ó£ÞÊÊ£Î®Â Ó paragraph proof 41. Rewrite of the ÓÝ £°xÞÊÊ£Ó® the  Hypotenuse-Leg (HL) Congruence ÚÚÊxÊÊÊÝÊ ÊÊx ÚÚÊxÊÊÊÝÊ ÊÊÈ 9 Find each value. Ó Theorem as a two-column proof. { z !ABC ÓÝ 41. 17. Rewrite the paragraph proof the triangles. 18. y Given: and !DEF areof right ÊâÊÊÊÊÊ£{ Ê ÊÚÚ Ó < Hypotenuse-Leg (HL) ∠C and ∠F are Congruence right angles. £°xÞÊʣӮ ΠÚÚ −− −− −− −− 8 19. BC ACas$aDF Ê two-column ÊÊÊÝÊ , and ÊÓ Theorem AB $Pproof. DE . midpoint 20. XZ Þ ÓÝ Ó>]ÊÓL® 21. Given: $ABC is the Óis isosceles. −− −− Prove: of !ABC $ !DEF Given: !ABC and !DEF are right triangles. AB. Q isthe midpoint of AC. ÚÚÊxÊÊÊÝÊÊx ÚÚÊxÊÊÊÝÊright −− are −− and −− −− 9 ÊÈ Ó ∠C angles. & AC∠Fdraw { Proof: AB On !DEF EF . Mark G so that FG = CB. Thus FG . From the diagram, %%& −− −− * $ CB+ −− −− −− AC−− −− −− $ QB DF AB $∠F DE . right angles. DF Prove: & ÓÝ ⊥ EG by definition AC PC $ DF and, and ∠C and are of perpendicular Ý SAS. 8 < $ !DGF by Prove: !DEF 19. BC !ABC 20. XZ ÊÎ$ ÊÊÊ∠DFG ÝÊ ÊÓ is a right angle, and ∠DFG lines. ThusÚÚ $ ∠C. !ABC −−− −− −−− −− ä]Êä®−− ÓÝ Ó −− −− −− {>]Êä® DG On $ AB by CPCTC.EF AB. Mark $ DE Gasso given. DG= $CB. DE Thus by theFG Transitive Property. Proof: !DEF that FG $ CB %%& 21. −− Given:−− $ABC draw is isosceles. P is the midpoint Ó>]ÊÓL®the diagram, Þ .From x −−ÚÚ −−∠DFG Ê Ê ÊÊ Ý Ê Êx By the Isosceles Triangle Theorem ∠G $ ∠E. $ ∠DFE since angles −− x −− ÚÚ 9right ÊÊÊÝand Ê ÊÈ ∠F AC $ each DF are right DFor ⊥never EGÓbytrue. definition of perpendicular ofand AB . ∠C Q Êis midpoint ofangles. AC . { the is Tell whether statement sometimes, always, are congruent. So !DGF $ !DEF by AAS. Therefore !ABC $ !DEF by the −− −− lines. ∠DFG is aa sketch. right angle, and ∠DFG $ ∠C. !ABC $ ÓÝ !DGF by SAS. AB & AC Support yourThus answer with −−− −−− −− −− −− −− Transitive Property. + * −− −− DG $ ABPC by&CPCTC. AB $ DE as given. DG $ DE by the <Transitive Property. Prove: QB 22. AnBy equilateral triangle is anTheorem isosceles ∠G triangle. the Isosceles Triangle $ ∠E. ∠DFG $ ∠DFE since right angles Ý Given: $ABC is isosceles. istriangle the by midpoint Ó>]ÊÓL® Þ !DEF are congruent. Soan !DGF $P!DEF Therefore $ by the {>]Êä® ä]Êä® 23. 21. The vertex angle isosceles is congruent to !ABC the base angles. −−AAS. −− of of Property. AB. Q is the midpoint of AC. Transitive −− is a right triangle. −−triangle 24. An isosceles AB & AC 42.Tell Lorena is designing a window so that ∠R, always, ∠S, ∠T, or and whether each statement is sometimes, never true. Óä* + −− −− −− −− Prove: PCanswer &triangle QB with ∠Uequilateral are your right angles, VU $aVT ,obtuse and m∠UVT = are 20°.congruent. sketch. / 25. Support An and an triangle Ý What is m∠RUV? An equilateral triangle an isosceles triangle. 6 26. 22. Critical Thinking Can aisbase angle of an isosceles triangle angle? {>]Êä® ä]Êä®be an obtuse 10° 20° 42. Why Lorena is designing a window so that ∠R, ∠S, ∠T, and 1 , Óä or why not?  23. The vertex angle of an isosceles triangle is congruent to the base angles. −− −− ∠U whether are righteach angles, VU $ VTis, sometimes, and m∠UVT = 20°. or never - true. 70° 80° always, / Tell statement 24. Anisisosceles triangle isaa sketch. right triangle. What m∠RUV? 6 Support your answer with 4- 8 Isosceles and Equilateral Triangles 277 43. Which of these values of y makes !ABC isosceles? 20° triangle. 25. An10° and obtuse triangle are congruent. 22. equilateral triangle is anan isosceles 1 , 1 1 _ _ 1 7 {Þ 70° 80° ÎÞÊÊx 2 ofisancongruent 26. Can a base triangle angle isosceles triangle be an obtuse angle? 23. Critical The4vertexThinking angle of an isosceles to the base angles. 1 1 _ _ Why or why not? 2of these values of y makes !ABC 15 isosceles? 43. 24. Which ÞÊÊ£ä An isosceles triangle is a right triangle. 2 2 1 1 1_ 7_ {Þ An 4equilateral triangle an obtuse triangle are congruent. ÎÞÊÊx 2 of 44.25. Gridded Response Theand vertex angle an isosceles 1:59:59 PM 4- 8 Isosceles and Equilateral Triangles12/7/05277 1 measures (6t - 9)°, and one 1 the base angles _ _ triangle of 2 15 26. Critical Thinking Can a base angle of an isosceles be an obtuse angle? triangle ÞÊÊ£ä 2 2 )°. not? measures Find t. Why or(4t why 44. Gridded Response The vertex angle of an isosceles triangle measures (6t - 9)°, and one of the base angles CHALLENGE AND EXTEND 4- 8 Isosceles and Equilateral Triangles measures (4t)°. Find t. −− −− −−− −− 45. In the figure, JK $ JL, and KM $ KL. Let m∠J = x°. Ý Prove m∠MKL must also be x°. CHALLENGE AND EXTEND 46. An equilateral !ABC is placed on a coordinate plane. −− −− −−− −− 45. In theside figure, JK $measures JL, and KM = x°.and Each length 2a.$BKL is .atLet them∠J origin, Prove mustthe also be x°. coordinates of A. C is atm∠MKL (2a, 0). Find Ý 277 12/7/05 1:59:59 PM 12/7/05 1:59:59 PM
© Copyright 2024