Applied Econometric Time-Series Data Analysis 逢甲大學財務金融系主任 張倉耀 教授 Types of Data 1 Time series data Data have been collected over a period of time on one or more variables. Data have associated with them a particular frequency of observation (daily, monthly or annually…) or collection of data points. 2 3 Cross-sectional data Panel data The Procedure to Analysis Economic or Financial Theory Summary Statistics of Data If reject not reject Luukkonen et al. (1988) Linearity Test Linear Model Nonlinear Model Basic Econometric Advanced Econometric The Procedure to Analysis Time Series Data Unit Root Test Non-Stationarity Staionaruty Dickey-Fuller Orders of Integration Augmented DF The same Difference Phillips-Perron E-G J-J H-I KPSS DF-GLS, NP ARDL Bounding KPSS Test H0: Yt ~ I(1) H1: Yt ~ I(0) VAR in Level H0: Yt ~ I(0) H1: Yt ~ I(1) Cointegration Test The Procedure to Analysis Unit Root Test Staionaruty Cointegration Test Yes EG,JJ, KPSS VECM No ARDL UECM (Pesaran et al., 2001) VAR in differ Model Specification VAR in Level The Procedure to Analysis Model Estimation Economic or Finance Implication Impulse Resp Variance Dec Granger Causality The Procedure to Analysis Goodness-of-fit Heteroskedastic R square ACH-LM Teat Diagnostic Checking Normality Jarque-Bera N Series autocorrelation Ljung-Box Q, Error specification Ramsey’s RESET sationarity Q2 CUSUM (square) Econometric Soft Packages Package EViews Rats GAUSS Matlab Microfit EasyReg STATA TSP Sources of Data DataBase AREMOS TEJ Data bank National Statistic, ROC Website http://140.111.1.22/moecc/rs/pkg/tedc/tedc1.htm http://www.tej.com.tw/ http://www.stat.gov.tw/mp.asp?mp=4 DataStream Thomson Financial DataStream CRSP http://www.crsp.chicagogsb.edu/ Compustat http://www2.standardandpoors.com/portal/site/sp/ en/us/page.product/dataservices_compustat/2,9, 2,0,0,0,0,0,0,0,0,0,0,0,0,0.html Example: PPP Variables Currency exchange rate Frequency Sources Annual (1979-1990) Hayashi (2000) ls=Log (S) Price index of UK lukwpi=log (ukwpi) Price index of US luswpi=log (uswpi) Real exchange rate et lst luswpit lukwpit Summary Statistics of Data No trend Summary Statistics of Data Stationary Time Series Time Series modeling A series is modeled only in terms of its own past values and some disturbance. Autoregressive, AR (1) yt 0 1 yt ut ut ~ WN (0, 2 ) Moving Average, MA (1) ut t t 1 Stationary Time Series Box-Jenkins (1976) ARMA (p, q) model yt 0 1 yt 1 p yt p ut 1ut 1 q ut q p q i 1 i 0 0 i yt i i u1i The necessary and sufficient stationarity condition p i 1 i 1 Stationary Time Series The determination of the order of an ARMA process Autocorrelation function (ACF) cov( yt , yt po rq ) ( por q) var( yt ) Partial ACF (PACF) p j 1 ( p 2, j pp p 2, p j ) p j p 1 ( p) 1 j 1 ( p 2, j pp p 2, p j ) j p 1 Ljung-Box Q statistic p i2 i 1 T -i Q( p) T (T 2) ~ p2 , p3 Stationary Time Series process ACF PACF AR (p) Infinite: damps out Finite: cuts off after lag p MA (q) Finite: cuts off after lag q Infinite: damps out ARMA(p, q) Infinite: damps out Infinite: damps out Stationary Time Series e series is AR(1) P* = 1 Non-stationary Time Series Autoregressive integrated moving average (ARIMA) model If p i 1 i 1 Y series is explosive i 1 Y series has a unit root If p i 1 Non-stationary Time Series How to achieve stationary? DSP = Difference stationary process • Yt ~ I(1) = D d 1 yt yt yt 1 yt • Yt ~ I(2) =D d 2 yt yt yt 1 2 yt TSP = Trend stationary process yt 0 1t t ŷt Non-stationary Time Series Unit Root Test ADF Test p : Yt Yt 1 i Yt i t i 1 De-data p t : Yt t Yt 1 i Yt i t i 1 De-trend p u : Yt Yt 1 i Yt i t i 1 KPSS Yt t rt t iid t ~ N (0, 2 ) De-mean Non-stationary Time Series Selection Criteria of the Lag Length Schwartz Bayesian Criterion (SBC) SSR k ln T min SBC ln( ) T T Small sample Akaike Information Criterion (AIC) SSR min AIC T ln( ) 2k T k T SSR Big sample parameters observations sum of squared residuals Non-stationary Time Series Reject H0 Non-stationary Time Series Engle-Granger 2-Stage Cointegration Test Step 1: regress real exchange rate et 0 1lst 2luswpit 3lukwpit ut Step 2: error term ut ut 1 t ADF Unit Root Test Hypothesis H0 : 0 H1 : 0 If reject H0, ut ~ I (0) We support PPP Non-stationary Time Series Name as ppp Non-stationary Time Series Error – Correction Model (ECM) d d i 1 i 1 et 0 ecmt 1 et i xt i t Where x is independent variables Residual ( t ) Diagnostic Test Non-stationary Time Series 逢甲大學財務金融系主任 張倉耀 教授
© Copyright 2024