ﻤﺠﻠﺔ ﺠﺎﻤﻌﺔ ﺩﻤﺸﻕ ﻟﻠﻌﻠﻭﻡ ﺍﻷﺴﺎﺴﻴﺔ ـ ﺍﻟﻤﺠﻠﺩ ) (١٦ـ ﺍﻟﻌﺩﺩ ﺍﻷﻭل ـ ٢٠٠٠
ﻤﻨﻅﻡ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ،ﻭﺫﺍﺕ ﺍﻟﺭﺘﺒﺔ
ﺍﻟﻔﺭﺩﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ ) ،GL(q,pﺤﻴﺙ pﻭ qﻋﺩﺩﺍﻥ ﺃﻭﻟﻴﺎﻥ
ﺩ .ﺍﺴﻜﻨﺩﺭ ﻋﻠﻲ ﻭ ﺴﻠﻭﻯ ﻴﻌﻘﻭﺏ
ﻗﺴﻡ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ـ ﻜﻠﻴﺔ ﺍﻟﻌﻠﻭﻡ ـ ﺠﺎﻤﻌﺔ ﺘﺸﺭﻴﻥ ـ ﺍﻟﻼﺫﻗﻴﺔ ـ ﺍﻟﺠﻤﻬﻭﺭﻴﺔ ﺍﻟﻌﺭﺒﻴﺔ ﺍﻟﺴﻭﺭﻴﺔ
ﺘﺎﺭﻴـﺦ ﺍﻹﻴﺩﺍﻉ ١٩٩٨/٠٢/٢٠
ﻗﺒل ﻟﻠﻨﺸـﺭ ﻓﻲ ١٩٩٩/٠٥/٢٥
ﺍﻟﻤﻠﺨﺹ
ﺴﻭﻑ ﻨﺴﺘﻌﺭﺽ ﻓﻲ ﻫﺫﻩ ﺍﻟﺩﺭﺍﺴﺔ ﻤﺴﺄﻟﺔ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) GL(q,pﺤﻴـﺙ q,p
ﻋﺩﺩﺍﻥ ﺃﻭﻟﻴﺎﻥ ،q|(p-١) ،ﻭﺍﻟﺘﻲ ﺘﻤﻠﻙ ﺭﺘﺒﺔ ﻤﺎ ،rﺤﻴﺙ ) ، r /| ( P − 1ﻤﻥ ﺤﻴﺙ ﺩﺭﺍﺴﺔ ﺯﻤﺭﻫـﺎ ﺍﻟﺠﺯﺌﻴـﺔ
ﺍﻟﻨﻅﺎﻤﻴﺔ ﻭﺘﺤﺩﻴﺩ ﺭﺘﺒﺔ ﺍﻟﻤﻨﻅﻡ ﻟﻜ ﱟل ﻤﻨﻬﺎ ﻓﻲ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺘﻲ ﻴﻜﻭﻥ ﻓﻴﻬﺎ rﻋﺩﺩﹰﺍ ﻓﺭﺩﻴﺎﹰ ،ﻭﻜﺫﻟﻙ ﺩﺭﺍﺴـﺔ ﻤﺴـﺄﻟﺔ
ﺘﺭﺍﻓﻘﻬﺎ ﻓﻲ ﺍﻟﺯﻤﺭﺓ ).GL(q,p
ﺍﻟﻜﻠﻤﺎﺕ ﺍﻟﻤﻔﺘﺎﺡ :ﺯﻤﺭﺓ ـ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ـ ﻤﻨﻅﻡ ـ ﺯﻤﺭﺓ ﻗﺎﺒﻠﺔ ﻟﻠﺤل.
١٠١
… ﻴﻌﻘﻭﺏ ﻭ ﻋﻠﻲ ـ ﺩﺭﺍﺴﺔ ﻤﻨﻅﻡ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻭﺫﺍﺕ ﺍﻟﺘﺭﺒﺔ ﺍﻟﻔﺭﺩﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ
Normalijor of Isolating Soluable Subgroups of
Odd Order in the Qroup GL(q, p),
Where p, q are prime sumfers
Salwa YAAQOOP , Dr Eskandar ALI
Mathematics Department-Faculty of Science-Tishreen University-Lattaquia-Syria
Received ٢٠/٠٢/١٩٩٨
Accepted ٢٥/٠٥/١٩٩٩
ABSTRACT
This study represents the problem of the invariant sub-groups of the
maximal solvable invariant sub-groups in a group GL(q,p), with p and q are
primes, q|(p-١), and its order is r with r /| ( P − 1) , as the studying of its
normalizer groups and identification the order of the normalizer for each one
in the case r is an odd order, and also with studying the problem of its
conjunction in a group GL(q,p).
Key Words: Group, Subgroup, Normalizor, Solvable Group.
١٠٢
ﻤﺠﻠﺔ ﺠﺎﻤﻌﺔ ﺩﻤﺸﻕ ﻟﻠﻌﻠﻭﻡ ﺍﻷﺴﺎﺴﻴﺔ ـ ﺍﻟﻤﺠﻠﺩ ) (١٦ـ ﺍﻟﻌﺩﺩ ﺍﻷﻭل ـ ٢٠٠٠
ﺘﻌﺎﺭﻴﻑ ﻭﻤﺼﻁﻠﺤﺎﺕ:
-
⎞⎛n
ﻨﺩﻋﻭ ﺍﻟﺤﻘل ⎟ GF ⎜ pﺤﻴﺙ pﻋﺩﺩ ﺃﻭﻟﻲ ﻭ nﻋﺩﺩ ﻁﺒﻴﻌـﻲ ،ﺒﺤﻘـل ﻏـﺎﻟﻭﺍ ﻤـﻥ
⎠ ⎝
n
-
ﺍﻟﺭﺘﺒﺔ . p
ﺍﻟﺯﻤﺭﺓ ) GL(Vﻫﻲ ﺯﻤﺭﺓ ﻤﺼﻔﻭﻓﺎﺕ ﺠﻤﻴﻊ ﺍﻟﻤﺅﺜﺭﺍﺕ ﺍﻟﺨﻁﻴﺔ ﺍﻟﻤﺘﺒﺎﻴﻨﺔ ﻋﻠﻰ ﺍﻟﻔﻀﺎﺀ
.V
-
ﻨﺴﻤﻲ ﺍﻟﺯﻤﺭﺓ Hﺍﻟﺠﺯﺌﻴﺔ ﻤﻥ ﺍﻟﺯﻤﺭﺓ ) ،GL(Vﺯﻤﺭﺓ ﻨﺎﻗﻠﺔ ﻋﻠﻰ ﺍﻟﻔﻀﺎﺀ Vﺇﺫﺍ ﻭﺠـﺩ
ﻓﻲ ﺍﻟﻔﻀﺎﺀ Vﻓﻀﺎﺀ ﺠﺯﺌﻲ ﻭﺍﺤﺩ ﻋﻠﻰ ﺍﻷﻗـل ﻤﺜـل ،V١ﺒﺤﻴـﺙ
)ﺍﻟﻔﻀﺎﺀ ﺍﻟﺼﻔﺭﻱ( ﻭﻜﺎﻥ:
{0} ≠ V1 ≠ V
h (V1 ) = V1 ; ∀h ∈ H
ﺃﻤﺎ ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴﺔ Hﻻ ﺘﻨﻘل ﻤﻥ ﺍﻟﻔﻀﺎﺀﺍﺕ ﺍﻟﺠﺯﺌﻴﺔ ﻓﻲ ﺍﻟﻔﻀﺎﺀ Vﺴـﻭﻯ
ﺍﻟﻔﻀﺎﺌﻴﻥ ﺍﻟﺠﺯﺌﻴﻴﻥ Vﻭ } {0ﻋﻨﺩﺌﺫ ﻨﺩﻋﻭﻫﺎ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ ) GL(Vﻋﻠﻰ
ﺍﻟﻔﻀﺎﺀ .V
-
ﻨﻘﻭل ﻋﻥ ﺍﻟﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴﺔ GL(V)⊃Hﺇﻨﹼﻬﺎ ﺯﻤﺭﺓ ﻏﻴﺭ ﺃﺼﻠﻴﺔ ،ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﻔﻀـﺎﺀ V
⊕
ﻴﻜﺘﺏ ﻋﻠﻰ ﺸﻜل ﻤﺠﻤﻭﻉ ﻤﺒﺎﺸﺭ V = ∑ Qv ; v ∈ Iﻟﻔﻀﺎﺀﺍﺕ ﺠﺯﺌﻴﺔ ، {0} ≠ Qv
ﻭﻜﺎﻥ ) Card I>١ﺤﻴﺙ Iﻤﺠﻤﻭﻋﺔ ﺠﺯﺌﻴﺔ ﻤﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻁﺒﻴﻌﻴﺔ( ،ﻭﻜﺎﻥ ﻤﻥ
ﻥ g (Qα ) ⊆ Qβﺤﻴﺙ . I ∋ β
ﺃﺠل ﺃﻱ I ∋ αو H ∋ gﺃ
ﺃﻤﺎ ﺇﺫﺍ ﻜﺎﻨﺕ Hﻻ ﺘﺤﻘﻕ ﺍﻟﺸﺭﻭﻁ ﺍﻟﺴﺎﺒﻘﺔ ﻓﻨﺩﻋﻭﻫﺎ ﺯﻤﺭﺓ ﺃﺼﻠﻴﺔ.
-
ﻨﺩﻋﻭ ﺍﻟﺯﻤﺭﺓ Hﺯﻤﺭﺓ ﻗﺎﺒﻠﺔ ﻟﻠﺤل ﺇﺫﺍ ﻭﺠﺩﺕ ﻓﻴﻬﺎ ﺴﻠﺴﻠﺔ ﻤـﻥ ﺍﻟﺯﻤـﺭ ﺍﻟﺠﺯﺌﻴـﺔ Hi
ﺒﺤﻴﺙ:
=H
{1} = H 0 ⊆ H 1 ⊆ ... ⊆ H r
ﺤﻴﺙ H i +1 ∆H iﺘﻌﺭﻴﻑ ﺍﻟﺯﻤﺭﺓ ﺍﻟﻨﻅﺎﻤﻴﺔ )ﺃﻱ ﺍﻟﺯﻤﺭﺓ H iﻨﻅﺎﻤﻴﺔ ﻓﻲ ﺍﻟﺯﻤـﺭﺓ ،( H i +1
H
ﻭﺍﻟﺯﻤﺭﺓ ﺍﻟﻌﺎﻤﻠﺔ
i +1ﺠﻤﻴﻌﻬﺎ ﺘﺒﺩﻴﻠﻴﺔ.
Hi
١٠٣
ﻴﻌﻘﻭﺏ ﻭ ﻋﻠﻲ ـ ﺩﺭﺍﺴﺔ ﻤﻨﻅﻡ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻭﺫﺍﺕ ﺍﻟﺘﺭﺒﺔ ﺍﻟﻔﺭﺩﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ …
-
ﻼ ﺯﻤﺭﻴﹰﺎ ﻋﻨﺩﺌﺫ ﺴـﻨﺭﻤﺯ ﺒــﹻ Ψ H : H → K
ﺒﻔﺭﺽ Ψ : G1 → G2ﺘﺸﺎﻜ ﹰ
ﻟﻤﻘﺼﻭﺭ Ψﻋﻠﻰ ،Hﺤﻴﺙ Hﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻤﻥ ﺍﻟﺯﻤﺭﺓ G١ﻭ Kﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻤـﻥ
ﺍﻟﺯﻤﺭﺓ .G٢
-
ﺴﻨﺭﻤﺯ ﺒـﹻ H 1 , H 2ﻟﻠﺯﻤﺭﺓ ﺍﻟﻤﻭﻟﹼﺩﺓ ﻤﻥ ﺍﻟﺯﻤﺭﺘﻴﻥ ﺍﻟﺠـﺯﺌﻴﺘﻴﻥ H١ﻭ H٢ﻤـﻥ
ﺯﻤﺭﺓ ﻤﺎ ،Gﻜﻤﺎ ﺴﻨﺭﻤﺯ ﺒـﹻ aﻟﻠﺯﻤﺭﺓ ﺍﻟﺩﻭﺭﻴﺔ ﺍﻟﻤﻭﻟﹼﺩﺓ ﺒﻌﻨﺼﺭ ﻭﺍﺤـﺩ aﻤـﻥ
ﺍﻟﺯﻤﺭﺓ .G
-
ﻨﺩﻋﻭ Sxﺒﺯﻤﺭﺓ ﺍﻟﺘﺒﺎﺩﻴل ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﻤﻭﻋﺔ .x
ﺍﻟﺯﻤﺭﺓ ) GL(q,pﻫﻲ ﺯﻤﺭﺓ ﺠﻤﻴﻊ ﺍﻟﻤﺼﻔﻭﻓﺎﺕ ﺍﻟﻤﺭﺒﻌﺔ ﺍﻟﻘﻠﻭﺒـﺔ )ﺍﻟﻤﻨﺘﻅﻤـﺔ( ﻤـﻥ
ﺍﻟﻤﺭﺘﺒﺔ ،qﻭﺍﻟﻤﺄﺨﻭﺫﺓ ﻋﻨﺎﺼﺭﻫﺎ ﻤﻥ ﺍﻟﺤﻘل ) ،GF(Pﺤﻴﺙ pﻭ qﻋﺩﺩﺍﻥ ﺃﻭﻟﻴـﺎﻥ ،ﻭ
Iqﻤﺼﻔﻭﻓﺔ ﺍﻟﻭﺍﺤﺩﺓ ﻓﻲ ﻫﺫﻩ ﺍﻟﺯﻤﺭﺓ.
-
ﺍﻟﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴﺔ ) SL(q,pﻭﻫﻲ ﺯﻤﺭﺓ ﺠﻤﻴﻊ ﺍﻟﻤﺼﻔﻭﻓﺎﺕ ﻤﻥ ﺍﻟﺯﻤﺭﺓ ) GL(q,pﻭﺍﻟﺘﻲ
-
ﻨﺴﻤﻲ ﺍﻟﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴـﺔ } N ( A) = {g ∈ GL(q, p ); gA = Agﺯﻤـﺭﺓ ﺍﻟﻤـﻨﻅﻡ
ل ﻤﻨﻬﺎ ﻴﺴﺎﻭﻱ ﺍﻟﻭﺍﺤﺩ.
ﻤﻌﻴﻥ ﻜ ﱟ
ﻟﻠﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴﺔ Aﻓﻲ ﺍﻟﺯﻤﺭﺓ ) ،GL(q,pﻭﻫﻲ ﺃﻜﺒﺭ ﺯﻤﺭﺓ ﺠﺯﺌﻴـﺔ ﻓـﻲ ﺍﻟﺯﻤـﺭﺓ
) GL(q,pﺘﻜﻭﻥ Aﻨﻅﺎﻤﻴﺔ ﻓﻴﻬﺎ.
-
ﻨﺩﻋﻭ ﺍﻟﻌﻨﺼﺭ (a, b ) = aba −1b −1ﻤﺒﺎﺩل ﺍﻟﻌﻨﺼﺭﻴﻥ aﻭ bﻤﻥ ﺍﻟﺯﻤﺭﺓ .A
-
ﻟﺘﻜﻥ Aﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻤﺎ ،ﻨﺩﻋﻭ ﺍﻟﺯﻤـﺭﺓ ﺍﻟﺠﺯﺌﻴـﺔ A′ = aba −1b −1 ; a, b ∈ A
}
{
ﺍﻟﻤﻭﻟﺩﺓ ﺒﻜل ﺍﻟﻤﺒﺎﺩﻻﺕ ﻓﻲ Aﺒﺎﻟﺯﻤﺭﺓ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺯﻤﺭﺓ Aﺃﻭ ﺍﻟﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴﺔ ﻟﻠﻤﺒﺎﺩﻻﺕ
ﻓﻲ .A
ﺍﻟﻤﺒﺭﻫﻨﺎﺕ:
ﻥ ﺍﻟﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ﺍﻟﺯﻤﺭﺓ ) GL(q,pﻫـﻲ
-١ﻤﻌﻠﻭﻡ ﻤﻥ ] [١ﺃ
ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ﺘﻠﻙ ﺍﻟﺯﻤﺭﺓ.
١٠٤
ﻤﺠﻠﺔ ﺠﺎﻤﻌﺔ ﺩﻤﺸﻕ ﻟﻠﻌﻠﻭﻡ ﺍﻷﺴﺎﺴﻴﺔ ـ ﺍﻟﻤﺠﻠﺩ ) (١٦ـ ﺍﻟﻌﺩﺩ ﺍﻷﻭل ـ ٢٠٠٠
-١ﺒﻔﺭﺽ Gﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﻅﻤﻰ ﻋﺎﺯﻟﺔ ﻭﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) GL(q,pﺤﻴﺙ Gﺃﺼﻠﻴﺔ
ﻭ pﻭ qﻋﺩﺩﺍﻥ ﺃﻭﻟﻴﺎﻥ ،ﻭﺒﺤﻴﺙ ) ،q|(p-١ﻭﻟﺘﻜﻥ Fﺯﻤﺭﺓ ﺘﺒﺩﻴﻠﻴﺔ ﻨﻅﺎﻤﻴـﺔ ﻋﻅﻤـﻰ ﻓـﻲ
ﺍﻟﺯﻤﺭﺓ Gﻤﻥ ﺍﻟﺸﻜل:
*
⎧
⎫
⎬)F = ⎨ ρI q ; ρ ∈ ∆, ∆ = GF ( P
⎩
⎭
ﻋﻨﺩﺌ ٍﺫ ﺘﻭﺠﺩ ﻓﻲ Gﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻨﻅﺎﻤﻴﺔ Aﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ]:[١
)A = a b F ; a q = b q = 1, (a, b) = ωI q ; ω q = 1,1 ≠ ω ∈ GF ( P
]
)(١
)(٢
[
⎤⎡ 0 1
⎢=b
, a = diag 1, ω, ω 2 ,..., ωq −1
⎥
⎦⎣I q −1 0
ﻟﺘﻜﻥ Hﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻤﺎ ﻋﺎﺯﻟﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ Gﻭﺫﺍﺕ ﺭﺘﺒﺔ ﻓﺭﺩﻴﺔ rﺒﺤﻴﺙ )r /| ( P − 1
ﻋﻨﺩﺌﺫ ﻤﻥ ﺃﺠل ﺘﺤﺩﻴﺩ ﺭﺘﺒﺔ ﺍﻟﻤﻨﻅﻡ ﻟﻬﺫﻩ ﺍﻟﺯﻤﺭﺓ ﺴﻨﻭﺭﺩ ﻤﺎ ﻴﻠﻲ:
ﻤﺒﺭﻫﻨﺔ:
ﺇﻥ ) N(Hﺭﺘﺒﺔ ﺍﻟﻤﻨﻅﻡ ﻷﻱ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ Hﻋﺎﺯﻟﺔ ﻏﻴﺭ ﺘﺒﺩﻴﻠﻴﺔ ﻤﻥ ﺍﻟﺯﻤﺭﺓ Gﻓـﻲ
ﺍﻟﺯﻤﺭﺓ ) GL(q,pﻭﺫﺍﺕ ﺭﺘﺒﺔ ﻓﺭﺩﻴﺔ rﺤﻴﺙ ) r /| (P − 1ﺘﺤﻘﻕ ﻤﺎ ﻴﻠﻲ:
N(H) = G (١ﻋﻨﺩﻤﺎ ) ، p − 1 ≡/ 0(mod 4ﺃﻤﺎ ﺇﺫﺍ ﻜـﺎﻥ ) P − 1 ≡ 0(mod 4
ﻓﻴﺠﺏ ﺃﻥ ﺘﻜﻭﻥ .A⊃H
N ( H ) = 6 q 2 ( p − 1) (٢ﻓﻴﻤﺎ ﻋﺩﺍ ﺫﻟﻙ.
ﺍﻟﺒﺭﻫﺎﻥ:
ﻟﺘﻜﻥ Hﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻤﺎ ﻋﺎﺯﻟﺔ ﺫﺍﺕ ﺭﺘﺒﺔ ﻓﺭﺩﻴﺔ rﻤﻥ ﺍﻟﺯﻤﺭﺓ ،Gﺤﻴﺙ )، r /| (P − 1
ﻋﻨﺩﺌﺫ ﻤﻥ ﺘﻌﺭﻴﻑ ﺍﻟﻌﺎﺯﻟﻴﺔ ﻓﺈﻥ ) N(Hﺯﻤﺭﺓ ﺍﻟﻤﻨﻅﻡ ﻟــ Hﻓﻲ ) GL(q,pﺘﺸـﻜل ﺯﻤـﺭﺓ
ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻓﻲ ) GL(q,pﻭﺃﻴﻀﹰﺎ ) N(Hﺯﻤﺭﺓ ﺠﺯﺌﻴـﺔ ﻗﺎﺒﻠـﺔ ﻟﻠﺤـل ﻓـﻲ )،GL(q,p
ﺒﺎﻟﺤﻘﻴﻘﺔ ،ﺇﻨﻪ ﻤﻥ ﺍﻟﺴﻬل ﺍﻟﺘﺤﻘﻕ ﺃﻥ ) H ⊇ N ′( Hﻋﻠﻤﹰﺎ ﺃﻥ ) N ′( Hﺍﻟﺯﻤـﺭﺓ ﺍﻟﻤﺸـﺘﻘﺔ
١٠٥
ﻴﻌﻘﻭﺏ ﻭ ﻋﻠﻲ ـ ﺩﺭﺍﺴﺔ ﻤﻨﻅﻡ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻭﺫﺍﺕ ﺍﻟﺘﺭﺒﺔ ﺍﻟﻔﺭﺩﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ …
ﻟﻠﺯﻤﺭﺓ ) N(Hﻫﻲ ﺃﺼﻐﺭ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻨﻅﺎﻤﻴﺔ ﻓﻲ ) N(Hﺯﻤﺭﺘﻬـﺎ ﺍﻟﻌﺎﻤﻠـﺔ ﺘﺒﺩﻴﻠﻴـﺔ]،[٥
)N ( H
ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﺘﺒﺩﻴﻠﻴﺔ ﺫﻟﻙ ﻷﻥ:
ﻭﺒﺎﻟﺘﺎﻟﻲ ﺍﻟﺯﻤﺭﺓ H
x, y ∈ N (H ) ⇒ xHyH = xyH = xy ( y −1 x −1 yx )H = yxH = yHxH
ﺒﻤﺎ ﺃﻥ ﻜل ﺯﻤﺭﺓ ﺘﺒﺩﻴﻠﻴﺔ ﻫﻲ ﺯﻤﺭﺓ ﻗﺎﺒﻠﺔ ﻟﻠﺤل ،ﻭﺒﻤﺎ ﺃﻥ ﺍﻟﺯﻤﺭ ﺍﻟﻤﻌﻁﻴﺔ Hﺃﻴﻀﹰﺎ ﺯﻤﺭﺓ
ﺠﺯﺌﻴﺔ ﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻋﻨﺩﺌﺫ ﺒﺤﺴﺏ ﺨﻭﺍﺹ ﺍﻟﺯﻤﺭ ﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل] ،[٥ﺘﻜﻭﻥ ) N(Hﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ
ﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) ،GL(q,pﻭﺒﺎﻟﺘﺎﻟﻲ ﻤﻥ ﺃﻋﻅﻤﻴﺔ Gﻓﻲ ) GL(q,pﻓﺈﻥ:
N(H) ⊆ G
)(٣
ﺍﻵﻥ ،ﺒﺤﺴﺏ ] [٢ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﺍﻵﻨﻔﺔ ﺍﻟﺫﻜﺭ ﻏﻴﺭ ﺘﺒﺩﻴﻠﻴﺔ ﻓﻲ Gﻓـﺈﻥ
Hﺘﺤﻭﻱ ﺃﺼﻐﺭ ﺯﻤﺭﺓ ﻨﻅﺎﻤﻴﺔ ﻋﺎﺯﻟﺔ ﻭﻏﻴﺭ ﺘﺒﺩﻴﻠﻴﺔ Bﻓﻲ Gﻭﻟﻬﺎ ﺍﻟﺸﻜل:
; B= a b ω
aω,b,ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ).(٢
ﻥ:
ﻭﺒﺎﻟﺘﺎﻟﻲ ﻤﻥ ﺍﻟﻭﺍﻀﺢ ﺠﺩﹰﺍ ﺃ
)(٤
)A⊆N(H
ﺤﻴﺙ Aﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ):(٢
ﺃﻴﻀﹰﺎ ﺒﺤﺴﺏ ] [٢ﺘﻭﺠﺩ ﻤﻥ ﺃﺠـل ﺃﻱ ﺠﺯﺌﻴـﺔ ﻋﻅﻤـﻰ ﻋﺎﺯﻟـﺔ ﻗﺎﺒﻠـﺔ ﻟﻠﺤـل ﻓـﻲ
) ،G L(q,pﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ Uﻋﻅﻤﻰ ﻋﺎﺯﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) ،SL(٢,qﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺍﻟﺘﻁﺒﻴﻕ
ﻼ ﺯﻤﺭﻴﹰﺎ ﻏﺎﻤﺭﹰﺍ:
Ψﺍﻟﻤﻌﺭﻑ ﻜﻤﺎ ﻴﻠﻲ ،ﺘﺸﺎﻜ ﹰ
⎤ ⎡α β
⎢ Ψ : N(A) → U; x a
⎥
⎦⎣ γ δ
ﺤﻴﺙ ) α, β, δ, γ ∈ GF(qﻭﺘﺭﺘﺒﻁ ﻓﻴﻤﺎ ﺒﻴﻨﻬﺎ ﺒﺎﻟﻌﻼﻗﺎﺕ:
)(٥
xax −1 = λa α bγ , xbx −1 = µα β bδ
ﺤﻴﺙ ∈a , b A :ﻭ ∆ → µ ،λﻭ Aﻭ ∆ ﻤﻌﺭﻓﺎﻥ ﺒﺎﻟﻌﻼﻗﺔ ) (٢ﻭﺍﻟﻌﻼﻗﺔ ) (١ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ:
ﺇﺫﹰﺍ:
≅U
)N ( A
)(٦
A
١٠٦
ﻤﺠﻠﺔ ﺠﺎﻤﻌﺔ ﺩﻤﺸﻕ ﻟﻠﻌﻠﻭﻡ ﺍﻷﺴﺎﺴﻴﺔ ـ ﺍﻟﻤﺠﻠﺩ ) (١٦ـ ﺍﻟﻌﺩﺩ ﺍﻷﻭل ـ ٢٠٠٠
ﻵﻥ ، KerΨ=Aﺤﻴﺙ Aﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ) ،(٢ﻭﻤﻥ ﺨﻭﺍﺹ ﺍﻟﺯﻤـﺭ ﺍﻟﻘﺎﺒﻠـﺔ ﻟﻠﺤـل
ﻥ ) N(Aﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) ،GL(q,pﻭﺃﻴﻀـﹰﺎ
ﻭﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﻌﻼﻗﺔ ) ،(٦ﻓﺈ
ﻋﺎﺯﻟﺔ ﻻﺤﺘﻭﺍﺌﻬﺎ ﺍﻟﺯﻤﺭﺓ ﺍﻟﻌﺎﺯﻟﺔ ،Aﻭﻤﻥ ﺃﻋﻅﻤﻴﺔ Gﻓﻲ ) GL(q,pﻓﺈﻥ ) ،G⊇N(Aﻭﺒﻤـﺎ
ﻥ G∆Aﺇﺫﹰﺍ:
ﺃ
)(٧
N(A)=G
ﺍﻵﻥ ،ﺒﺤﺴﺏ ] [٢ﺘﻭﺠﺩ ﻤﻥ ﺃﺠل ﺃﻱ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ،Hﻋﺎﺯﻟﺔ ﻭﻏﻴﺭ ﺘﺒﺩﻴﻠﻴـﺔ ﻤـﻥ ،G
ﻭﺫﺍﺕ ﺭﺘﺒﺔ ﻓﺭﺩﻴﺔ rﺤﻴﺙ ) r /| ( P − 1ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ uﺩﻭﺭﻴﺔ ﻭﺫﺍﺕ ﺭﺘﺒـﺔ ﻓﺭﺩﻴـﺔ ﻤـﻥ
ﺍﻟﺯﻤﺭﺓ Uﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ) (٥ﺒﺤﻴﺙ:
(I
(II
ﻥ ، u = Iﺤﻴﺙ Iﻋﻨﺼﺭ ﺍﻟﻭﺤﺩﺓ ﻓﻲ .U
ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ A⊃Hﻓﺈ
ـﺔ ﻭ ، u = τ
ﻥ uﻋﺎﺯﻟـــ
⊃ Aﻓـــﺈ
ـﺩﻤﺎ ﺘﻜـــ
ﻭﻋﻨـــ
ـﻭﻥ / H
⎤⎡1 q − 3
⎢ = ، U ∋ τ ، τ 3 = I ، τﻭﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻴﻜﻭﻥ ﻟﺩﻴﻨﺎ ﺃﻴﻀﹰﺎ ﻤﺎ ﻴﻠﻲ:
ﺤﻴﺙ ⎥
⎦⎣1 q − 2
U∆u (١ﻋﻨﺩﻤﺎ ). p − 1 ≡/ 0(mod 4
َ
َ
، U ⊃ u δ ∆u (٢ﺤﻴﺙ ) ، uδ = N (uﻭ uδ = δﺤﻴﺙ
⎤⎡ − 1 q − 2
⎢ = ، U ∋ δ , δ 6 = I , δﻭﻫـــﺫﻩ ﺍﻟﺤﺎﻟـــﺔ ﻤﺤﻘﻘـــﺔ ﻋﻨـــﺩﻤﺎ
⎥
⎦⎣ − 1 q − 3
). p − 1 ≡ 0(mod 4
ﻤﻥ ﺘﻌﺭﻴﻑ ﺍﻟﻌﺎﺯﻟﻴﺔ ﻓﺈﻥ ) N(uﺯﻤﺭﺓ ﺍﻟﻤﻨﻅﻡ ﻟــ uﻓﻲ ) ،SL(٢,qﺘﺸﻜل ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ
ﻋﺎﺯﻟﺔ ﻻﺤﺘﻭﺍﺌﻬﺎ ﻓﻲ ﺍﻟﺤﺎﻟﺔ ) (Iﺍﻟﺯﻤﺭﺓ ﺍﻟﻌﻅﻤﻰ ﺍﻟﻌﺎﺯﻟﺔ ﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ،Uﻭﻻﺤﺘﻭﺍﺌﻬﺎ ﺍﻟﻌﻨﺼﺭ
ﺍﻟﻌﺎﺯل τﻓﻲ ﺍﻟﺤﺎﻟﺔ ) ،(IIﻜﻤﺎ ﺃﻨﻪ ﺃﻴﻀﹰﺎ ﻴﻤﻜﻥ ﺍﻟﺘﺤﻘﻕ ﻤﻥ ﺃﻥ ﺍﻟﺯﻤﺭﺓ ) N(uﺘﺸـﻜل ﺯﻤـﺭﺓ
ﺠﺯﺌﻴﺔ ﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) SL(٢,qﺒﺎﻋﺘﻤﺎﺩ ﺍﻷﺴﻠﻭﺏ ﻨﻔﺴﻪ ﺍﻟﻤﺘﺒﻊ ﻓﻲ ﺍﻟﺒﺭﻫﺎﻥ ﻋﻠﻰ ﻗﺎﺒﻠﻴﺔ ﺍﻟﺤل
ﻟﺯﻤﺭﺓ ﺍﻟﻤﻨﻅﻡ ﻟﻠﺯﻤﺭﺓ ﺍﻟﻌﺎﺯﻟﺔ ،ﻭﺍﻟﻭﺍﺭﺩ ﻓﻲ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺍﻟﺴﺎﺒﻘﺔ ،ﻭﻤﻥ ﺃﻋﻅﻤﻴﺔ Uﻓﻲ )SL(٢,q
ﻓﺈﻥ:
)(٨
N(u)⊆U
١٠٧
ﻴﻌﻘﻭﺏ ﻭ ﻋﻠﻲ ـ ﺩﺭﺍﺴﺔ ﻤﻨﻅﻡ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻭﺫﺍﺕ ﺍﻟﺘﺭﺒﺔ ﺍﻟﻔﺭﺩﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ …
ﻤﻥ ﻨﺎﺤﻴﺔ ﺜﺎﻨﻴﺔ :ﺒﻤﺎ ﺃﻨﹼﻪ ﻴﻭﺠﺩ ﺘﻘﺎﺒل ١ﻟـ ١ﺒﻴﻥ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﻓﻲ ﺍﻟﻤﻨﻁﻠـﻕ ﻭﺍﻟﺘـﻲ
ﻥ ﺯﻤـﺭﺓ
ﺘﺤﻭﻱ ﺍﻟﻨﻭﺍﺓ Aﻭﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﻓﻲ ﺍﻟﻤﺴﺘﻘﺭ ،ﻭﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﻌﻼﻗـﺔ ) (٤ﻓـﺈ
ﺍﻟﻤﻨﻅﻡ ﻟـﹻ Hﻓﻲ ) GL(q,pﺘﺭﺘﺒﻁ ﻤﻊ ﺯﻤﺭﺓ ﺍﻟﻤﻨﻅﻡ ﻟـﹻ uﻓﻲ ) SL(٢,qﺒﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺎﻟﻴﺔ:
) Ψ1 ( N (H )) = N (u ); Ψ1 = Ψ | N ( H
)(٩
ﻭﻫﺫﻩ ﺍﻟﻌﻼﻗﺔ ﻤﺤﻘﻘﺔ ﺩﻭﻤﹰﺎ ﺒﺤﺴﺏ ﺍﻟﺒﻨﺎﺀ ﻟﻠﺘﺸﺎﻜل ﺍﻟﺯﻤﺭﻱ Ψﺍﻟﻤﻌﺭﻑ ﺒﺎﻟﻌﻼﻗﺔ ) (٥ﻤـﻊ
ﻼ ﺯﻤﺭﻴﹰﺎ ﻏﺎﻤﺭﺍﹰ،
ﺍﻷﺨﺫ ﺒﺎﻟﺤﺴﺒﺎﻥ ﺘﻌﺭﻴﻑ ﺍﻟﻤﻨﻅﻡ ﻟﻠﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴﺔ ،ﻜﻤﺎ ﺃﻥ Ψ1ﻴﺸﻜل ﺘﺸﺎﻜ ﹰ
ﻨﻭﺍﺘﻪ ، ker Ψ1 = Aﺤﻴﺙ Aﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ) ،(٢ﻭﺒﺎﻟﺘﺎﻟﻲ:
) N (H ) ≅ N (u
)(١٠
A
ﻥ
(١ﻤﻥ ) (IIﻟﺩﻴﻨﺎ ، U > uﻭﻤـﻥ ﺍﻟﻌﻼﻗـﺔ ) (٨ﻴﻨـﺘﺞ ﺃ
ﺍﻵﻥ ،ﺒﺤﺴﺏ ) (Iﻭﺒﺤﺴﺏ ) َ
،N(u)=Uﻨﺤﺼل ﺃﻴﻀﹰﺎ ﻤﻥ ﺍﻟﻌﻼﻗﺘﻴﻥ ) (٦ﻭ ) (١٠ﻋﻠﻰ:
)N ( H ) = A .U = N ( A
ﻥ . N (H ) = G
ﻭﻤﻥ ﺍﻟﻌﻼﻗﺔ ) (٧ﻓﺈ
ﻥ:
(٢ﻤﻥ ) (IIﻭﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﻌﻼﻗﺔ ) (١٠ﻴﻨﺘﺞ ﺃ
ﻭﺒﺤﺴﺏ ﺍﻟﺤﺎﻟﺔ ) َ
N (H ) = A . uδ
ﻥ:
ﻭﻟﻜﻥ ،ﺒﺤﺴﺏ ﺍﻟﺒﻨﺎﺀ ﻟـﹻ Aﺍﻟﻤﻌﺭﻑ ﺒﺎﻟﻌﻼﻗﺔ ) (٢ﻓﺈ
)A = q 2 ( p − 1
ﻭﻤﻨﻪ:
)N (H ) = 6 q 2 ( p − 1
* ﺤﺎﻟﺔ ﺨﺎﺼﺔ:
ﻤﻥ ﺃﺠل ﺃﻱ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ Hﻋﺎﺯﻟﺔ ﺘﺒﺩﻴﻠﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ Gﻭﺫﺍﺕ ﺭﺘﺒﺔ ﻓﺭﺩﻴﺔ ،rﺤﻴـﺙ
ﻥ:
) r /| ( P − 1ﻓﺈ
-
) N (H ) = (q − 1)q 2 ( p − 1ﻋﻨﺩﻤﺎ . A ⊃ H
) N (H ) = 3 ( p − 1ﻓﻴﻤﺎ ﻋﺩﺍ ﺫﻟﻙ.
١٠٨
ﻤﺠﻠﺔ ﺠﺎﻤﻌﺔ ﺩﻤﺸﻕ ﻟﻠﻌﻠﻭﻡ ﺍﻷﺴﺎﺴﻴﺔ ـ ﺍﻟﻤﺠﻠﺩ ) (١٦ـ ﺍﻟﻌﺩﺩ ﺍﻷﻭل ـ ٢٠٠٠
ﺍﻟﺒﺭﻫﺎﻥ:
ﻟﺘﻜﻥ Hﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻤﺎ ﻋﺎﺯﻟﺔ ﺘﺒﺩﻴﻠﻴﺔ ،ﻭﺫﺍﺕ ﺭﺘﺒﺔ ﻓﺭﺩﻴﺔ rﺤﻴﺙ ) ، r /| ( P − 1ﻋﻨﺩﺌﺫ
ﻭﺒﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔ ﻓﺈ
ﻥ ) ، G ⊇ N (Hﺍﻵﻥ ،ﻤﻥ ﺃﺠل ﺘﺤﺩﻴﺩ ﺭﺘﺒﺔ ﺍﻟﻤﻨﻅﻡ ﻟـﹻ Hﺴﻨﺩﺭﺱ
ﺍﻟﺤﺎﻟﺘﻴﻥ ﺍﻟﺘﺎﻟﻴﺘﻴﻥ:
ﻥ ﺍﻟﺸﻜل ﺍﻟﻌﺎﻡ ﻟـﹻ Hﺴﻴﻜﻭﻥ ﻜﻤﺎ ﻴﻠﻲ:
( I ′ﺇﺫﺍ ﻜﺎﻨﺕ A ⊃ Hﻓﺈ
H = m F1 ; m = a i b j ; m = q,0 ≤ i ≤ q − 1,0〈 j ≤ q − 1
)(١١
ﺤﻴﺙ aﻭ ، A ∋ bﻭ F1ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻤﻥ ﺍﻟﺯﻤﺭﺓ ،Fﺘﺤﻭﻱ ﺍﻟﻌﻨﺼﺭ ، ω I qﺤﻴﺙ
ωﻭ Fﻭ Aﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺘﻴﻥ ) (١ﻭ ):(٢
ﻥ ﺠﻤﻴﻊ ﺍﻟﺯﻤﺭ ﺍﻟﻌﺎﺯﻟﺔ ﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻤﻥ ﺍﻟﺭﺘﺒﺔ rﺍﻟﻤﺤﻘﻘﺔ ﻟﻠﺸﺭﻭﻁ
ﻤﻥ ﻨﺎﺤﻴﺔ ﺜﺎﻨﻴﺔ ،ﺒﻤﺎ ﺃ
ﺍﻟﺴﺎﺒﻘﺔ ،ﺘﺸﻜل ﺼﻔﹰﺎ ﻤﻥ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻤﺘﺭﺍﻓﻘﺔ ﻓﻲ ) GL(q,pﻓﺈﻨﹼﻪ ﻴﻜﻔﻲ ﻟﺘﺤﺩﻴـﺩ ﺭﺘﺒـﺔ
ﺍﻟﻤﻨﻅﻡ ﻟﻠﺯﻤﺭ ﻤﻥ ﻫﺫﺍ ﺍﻟﺼﻑ ،ﺃﻥ ﺘﺤﺩﺩ ﺭﺘﺒﺔ ﺍﻟﻤﻨﻅﻡ ﻟﻤﻤﺜل ﻭﺍﺤﺩ ﻤﻥ ﻫﺫﺍ ﺍﻟﺼﻑ ﻤﻥ ﻭﺠﻬﺔ
ﻨﻅﺭ ﺍﻟﺘﺭﺍﻓﻕ ،ﻭﻟﻴﻜﻥ ﻫﺫﺍ ﺍﻟﻤﻤﺜل ﻫﻭ:
H = b F1 ; b q = 1
ﻭ bﻤﻌﺭﻑ ﺒﺎﻟﻌﻼﻗﺔ ) ،(٢ﻭ F1ﻤﻌﺭﻑ ﺒﺎﻟﻌﻼﻗﺔ ).(١١
ﻤﻥ ﺃﺠل ﺫﻟﻙ ﺘﻭﺠﺩ ﻓﻲ ﺍﻟﺯﻤﺭﺓ Uﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ) (٥ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ umﻤﺜﻠﺜﻴـﺔ ﻤـﻥ
ﺍﻷﺴﻔل ،ﻭﻟﻬﺎ ﺍﻟﺭﺘﺒﺔ ،q-١ﺩﻭﺭﻴﺔ
u m = fﻤﻭﻟﺩﺓ ﺒﺎﻟﻌﻨﺼﺭ fﺒﺤﻴﺙ:
⎤ ⎡α 0
⎢= f
) ⎥; α, γ, δ ∈ GF(q
⎦⎥⎣⎢ γ δ
ﻭﺍﻟﺯﻤﺭﺓ umﻤﻭﺠـﻭﺩﺓ ﺩﻭﻤـﹰﺎ ﺒﺤﺴـﺏ ﺍﻟﺒﻨـﺎﺀ ﻟـــﹻ Uﻜﻤـﺎ ﻓـﻲ ] ،[٢ﻋﻨﺩﺌـﺫ
ﻼ ﺯﻤﺭﻴﹰﺎ ﻏﺎﻤﺭﹰﺍ:
ﺍﻟﺘﻁﺒﻴﻕ ) Ψm = Ψ | N ( Hﺍﻟﻤﻌﺭﻑ ﻜﻤﺎ ﻴﻠﻲ ﻴﺸﻜل ﺘﺸﺎﻜ ﹰ
⎤ ⎡α 0
⎢ Ψm : N (H ) ⊆ G → u m ; x a
)⎥ (١٢
⎦ ⎣γ δ
ﺤﻴﺙ GF (q ) ∋ δ , γ , αﻭﺘﺭﺘﺒﻁ ﻓﻴﻤﺎ ﺒﻴﻨﻬﺎ ﺒﺎﻟﻌﻼﻗﺎﺕ:
xax −1 = λa α b γ , xbx −1 = b δ
١٠٩
ﻴﻌﻘﻭﺏ ﻭ ﻋﻠﻲ ـ ﺩﺭﺍﺴﺔ ﻤﻨﻅﻡ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻭﺫﺍﺕ ﺍﻟﺘﺭﺒﺔ ﺍﻟﻔﺭﺩﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ …
ﺤﻴﺙ aﻭ ، A ∋ bﻭ A, ∆ ∋ λﻭ ∆ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺘﻴﻥ ) (٢ﻭ ).(١
ﻼ ﺯﻤﺭﻴﺎﹰ ،ﻤﻥ ﺃﺠل ﺫﻟﻙ ﻴﻜﻔـﻲ
ﻥ ﺍﻟﺘﻁﺒﻴﻕ Ψmﻴﺸﻜل ﺘﺸﺎﻜ ﹰ
ﻤﻥ ﺍﻟﻤﻤﻜﻥ ﺍﻟﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺃ
ﺍﻟﺘﺤﻘﻕ ﺃﻥ ﺼﻭﺭﺓ ﺠﺩﺍﺀ ﺃﻱ ﻋﻨﺼﺭﻴﻥ ﻤﻥ ﺍﻟﺯﻤﺭﺓ ﺍﻟﺠﺯﺌﻴﺔ ) N(Hﺘﺴﺎﻭﻱ ﺠﺩﺍﺀ ﺼـﻭﺭﻫﻤﺎ
ﺃﻱ ﻤﻬﻤﺎ ﻴﻜﻥ N(H)∋x,yﻓﺈﻥ ﺍﻟﻤﺴﺎﻭﺍﺓ ﺍﻟﺘﺎﻟﻴﺔ ﻴﺠﺏ ﺃﻥ ﺘﻜﻭﻥ ﺼﺤﻴﺤﺔ:
) Ψm ( xy) = Ψm ( x)Ψm ( y
)*(
⎤ ⎡α 1 0
⎢ = )Ψm ( x
ﻨﻔﺭﺽ ﺃﻥ ⎥
⎦ ⎣γ 1 δ 1
ﻋﻨﺩﺌﺫ ﻓﺈﻥ:
xbx −1 = b δ 1
æ
⎤ ⎡α 2 0
⎢ = )Ψm ( y
⎥
⎦ ⎣γ 2 δ 2
xax −1 = λ 1a α 1 b γ 1 ,
ﺃﻴﻀﹰﺎ:
yby −1 = bδ 2
yay −1 = λ 2 a α 2 b γ 2 ,
ﺤﻴﺙ i = 1,2 æ GF (q) ∋ α i , γ i , δ i æ ∆ ∋ λ i
ﻭﺒﺤﺴﺏ ﺨﻭﺍﺹ ﺍﻟﻌﻨﺎﺼﺭ ﺍﻟﻤﺒﺎﺩﻟﺔ ،ﻭﺒﻌﺩ ﺴﻠﺴﻠﺔ ﻤﻥ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻟﺠﺒﺭﻴﺔ ،ﻴﻤﻜﻥ ﺍﻟﺘﺤﻘـﻕ
ﻥ:
ﺃ
xyby −1 x −1 = bδ 1δ 2
xyay −1 x −1 = µa α 1α 2 b γ 1α 2 +δ 1γ 2 ,
ﺤﻴﺙ ∆ = GF ( P) ∋ µ
ﻭﺒﺎﻟﺘﺎﻟﻲ ﺒﺤﺴﺏ ﺍﻟﺒﻨﺎﺀ ﻟﻠﺩﺍﻟﺔ Ψmﺍﻟﻤﻌﺭﻑ ﺒﺎﻟﻌﻼﻗﺔ ) (١٢ﻓﺈﻥ ﺍﻟﻤﺴﺎﻭﺍﺓ ﺘﻜـﻭﻥ ﻤﺤﻘﻘـﺔ
ﺒﻴﻥ ﻁﺭﻓﻲ ﺍﻟﻌﻼﻗﺔ )*( ﻭﺒﺎﻟﺘﺎﻟﻲ ﻓﺈﻥ Ψmﺘﺸﺎﻜل ﺯﻤﺭﻱ ﻭﺃﻴﻀﹰﺎ ﻏـﺎﻤﺭ ،ﺒﺎﻟﺤﻘﻴﻘـﺔ ﻟـﻴﻜﻥ
، SL(2, q ) ⊃ u m ∋ fﻭﻟﻴﻜﻥ
A ∋ c, dﺒﺤﻴـﺙ c = λa α b γﻭ ، d = b δﻭﺒﺤﻴـﺙ
ﺘﻜﻭﻥ ﺍﻟﻘﻭﻯ ﺍﻟﻤﺄﺨﻭﺫﺓ GF (q ) ∋ δ , γ , αﺒﻤﺜﺎﺒﺔ ﻋﻨﺎﺼﺭ ﻟﻠﻤﺼﻔﻭﻓﺔ ،hﻜﺫﻟﻙ A ∋ b ،a
ﻭ ، ∆ ∋ λﺤﻴﺙ Aﻭ ∆ ﻤﻌﺭﻓﺘﺎﻥ ﺒﺎﻟﻌﻼﻗﺘﻴﻥ ) (٢ﻭ ).(١
ﻥ:
ﺒﻔﺭﺽ λ = 1ﻭﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﻌﻼﻗﺔ ) ،(٢ﻨﺠﺩ ﺃ
= ω αδ
(c, d ) = (a α bγ , bδ ) = (a α , bδ )(bγ , bδ ) = (a α , bδ ) = (a, b)αδ
١١٠
ﻤﺠﻠﺔ ﺠﺎﻤﻌﺔ ﺩﻤﺸﻕ ﻟﻠﻌﻠﻭﻡ ﺍﻷﺴﺎﺴﻴﺔ ـ ﺍﻟﻤﺠﻠﺩ ) (١٦ـ ﺍﻟﻌﺩﺩ ﺍﻷﻭل ـ ٢٠٠٠
⎤ ⎡α 0
ﻭﺒﻤﺎ ﺃ
⎢ = SL(2, q ) ∋ hﺇﺫﺍ .det h = αδ=١
ﻥ ⎥
⎦ ⎣γ δ
ﻭﻤﻨﻪ:
) (c, d ) = ω αδ = ω = (a, b
ﺃﻴﻀﹰﺎ:
b q = d q = 1, a q = c q = 1
ﻋﻨﺩﺌﺫ ﺒﺤﺴﺏ ] [١ﻓﺈﻨﹼﻪ ﻴﻭﺠﺩ ﻋﻨﺼﺭ GL(q, p ) ∋ xﺒﺤﻴﺙ:
)(1′′
)(١٣
)(2′′
xax −1 = c = λa α b γ
δ
=d =b
−1
xbx
ﻥ ، N (H ) ∋ xﻜـﺫﻟﻙ
(٢ﻓﺈ
ﻥ ، G = N ( A) ∋ xﻭﺃﻴﻀﹰﺎ ﻤﻥ ﺍﻟﻌﻼﻗﺔ ) ً
ﻤﻥ ﺍﻟﻭﺍﻀﺢ ﺃ
ﻤﻥ ﺍﻟﻌﻼﻗﺘﻴﻥ ) (١٢ﻭ ) (١٣ﻓﺈ
ﻥ ، Ψm ( x ) = hﻭﺒﺎﻟﺘﺎﻟﻲ Ψmﻏﺎﻤﺭ.
ﻥ ، ker Ψm = Aﺤﻴﺙ Aﻤﻌﺭﻓـﺔ
ﺍﻵﻥ ،ﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﻌﻼﻗﺘﻴﻥ ) (٢ﻭ ) (١٢ﻨﺠﺩ ﺃ
ﺒﺎﻟﻌﻼﻗﺔ ) ،(٢ﻭﺒﺎﻟﺘﺎﻟﻲ N (H ) ≅ u mﻭﻤﻨﻪ:
A
2
)N (H ) = A . u m = (q − 1)q ( p − 1
⊃ Aﻓﺈﻨﹼﻪ ﺒﺤﺴﺏ ] [٢ﺴﻴﻜﻭﻥ ﻟﻬﺎ ﺍﻟﺸﻜل ﺍﻟﺘﺎﻟﻲ:
( II ′ﺃﻤﺎ ﺇﺫﺍ ﻜﺎﻨﺕ / H
)H = x i F2 ; x = 3q; i = 1, q (١٤
ﺤﻴﺙ F٢ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻤﻥ ﺍﻟﺯﻤﺭﺓ ،Fﻜﺫﻟﻙ ، x ∩ F = ωﺤﻴﺙ ωﻭ Fﻤﻌﺭﻓﺎﻥ
ﺒﺎﻟﻌﻼﻗﺘﻴﻥ ) (٢ﻭ ) ،(١ﻭ Ψ ( x ) = τ
ﺤﻴﺙ τ 3 = Iﻭ U ∋ τ ≠ Iﻭﻫـﻭ ﻤﻌـﺭﻑ
ﺒﺎﻟﺤﺎﻟﺔ ) (IIﺍﻟﻭﺍﺭﺩﺓ ﻓﻲ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻭﺒﺤﻴﺙ Ψﻭ Uﻤﻌﺭﻓﺎﻥ ﺒﺎﻟﻌﻼﻗﺔ ).(٥
⎤⎡1 q − 3
⎢ = ، Ψ ( x ) = τﻭﺒﺤﺴﺏ ﺍﻟﺒﻨـﺎﺀ ﻟــﹻ Ψﺍﻟﻤﻌـﺭﻑ
ﺍﻵﻥ ،ﻤﻥ ﺍﻟﻌﻼﻗﺔ ⎥
⎦⎣1 q − 2
ﻥ ﺃﻋﻅﻡ ﺯﻤﺭﺓ
ﺒﺎﻟﻌﻼﻗﺔ ) (٥ﻭﻤﻥ ﻜﻭﻥ ) ، A = Ψ −1 (Iﺤﻴﺙ Aﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ) (٢ﻨﺠﺩ ﺃ
ﺠﺯﺌﻴﺔ ﻓﻲ Gﺘﻜﻭﻥ Hﻨﻅﺎﻤﻴﺔ ﻓﻴﻬﺎ ﻫﻲ ﻤﻥ ﺍﻟﺸﻜل:
١١١
ﻴﻌﻘﻭﺏ ﻭ ﻋﻠﻲ ـ ﺩﺭﺍﺴﺔ ﻤﻨﻅﻡ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻭﺫﺍﺕ ﺍﻟﺘﺭﺒﺔ ﺍﻟﻔﺭﺩﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ …
; M = x, F = x F
G∆Fﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ) (١ﻭ xﻤﻌﺭﻑ ﺒﺎﻟﻌﻼﻗﺔ ).(١٤
ﻥ:
ﺇﺫﺍ ﻤﻥ ﺘﻌﺭﻴﻑ ﺍﻟﻤﻨﻅﻡ ﻭﻤﻥ ﻜﻭﻥ ) G ⊇ N (Hﻓﺈ
N (H ) = M = x F
ﻭﻤﻨﻪ:
= 3 ( p − 1).
x .F
x ∩F
= ) N (H
ﻨﻅﺭﻴﺔ:
ﻟﺘﻜﻥ ﺍﻟﺯﻤﺭﺓ ) Gﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ) ((٢ﻤﻥ ﺍﻟﻤﺭﺘﺒﺔ nﻭﻟﻴﻜﻥ rﻗﺎﺴﻤﹰﺎ ﻟــ nﻋﻨﺩﺌﺫ ﻤـﺎ
ﻴﻠﻲ ﺼﺤﻴﺢ:
(١ﺘﻭﺠﺩ ﻓﻲ Gﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻭﺍﺤﺩﺓ ﻋﻠﻰ ﺍﻷﻗل ﻤﻥ ﺍﻟﺭﺘﺒﺔ .r
(٢ﺠﻤﻴﻊ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻓﻲ Gﻤﻥ ﺍﻟﺭﺘﺒﺔ rﻤﺘﺭﺍﻓﻘﺔ ﻓﻲ .G
ﺍﻟﺒﺭﻫﺎﻥ:
ﻨﺠﺭﻱ ﺍﻻﺴﺘﻘﺭﺍﺀ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻻﺴﺘﻘﺭﺍﺀ ﺍﻟﺭﻴﺎﻀﻲ .nﺇﺫﺍ ﻜﺎﻨﺕ ،n=١ﻋﻨﺩﺌﺫ ﻓـﻲ
ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﺒﻤﺎ ﺃﻥ Gﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻭﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) GL(q,pﻓﺈﻨﻪ ﻴﻤﻜﻥ ﺩﻭﻤﹰﺎ ﺇﻴﺠﺎﺩ
ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻭﻗﺎﺒﻠﺔ ﻟﻠﺤل ،ﻭﻟﻬﺎ ﺍﻟﺭﺘﺒﺔ ،n=١ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل ، G Gﻭﻤﻥ ﺍﻟﻭﺍﻀﺢ
ﺃﻨﻬﺎ ﺘﺤﻘﻕ ﺸﺭﻭﻁ ﺍﻟﻨﻅﺭﻴﺔ ﻋﻠﻤﹰﺎ ﺃﻥ ﻋﻨﺼﺭ ﺍﻟﻭﺤﺩﺓ ﻓﻲ ﻫﺫﻩ ﺍﻟﺯﻤﺭﺓ ﻫﻭ ﻋﻨﺼﺭ ﻋﺎﺯل ﻟﻜﻭﻥ
Gﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻭﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) .GL(q,pﻨﻔﺭﺽ ﺃﻥ ﺍﻟﻨﻅﺭﻴﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠـل
ﻜل ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ،ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ،ﻭﺍﻟﺘﻲ ﺭﺘﺒﺘﻬﺎ ﺃﺼﻐﺭ ﻤﻥ ،nﻨﺭﻤﺯ ﻷﺼـﻐﺭ
-q
ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻨﻅﺎﻤﻴﺔ ﻓﻲ Gﺒﺎﻟﺭﻤﺯ ،Qﻓﺘﻜﻭﻥ Qﺒﺤﺴـﺏ ﺍﻟﺒﻨـﺎﺀ ﻟﻠﺯﻤـﺭﺓ ) Gﺍﻟﻤﻌﺭﻓـﺔ
ﺒﺎﻟﻌﻼﻗﺔ ) ((٢ﻟﻬﺎ ﺍﻟﺸﻜل ﺍﻟﺘﺎﻟﻲ:
Q = ω I q ; ω q = 1,
) 1 ≠ ω ∈ GF ( P
ﺤﻴﺙ ωﻭ Fﻤﻌﺭﻓﺎﻥ ﺒﺎﻟﻌﻼﻗﺘﻴﻥ ) (١ﻭ ).(٢
١١٢
ﻤﺠﻠﺔ ﺠﺎﻤﻌﺔ ﺩﻤﺸﻕ ﻟﻠﻌﻠﻭﻡ ﺍﻷﺴﺎﺴﻴﺔ ـ ﺍﻟﻤﺠﻠﺩ ) (١٦ـ ﺍﻟﻌﺩﺩ ﺍﻷﻭل ـ ٢٠٠٠
(A
ﺇﺫﺍ ﻜﺎﻥ q | rﻓﺒﻤﻭﺠﺏ ﺍﻟﻔﺭﺽ ﺒﺎﻻﺴﺘﻘﺭﺍﺀ ﺘﻭﺠﺩ ﻓﻲ ﺍﻟﺯﻤﺭﺓ
r
ﺠﺯﺌﻴﺔ Bﻋﺎﺯﻟﺔ ﻤﻥ ﺍﻟﺭﺘﺒﺔ
Q
q
Q
Gﺯﻤـﺭﺓ
،ﺤﻴﺙ rﻗﺎﺴﻡ ﻤﺎ ﻟــﹻ G = nﻭﺒﺎﻟﺘﺎﻟﻲ ﺭﺘﺒـﺔ B
ﻫﻲ rﺃﻱ ، B = rﻭﻜﺫﻟﻙ ﺍﻟﺯﻤﺭﺓ Bﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻭﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓـﻲ ﺍﻟﺯﻤـﺭﺓ G
ﺒﺤﺴﺏ ﺨﻭﺍﺹ ﺍﻟﺯﻤﺭ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﺯﻤﺭ ﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل.
ﻥ ﺃﻱ ﺯﻤـﺭﺘﻴﻥ ﺠـﺯﺌﻴﺘﻴﻥ B1ﻭ
ﻤﻥ ﺍﻟﺴﻬل ﻤﻼﺤﻅﺔ ﺃﻨﹼﻪ ﻀﻤﻥ ﺍﻟﺸﺭﻭﻁ q | rﺃ
B2ﻋﺎﺯﻟﺘﺎﻥ ﻓﻲ ،Gﺤﻴﺙ B1 = B2 = rﺘﺤﻭﻴﺎﻥ ﺍﻟﺯﻤﺭﺓ Qﻭﺒﺤﺴﺏ ﺨﻭﺍﺹ ﺍﻟﺯﻤـﺭﺓ
ﻥ
ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﺯﻤﺭ ﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻓﺈ
ﻓﻲ
Q
Q
B1ﻭ
Q
ﻥ
Gﻭﺒﻤﻭﺠﺏ ﺍﻟﻔﺭﺽ ﺒﺎﻻﺴﺘﻘﺭﺍﺀ ﻓﺈ
B2ﺯﻤﺭﺘﺎﻥ ﺠﺯﺌﻴﺘﺎﻥ ﻋﺎﺯﻟﺘﺎﻥ ﻭﻗﺎﺒﻠﺘﺎﻥ ﻟﻠﺤل
Q
B1ﻭ
Q
B2ﻤﺘﺭﺍﻓﻘﺘﺎﻥ ﻓﻲ
Q
Gﺒﺤﺴﺏ
) ،(٢ﻭﺒﺎﻟﺘﺎﻟﻲ B1ﻭ B2ﻤﺘﺭﺍﻓﻘﺘﺎﻥ ﻓﻲ .G
(IIﺃﻤﺎ ﺇﺫﺍ ﻜﺎﻥ ، q /| rﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ،ﻓﺈﻥ ﺍﻟﺯﻤﺭﺓ Gﺘﺤﻭﻱ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻤـﻥ
ﺍﻟﺭﺘﺒﺔ ،rﺤﻴﺙ ،r<nﻭﻫﺫﻩ ﺍﻟﺯﻤﺭﺓ ﻤﻭﺠﻭﺩﺓ ﺩﻭﻤﹰﺎ ﺒﺤﺴﺏ ﺍﻟﺒﻨﺎﺀ ﻟﻠﺯﻤﺭﺓ ،Gﻭﻤـﻥ ﺃﺸـﻜﺎﻟﻬﺎ
ﺇﺤﺩﻯ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ) ،(١٤ﻭﺒﻬﺫﺍ ﻴﻜﻭﻥ ﻗﺩ ﺘ ﻡ ﺒﺭﻫﺎﻥ ).(١
ﻭﻤﻥ ﺃﺠل ﺒﺭﻫﺎﻥ ) (٢ﻓﻲ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺘﻲ ﻴﻜﻭﻥ ﻓﻴﻬﺎ ، q /| rﻟـﺩﻴﻨﺎ ﻤـﻥ ﺃﺠـل ﺃﻱ
ﻥ B1ﻭ B2ﺴﺘﻜﻭﻨﺎﻥ ﻗﺎﺒﻠﺘﻴﻥ ﻟﻠﺤل ﻓـﻲ
ﺯﻤﺭﺘﻴﻥ ﺠﺯﺌﻴﺘﻴﻥ ﻋﺎﺯﻟﺘﻴﻥ B1ﻭ B2ﻓﻲ Gﻓﺈ
ﻥ B1ﻭ B2
Gﺃﻋﻅﻡ ﺯﻤﺭﺓ ﺠﺯﺌﻴﺔ ﻋﺎﺯﻟﺔ ﻭﻗﺎﺒﻠﺔ ﻟﻠﺤل ﻓﻲ ) ،GL(q,pﻭﺒﺤﺴﺏ ] [٣ﻓـﺈ
ﺴﺘﻜﻭﻨﺎﻥ ﺯﻤﺭﺘﻴﻥ ﺩﻭﺭﻴﺘﻴﻥ ﻭﺒﺎﻟﺘﺎﻟﻲ ﻓﻬﻤﺎ ﻤﺘﺭﺍﻓﻘﺘﺎﻥ ﻓﻲ Gﻭﻫﻭ ﺍﻟﻤﻁﻠﻭﺏ.
١١٣
… ﻴﻌﻘﻭﺏ ﻭ ﻋﻠﻲ ـ ﺩﺭﺍﺴﺔ ﻤﻨﻅﻡ ﺍﻟﺯﻤﺭ ﺍﻟﺠﺯﺌﻴﺔ ﺍﻟﻌﺎﺯﻟﺔ ﻭﺍﻟﻘﺎﺒﻠﺔ ﻟﻠﺤل ﻭﺫﺍﺕ ﺍﻟﺘﺭﺒﺔ ﺍﻟﻔﺭﺩﻴﺔ ﻓﻲ ﺍﻟﺯﻤﺭﺓ
REFERENCES
١- D. A. Soprnenko, Matrices groups, “Naouka”, MOSCOW, ١٩٧٢.
٢- D. Iskandar Ali, Salwa Yacoub, The Studying of the Maximal Solvable
Invariant Sub Groups in a Group GL(٥,p), which p is a prime number,
Tishreen University Journal, ١٩٩٧.
٣- B. Huppert. Endliche Gruppen I (book). Berlin – Hedellurg, New York,
١٩٦٤.
٤- H- wielnat, Finite Permutation groups, New York, London, Acad, Press
١٩٦٤.
٥- Johnf.Humphreys, A Course in Group Theory, Oxford, New York, Tokyo,
Press ١٩٩٦.
٦- Michale Aschbacher, Finite Group Theory, Cambridge, New York, Sydney,
New Rochelle, Melbourne, Press ١٩٨٦.
١١٤
© Copyright 2026