clemath.com ﺍﻤﻮﻋﺎﺕ Zﻭ IDﻭ Qﻭ IR (1ﳎﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﺍﻟﺼﺤﻴﺤﺔ ﺍﻟﻨﺴﺒﻴﺔ Z/ }Z/ = {..... − 3;−2;−1;0;1;2;3..... ﺃﻣﺜﻠﺔ: −1275 ∈ Z/ ؛ I ⊂ Z/ −13,5 ∉ Z/ ؛ 3 ∉ Z/ 5 2 ∉ Z/ ؛ (2ﳎﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﺍﻟﻌﺸﺮﻳﺔ ﺍﻟﻨﺴﺒﻴﺔ . ID p n ∈ I و ID = n / p ∈ Z/ 10 13205 13205 = 13,205 = ﺃﻣﺜﻠﺔ∈ ID : 1000 10 3 I ⊂ Z/ ⊂ ID ﻭ 1 = 0,33333...... ∉ ID 3 Q (3ﳎﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﺍﳉﺬﺭﻳﺔ / p Q/ = q ∈ Z/ * و / p ∈ Z/ q 3 2 ﺃﻣﺜﻠﺔ: ﻭ − ∈ Q/ﻭ ∈ Q/ 7 5 I ⊂ Z/ ⊂ ID ⊂ Q/ 2501 ∈ Q/ 1000 = 2,501 ﻭ 31 ∈ Q/ 1 = 31 (4ﳎﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﺍﳊﻘﻴﻘﻴﺔ IR ﺗﻮﺟﺪ ﻗﻴﺎﺳﺎﺕ ﻻ ﳝﻜﻦ ﺍﻟﺘﻌﺒﲑ ﻋﻨﻬﺎ ﺑﺄﻋﺪﺍﺩ ﺟﺬﺭﻳﺔ ،ﻭﻗﻴﻤﻬﺎ ﺍﻟﻌﺪﺩﻳﺔ ﺗﺴﻤﻰ ﺃﻋﺪﺍﺩﺍ ﻻﺟﺬﺭﻳﺔ .ﻣﺜﻼ ﺍﻟﻌﺪﺩ ﺍﻟﻼﺟﺬﺭﻱ . 2 ﺗﻌﺮﻳﻒ ﳎﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﺍﳊﻘﻴﻘﻴﺔ IRﻫﻲ ﺍﻤﻮﻋﺔ ﺍﳌﻜﻮﻧﺔ ﻣﻦ ﺍﻷﻋﺪﺍﺩ ﺍﳉﺬﺭﻳﺔ ﻭﺍﻷﻋﺪﺍﺩ ﺍﻟﻼﺟﺬﺭﻳﺔ. I ⊂ Z/ ⊂ ID ⊂ Q/ ⊂ IR (5ﺍﻟﻌﻤﻠﻴﺎﺕ ﰲ ﺍﻤﻮﻋﺔ IR (1-5ﺍﳉﻤﻊ ﻭﺍﻟﻀﺮﺏ ﰲ IR ﻟﻜﻞ aﻭ bﻭ cﻭ dﻣﻦ IRﻟﺪﻳﻨﺎ: • a+b =b+a • a + (b + c) = (a + b) + c • a+0= a ) ﺗﺒﺎﺩﻟﻴﺔ ﺍﳉﻤﻊ ( ) ﲡﻤﻴﻌﻴﺔ ﺍﳉﻤﻊ ( • (−a) + a = a + (−a ) = 0 ) 0ﻳﺴﻤﻰ ﺍﻟﻌﻨﺼﺮ ﺍﶈﺎﻳﺪ ﻟﻠﺠﻤﻊ ( ) −aﻳﺴﻤﻰ ﻣﻘﺎﺑﻞ ( a • ab = ba ) ﺗﺒﺎﺩﻟﻴﺔ ﺍﻟﻀﺮﺏ ( 1 L. L. clemath.com a (bc) = (ab)c • () ﲡﻤﻴﻌﻴﺔ ﺍﻟﻀﺮﺏ ( ﻳﺴﻤﻰ ﺍﻟﻌﻨﺼﺮ ﺍﶈﺎﻳﺪ ﻟﻠﻀﺮﺏ1 ) ( a ﻳﺴﻤﻰ ﻣﻘﻠﻮﺏ 1× a = a • 1 ) (a ≠ 0) a ( ) ﺗﻮﺯﻳﻌﻴﺔ ﺍﻟﻀﺮﺏ ﻋﻠﻰ ﺍﳉﻤﻊ 1 1 ×a = a× =1 • a a a (b + c) = ab + ac • (a + b)c = ac + bc a −a a (b ≠ 0 ) − = = b b −b a c ( d ≠ 0 ﻭb ≠ 0 ) ad = bc ﻳﻜﺎﻓﺊ = b d a ca (c ≠ 0 ﻭb ≠ 0 ) = b cb a c a+c (m ≠ 0) + = m m m a c ad + bc ( d ≠0 ﻭb≠0) + = b d bd a c ac ( d ≠0 ﻭb≠0) × = b d bd 1 b = ( b ≠ 0 ﻭa ≠ 0) a a b a b = a × d = ad (d ≠ 0 ﻭc ≠ 0 ﻭb ≠ 0) c b c bc d • • • • • • • • • IR ( ﻗﻮﺍﻋﺪ ﺍﳊﺴﺎﺏ ﰲ2-5 : ﻟﺪﻳﻨﺎIR ﻣﻦc ﻭb ﻭa ﻟﻜﻞ (b ≠ 0 ) (c ≠ 0) L. L. 2 a = c−b ﻳﻜﺎﻓﺊ a+b =c • a= c b a+c =b+c ﻳﻜﺎﻓﺊ ab = c • a=b • ac = bc ﻳﻜﺎﻓﺊ ﻳﻜﺎﻓﺊ b = 0 ﺃﻭa = 0 ﻳﻜﺎﻓﺊ ab = 0 • b≠0 ﻭa≠0 ﻳﻜﺎﻓﺊ ab ≠ 0 • a=b • clemath.com ﺍﻟﺘﻤﺮﻳﻦ .1 1ﺑﲔ ﺃﻥ 1 1 1 + + =0 )(a − b)( a − c) (b − a)(b − c) (c − a)(c − b 2 4 1 1 1+ − 5 ×3 6 ×2 1 1 3 1 8− − 3+ 9 2 4 10 5− .2ﺃﺣﺴﺐ: (3-5ﺍﳉﺬﻭﺭ ﺍﳌﺮﺑﻌﺔ ﺗﻌﺮﻳﻒ aﻋﺪﺩ ﺣﻘﻴﻘﻲ ﻣﻮﺟﺐ .ﺍﳉﺬﺭ ﺍﳌﺮﺑﻊ ﻟﻠﻌﺪﺩ aﻫﻮ ﺍﻟﻌﺪﺩ ﺍﳊﻘﻴﻘﻲ ﺍﳌﻮﺟﺐ bﺍﻟﺬﻱ ﻣﺮﺑﻌﻪ ﻳﺴﺎﻭﻱ ، aﻭﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ a ﺃﻣﺜﻠﺔ 9 = 3 : ﻷﻥ 32 = 9 ﻭﻧﻜﺘﺐa = b : ﻳﻌﲏ b 2 = a . 2 = 1,4142135... ؛ ﺧﺎﺻﻴﺎﺕ • ﻟﻜﻞ xﻭ yﻣﻦ : IR + - x. y y - = x. y =x x ؛ x = y y ) ( y≠0 ؛ =x )( x 2 x=y ﻳﻜﺎﻓﺊ • ﻟﻜﻞ xﻣﻦ : IR + x2 = x • ﻟﻜﻞ xﻣﻦ : IR − x2 = −x ﺍﻟﺘﻤﺮﻳﻦ .1 2ﺃﺣﺴﺐ ﺍﳉﺬﺭ ﺍﳌﺮﺑﻊ ﻟﻜﻞ ﻣﻦ ﺍﻷﻋﺪﺍﺩ ﺍﻟﺘﺎﻟﻴﺔ: 81 64 625؛ 1024؛ 108؛ 3 121 + 3 .2ﺑﺴﻂ ﺍﻷﻋﺪﺍﺩ ﺍﻟﺘﺎﻟﻴﺔ: ؛ . 0,16 ؛ 75 × 27 . 6 2 + 82 ؛ (4-5ﻗﻮﻯ ﻋﺪﺩ ﺣﻘﻴﻘﻲ. ﺗﻌﺮﻳﻒ a ∈ IR ﻭ * . n ∈ I a n = a × a × ..... × a a0 =1 ﻭ ﻭ 1 n a = ( a ≠ 0 ) a −n ﺍﻟﻌﺪﺩ a nﻳﺴﻤﻰ ﻗﻮﺓ ﺍﻟﻌﺪﺩ aﺫﺍﺕ ﺍﻷﺱ . n ﻗﻮﻯ ﺍﻟﻌﺪﺩ 10 4 ) 10 4 = 10000ﺃﺻﻔﺎﺭ ( ﻭ −5 5 ) 10 = 0.00001ﺃﺻﻔﺎﺭ ( 3 L. L. clemath.com ﻧﺘﺎﺋﺞ a ∈ IR؛ b ∈ IR؛ a n × a m = a n+ m n ∈ Z/ n a n × b n = (ab) n ؛ (a n ) m = a n×m ﻭ n = a n−m ؛ a am an )( a ≠ 0 a = bn b ) (b ≠ 0 = an )( a ≥ 0 )( a n ؛ m ∈ Z/ ﺍﻟﻜﺘﺎﺑﺔ ﺍﻟﻌﻠﻤﻴﺔ ﻟﻌﺪﺩ ﻋﺸﺮﻱ ﺃﻣﺜﻠﺔ : 34210000 = 3,421 × 10 7 −5 ؛ 0,0000351 = 3,51×10 ﺍﻟﺘﻤﺮﻳﻦ 3ﺑﺴﻂ ﺍﻟﺘﻌﺎﺑﲑ ﺍﻟﺘﺎﻟﻴﺔ: −4 2 7 × 55 × 2 (49 × 121) − 2 7 3 × 21−5 × 352 × (5−1 ) 4؛ 32 × (9 2 ) −4 × 27 × 81؛ (5-5ﺍﳌﺘﻄﺎﺑﻘﺎﺕ ﺍﳍﺎﻣﺔ ﺧﺎﺻﻴﺎﺕ ﻟﻴﻜﻦ a ∈ IRﻭ : b ∈ IR 3 2 3 2 3 (a + b) = a + 3a b + 3ab + b (a + b) 2 = a 2 + 2ab + b 2 (a − b) 3 = a 3 − 3a 2 b + 3ab 2 − b 3 (a − b) 2 = a 2 − 2ab + b 2 ) a 3 − b 3 = (a − b)(a 2 + ab + b 2 2 3 2 3 ) a + b = (a + b)(a − ab + b )a 2 − b 2 = (a − b)(a + b (6-5ﺍﻟﻨﺸﺮ ﻭﺍﻟﺘﻌﻤﻴﻞ ﻧﺸﺮ ﺟﺪﺍﺀ ﻫﻮ ﲢﻮﻳﻠﻪ ﺇﱃ ﲨﻊ ﻭﺗﻌﻤﻴﻞ ﳎﻤﻮﻉ ﻫﻮ ﲢﻮﻳﻠﻪ ﺇﱃ ﺟﺪﺍﺀ. 1 1 ﺍﻟﺘﻤﺮﻳﻦ .1 4ﺃﻧﺸﺮ ﺍﻟﺘﻌﺒﲑﻳﻦ ﺍﻟﺘﺎﻟﻴﲔ ( x + 2)( x 2 − 2 x + 3) :؛ ) ( x − )(5 x − 3 4 3 2 .2ﻋﻤﻞ ﺍﻟﺘﻌﺒﲑﻳﻦ ﺍﻟﺘﺎﻟﻴﲔ (7 x − 1) + (49 x 2 − 1) :؛ x + 2 x − x − 2 ﺍﻟﺘﻤﺮﻳﻦ 5ﻋﻤﻞ ﺍﻟﺘﻌﺎﺑﲑ ﺍﻟﺘﺎﻟﻴﺔ: 3 a − b3 + a 2 − b 2 ﺍﻟﺘﻤﺮﻳﻦ 6ﺍﻧﺸﺮ ﺍﻟﺘﻌﺎﺑﲑ ﺍﻟﺘﺎﻟﻴﺔ: () ؛ 2 3 2 3 a +b + a −b ؛ )(a + b) − (a − b 3 3 ) )(2 a − 3 b )(4a + 6 ab + 9b )(3 a + 5 b )(9a − 15 ab + 25b a −1 a + a +1 ( 4 L. L.
© Copyright 2025