Algebra II Honors WKST 10-5 Conic Sections: Parabolas Name: _____________________________ Date: _________________ Period: ______ 1. What is the equation of a horizontal parabola? __________________________________________________________ 2. What is the equation of a vertical parabola? ____________________________________________________________ 3. What is the equation of a horizontal directrix? ___________________ 4. Vertical directrix? ___________________ For each parabola, graph the function and label the directrix and focus point. Then, determine how it opens (horizontal/vertical), vertex, focus point, directrix, and axis of symmetry. 5. y = 1 2 x 12 1 2 y 4 6. x = 7. ( y − 3) 2 = −8 ( x + 1) Circle one: Horizontal/Vertical Circle one: Horizontal/Vertical Circle one: Horizontal/Vertical Vertex: ______ Focus: _______ Vertex: ______ Focus: _______ Vertex: ______ Focus: _______ Directrix: _______ AOS: _______ Directrix: _______ AOS: _______ Directrix: _______ AOS: _______ 8. ( x − 2) 2 = −12 y 10. y − 9. 24( x + 4) = ( y − 3) 2 1 = x2 2 Circle one: Horizontal/Vertical Circle one: Horizontal/Vertical Circle one: Horizontal/Vertical Vertex: ______ Focus: _______ Vertex: ______ Focus: _______ Vertex: ______ Focus: _______ Directrix: _______ AOS: _______ Directrix: _______ AOS: _______ Directrix: _______ AOS: _______ Find the focus and the directrix of the parabola. The vertex of the parabola is (0, 0). 11. −12 x = F: ______ 1 2 y 2 D: ______ 12. x = − 1 2 y 20 F: ______ 13. D: ______ 1 2 x =y 16 F: ______ D: ______ Use the given characteristics to answer the following questions. 14. A parabola has the vertex of (0, 0) and a focus of (-3, 0). Determine the equation and the directrix. 15. A parabola has a focus point of (4, 6) and a directrix of x=0. 16. The equation given is − x = ( y − 2) 2 . Determine the vertex, focus, and directrix. 17. The equation given is 4( y + 3) = ( x − 1) 2 . Determine the vertex, focus, and directrix. 18. A focus point of (–2, 1) and vertex is (–3, 1). Determine the equation and the directrix. ⎛3 ⎝2 ⎞ ⎠ 19. The vertex of ⎜ , 0 ⎟ and the directrix is x = 0. Find the equation and focus point. 20. A vertical parabolic communications antenna has a focus 6 ft from the vertex of the antenna. Determine the equation. Match the graph with the appropriate equation 21. ( y + 4) 2 = 4( x − 1) 22. ( y − 1) 2 = −16( x + 3) 23. ( y − 1) 2 = −12( x − 2) 24. ( y − 3) 2 = 4( x + 1) 25. ( x + 2) 2 = −16( y + 1) 26. ( x − 2) 2 = −12( y + 1) A. B. C. D. E. F.
© Copyright 2025