IS528-ADD1 Novel diagnostic and therapeutic radionuclides for the development of innovative radiopharmaceuticals Katharina Domnanich1, Catherine Ghezzi2, Ferid Haddad3, Mikael Jensen4, Christian Kesenheimer6, Ulli Köster5, Cristina Müller1, Bernd Pichler6, Jean-Pierre Pouget7, Anna-Maria Rolle6, Roger Schibli1, Gregory Severin4, Andreas Türler1, Stefan Wiehr6, Nick van der Meulen1 Local contact: Karl Johnston Paul Scherrer Institut, Villigen – Universität Bern – ETH Zürich, Switzerland 2 CHU – INSERM – Université Grenoble, France 3 ARRONAX – INSERM – CRCNA – Subatech Nantes, France 4 Risø National Laboratory, Roskilde, Denmark 5 Institut Laue Langevin, Grenoble, France 6 Universitätsklinik Tübingen, Germany 7Institut de Recherche en Cancérologie de Montpellier, France 1 Objectives Radiometals for diagnostic imaging and therapy M☢ Chelator Peptide Abs Vitamins Receptor Photon or positron emitters 99mTc, 68Ga, … for imaging Particle emitters 90Y, 177Lu, … for radionuclide therapy applicable only with high specific activity and chemical purity The Nuclear Medicine Alphabet SPECT Camera PET-Scanner + - Auger-e- Production of n.c.a. [149/152/155Tb]-Terbium ISOLDE CERN and PSI Paul Scherrer Institute Separation by means of cation exchange chromatography Spallation of tantalum targets followed by resonant laser ionization of Dy precursor and mass separation 149,152,155Tb with some oxide sidebands Tumor Tageting Agent for Tb-Coordination Chemical Structure with 3 Functionalities albumin binder folic acid Tb-folate Chracteristics: stable coordination of Tb-isotopes high affinity to the folate receptor prolonged blood circulation time Tb-DOTA Terbium: the Swiss Army knife of Nuclear Medicine 149Tb-therapy 152Tb-PET 161Tb-therapy 155Tb-SPECT & SPECT Müller et al. 2012, J Nucl Med 53:1951. Terbium-149: alpha-Emitter Folate Receptor Targeted -Radionuclide Therapy Group A: control Group B: 149Tb-folate 2.2 MBq Group C: 149Tb-folate 3.0 MBq Müller et al. 2013, Pharmaceuticals, submitted 155Tb: low-dose SPECT prior to therapy Müller et al. 2013, Nucl Med Biol, in press: doi:10.1016/j.nucmedbio.2013.11.002 in vivo validation with peptides, mAbs and vitamins Peptides MD DOTATATE monoclonal antibody chCE7 chCE7 folate cm09 Müller et al. 2013, Nucl Med Biol, in press: doi:10.1016/j.nucmedbio.2013.11.002 cm09 Efficient parallel operation 152Tb 149Tb 155Tb HRS setup 140Nd/140Pr: an in vivo PET generator 140Nd ε 3.37 d 140Pr β+ 2.4 3.4 m 140Ce Köster et al. 2014, Nucl Med Biol, submitted. Understanding the Auger release from chelators 3.37 d 140Nd QEC = 437 3.39 min 140Pr Nd Pr Ce BR+ = 51% stable 140Ce Understanding the Auger release from chelators 3.37 d 140Nd QEC = 437 3.39 min 140Pr Pr ? Nd BR+ = 51% stable 140Ce Pr Understanding the Auger release from chelators 3.37 d 140Nd QEC = 437 3.39 min 140Pr 3.37 d 134Ce stable QEC = 386 6.45 min 134La 44mSc 140Ce BR+ = 63.6% stable 2.44 d E4 271 3.97 h 44Sc BR+ = 51% 134Ba BR+ = 94.3% 1157 stable 44Ca Theranostic of Invasive Aspergillosis and Echinococcus Multilocularis Survival with anti-HER2 212Pb-mABS 212Pb-Trastuzumab 212Pb-Trastuzumab (0.37MBq) 212Pb-Trastuzumab (0.74MBq) 212Pb-Trastuzumab HER 2 (1.48MBq) 100 Survival (%) 80 60 40 Boudousq et al., 2013; PLoS ONE 8(7):e69613. 20 0 0 20 40 60 80 100 Time post-graft (days) 120 140 Auger release of 212Bi ? 0.3 s 60.5 min 10.6 h 212Pb 212Bi 36% 208Tl 212Po 208Pb (Stable) 3.05min 45.1% conversion electrons Auger cascades partial delabeling? 169Er (beta-) vs. 165Er (Auger) radiobiology 169Er 2. Er 1. p+ 3. 4. Tm 3+ 165 165Er3+ TmEr 165 Tm 5. 165Er3+ 6. 7. 165Er3+ SCX 165 Tm-DOTA Beam request A) B) C) D) 149Tb-cm09 dose escalation study 149Tb-PRRT pilot study 152Tb/155Tb companion diagnostics 140Nd/134Ce chelator optimization 140Nd/134Ce immuno-PET E) exploratory experiments (Pb, Bi,…) F) mass separation of 169Er/168Er Total Available New request Shifts 8 3 incl. 6 6 3 6 (offline) 26 + 6 -10 16 + 6 (offline) Off-line separation of 169Er • • • • Therapy study with 6 mice, 70 MBq 169Er-DOTATOC per mouse factor 2 for decay losses and labeling yield 850 MBq needed (1E15 atoms collected) LA[169Er]=5 MBq up to 500 MBq can be handled in “class C” bat. 170 collect and ship two separate samples of 425 MBq each ship as UN2910 (“excepted package”) • implantation current 1 nA of 169Er for 24 h (3 shifts per sample) • total current 1 A Er (168Er + 169Er) [cf. 7Be collections] • ionization potential 6.11 eV > 0.5% thermal ionization efficiency • RILIS efficiency >5%? (to be tested!) • ship 20 GBq from ILL (2% of A2 limit > “type A” transport) • Note: 169Er is a low-energy beta emitter, with very low emission of rays: 0.16% 8 keV, 0.01% 110 keV very low dose rate: <1 Gy/h at 1 m from unshielded 1 GBq sample. Indirect production of 203Pb, 205Bi Imaging Studies Using PET and SPECT KB Tumor-Bearing Nude Mice PET 152Tb-folate: 9 MBq Scan Start: 24 h p.i. Scan Time: 4 h SPECT 155Tb-folate: SPECT 4 MBq Scan Start: 24 h p.i. Scan Time: 1 h 161Tb-folate: 30 MBq Scan Start: 24 h p.i. Scan Time: 20 min Müller et al. 2012, J Nucl Med 53:1951. Arsenic: another theranostic multiplet 71As: low-energy + emitter for high-resolution PET ? 74As: long-lived + emitter for longitudinal PET studies 72As: generator-produced + emitter for PET 77As: reactor-produced emitter for therapy Excellent resolution with Derenzo phantom 18F 71As E+ = 0.25 MeV E+ = 0.35 MeV Köster et al. 2014, Nucl Med Biol, submitted.
© Copyright 2025