iVEC Annual Symposium 2014 Molecular engineering of DNA-binding domains to recognise and modify cancer genomes Yu Jie Kan Curtin University Supervisors: Prof Ricardo L. Mancera, Curtin University, A/Prof Pilar Blancafort, UWA. iVEC Annual Symposium 2014 Introduction • Highly specific DNA-binding domains (DBDs) can be engineered and used for cancer gene sequence recognition. • DBDs can be used to improve selectivity and penetration of existing cancer drugs via conjugation. • Engineering of DBDs may be facilitated by molecular dynamics (MD) simulation. Reference: Chen, Y., et al. (2008) J. Bio Chem, 283(26), 17969-17978 iVEC Annual Symposium 2014 Aim • To predict the binding affinity of SOX2 to DNA in the presence of OCT4. iVEC Annual Symposium 2014 Approach • MD simulations were run with Amber 12 in explicit solvent at 300K. • Two stage equilibration: 0.5 ns of heating and 0.5 ns of density equilibration followed by 9 ns production. • Ten repetitions. iVEC Annual Symposium 2014 MM-PBSA/MM-GBSA Image obtained from : http://sf.anu.edu.au/~vvv900/amber-tutorial/1cgh-ligand/mm-pbsa.html iVEC Annual Symposium 2014 MM-PBSA/MM-GBSA • ΔGBind = GAB - GA - GB • Individual GX = EMM + Gsolv - TSMM • EMM = Ebond + Eangle + Etors + Evdw + Eelec • Gsolv is the calculated solvation free energy • -TSMM is the solute entropy Reference: Hayes, Joseph M. and Georgios Archontis. (2012) Molecular dynamics. InTech, Rijeka, Kroatien. iVEC Annual Symposium 2014 MM-PBSA/MM-GBSA • Gsolv is different for MM-PBSA and MMGBSA: • Gsolv for MM-PBSA= EPB+ Enon-polar+ Edispersion • Gsolv for MM-GBSA = EGB+ Esurface Reference: Hayes, Joseph M. and Georgios Archontis. (2012) Molecular dynamics. InTech, Rijeka, Kroatien. iVEC Annual Symposium 2014 Results iVEC Annual Symposium 2014 Results iVEC Annual Symposium 2014 Binding affinity of SOX2 Energy Component VanderWaals (VDW) Electrostatic (EEL) EPB EGB Esurface Enon-polar Edispersion Ggas (VDW+EEL) Gsolvated ΔG MM-PBSA Average -205.5 -8324.7 8285 MM-GBSA Average -205.5 -8324.7 8348.1 -24.7 -132.7 263.4 -8530.2 8415.7 -114.5 -8530.2 8323.3 -206.824 Energies are in kcal/mol. • ΔG(GB)= -206.824 kcal/mol • ΔG(PB)= -114.502 kcal/mol • Electrostatic/solvation = Gsolv + EEL • MM-GBSA: -1.4 kcal/mol • MM-PBSA: 91 kcal/mol iVEC Annual Symposium 2014 Binding affinity of SOX2 • VDW is the dominant interaction. • Electrostatic and solvation terms do not favour binding. • Entropy (not completed) iVEC Annual Symposium 2014 Truncated SOX2 (iPep) • New MD simulations with truncated SOX2 protein. iVEC Annual Symposium 2014 Average RMSD iVEC Annual Symposium 2014 Future Work • Constrain iPep with respect to DNA. • Finalize entropy calculations. iVEC Annual Symposium 2014 Conclusion • Interaction of SOX2 with DNA is dominated by VDW interactions. • MD simulations can be used to rationalize DBD designs. iVEC Annual Symposium 2014 References Chen, Y., Shi, L., Zhang, L., Li, R., Liang, J., Yu, W., ... & Shang, Y. (2008). The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. Journal of Biological Chemistry, 283(26), 17969-17978. Hayes, Joseph M., and Georgios Archontis. (2012). "MM-GB (PB) SA calculations of protein-ligand binding free energies." Molecular dynamics–studies of synthetic and biological macromolecules. InTech, Rijeka, Kroatien. Reményi, A., Lins, K., Nissen, L. J., Reinbold, R., Schöler, H. R., & Wilmanns, M. (2003). Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes & development, 17(16), 2048-2059. iVEC Annual Symposium 2014 Acknowledgements • iVEC • Curtin Biomolecular Modelling Group • Supervisors Prof Ricardo Mancera, Dr. Neha Gandhi and A/Prof Pilar Blancafort
© Copyright 2025