PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Lecture 13 Photodetectors and Experimental Verification of Quantum Nature of Light Reminder: • Lecture notes taker • HWK3 due in Wednesday Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 1 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Course Outline Lectures Lecture 1 (1/13) Lecture 2 (1/15) No Class on 1/20 Monday Lecture 3 (1/22) Lecture 4 (1/27) Lecture 5 (1/29) Lecture 6 (2/03) Lecture 7 (2/05) Lecture 8 (2/10) Lecture 9 (2/12) Lecture 10 (2/17) Lecture 11 (2/19) Lecture 12 (2/24) Lecture 13 (2/26) Lecture 14 (3/03) Lecture 15 (3/05) Lecture 16 (3/10) Lecture 17 (3/12) No classes on 3/17 & 3/19 Lecture 18 (3/24) Lecture 19 (3/26) Lecture 20 (3/31) Lecture 21 (4/02) Lecture 22 (4/07) Lecture 23 (4/09) Lecture 24 (4/14) Lecture 25 (4/16) Lecture 26 (4/21) Lecture 27 (4/23) Lecture 28 (4/28) Lecture 29 (4/30) Final Exam on (TBD) Purdue University Topics Overview (FQ1+) Review Classical Optics (FQ2; FS1-2) (MLK day) Review Quantum Mechanics, birth of photons (FQ3+) Quantum Information, cryptography & communication (FQ12) Radiative Transitions in Atoms & Molecules (FQ4; FS8.2) Radiative/Inter-band transition in solids (FS3, FS7.3.2) Masers & Lasers: CW, pulsed, frequency comb, Xasers Photon Statistics (FQ5) Photon Correlation (FQ6), extension to other (quasi)particles Coherent, Squeezed & Number states (FQ7,8) Resonant Light-atom interaction, density matrices, Rabi oscillation (FQ9) Solid state quantum structures: wells, wires and dots (FS6) Laser cooling of atoms & solids (FQ11+) Cold atoms & atom optics, atom lasers (given by TA R. Niffenegger) TBD (Special topics/APS/coherent control) Excitons and Polaritons (FS4+) Luminescence, Luminescence/NV centers & quantum emitters (FS5,9+) (Spring Break) EIT, slow light (Agarwal) & coherent control Quantum entanglement, memory & teleportation (FQ14) Atoms in cavities, Jaynes-Cummings model (FQ10) Cavity QED/circuit QED, optomechanics Quantum Computing, photon based QC (FQ13+) Quantum Computing systems: ions, Rydberg atoms, molecules Quantum Computing systems: superconductor/cQED, quantum dots, NMR Photonics with nanomaterials: CNT, graphene & 2D materials (FS8+) Phonons/Vibrons and Raman spectroscopy, CARS (FS10) Special topics: Quantum Sensing & Photodetectors, applications Special topics: Optically synthetic gauge fields/topological/quantum matter, quantum emulation, student presentations Special topics: Casimir, (quantum) plasmonics etc. student presentations Spring 2014 Prof. Yong P. Chen ([email protected]) Part 1: basic review: Optics+Quantum; Part 2: Basic Lightmatter interaction; laser; Part 3: Quantum Optics of photons Part 4: More advanced light-matter interaction Part 5: Quantum information/photonics/ applications Subject to change; Check updates on course web/wiki Lecture 13 (3/10/2014) Slide 2 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Quantum Optics of Photons FQ’Chap5 FQ’Chap6 Chap 7-8: coherent, squeezed, & number states Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 3 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Photon Statistics FQ’Chap5 Single photon detector: • PMT (photomultiplier tube) • APD (avalanche photodiode) Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 4 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Classification of Light by Photon Statistics Poisson Statistics (Nonclassical light) Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 5 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Subpoissonian Light But: any (random) loss will randomize the photons (det. Subpoissonian challenging) Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 6 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Photodetectors (experimental & theory) • Critical for quantum optics/photonics • Understand photodetection process: Quantum light or quantum response of photodetectors? • Types of common photodetectors – Photoconductor & photodiode – Single photon/counting detector: PMT & APD • Theory of photodetectors – Semiclassical theory (Poisson) – Quantum theory – Shot/quantum noise, fano factor FO’Chap 3.7; FQ Chap 5.8-5.10 Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 7 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Some Reviews on Photodetectors • Yotter, R.A.; Wilson, D.M. “A Review of Photodetectors for Sensing LightEmitting Reporters in Biological Systems”, IEEE SENSORS JOURNAL, 3,288, (2003) • Peter Krizan and Samo Korpar, “Photodetectors in Particle Physics Experiments”, Annu. Rev. Nucl. Part. Sci. 2013. 63:329–49 • Sochi et al. “Nanowire Photodetectors”, J Nanosci Nanotechnol. 2010 Mar;10(3):1430-49 Books: • G.H.Rieke, Detection of Light (2ed. 2003) --- astro appl. • G. Knoll, ‘Radiation detection and measurements’ • Nicholas Tsoulfanidis, ‘MEASUREMENT AND DETECTION OF RADIATION’, 3-ed 2010 [online] – esp. higher energy radiation/photons Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 8 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Yotter, R.A.; Wilson, D.M. “A Review of Photodetectors for Sensing Light-Emitting Reporters in Biological Systems”, IEEE SENSORS JOURNAL, 3,288, (2003) Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 9 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Photodetector: photoconductor • Dark current (I0) • Photocurrent I=I-I0 • Responsitivity= photocurrent/power Photoelectric or photothermoelectric? Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 10 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ photodiode Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 11 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap21/F21-04%20Semiconduct%20converter.jpg Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 12 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 13 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ G.Konstantatos et al. ‘12 PbS: Electron dopant Build-in electric field at the interface between QD layer and graphene due to the balance in Fermi level. Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 14 Graphene Photodetectors and Phototransistors Advantage of Graphene Phtotodetectors • • • • Room temperature and broadband operation . High speed Graphene is flexible, light, and visually transparent. Operational wavelength can be tuned. Potential Applications • • • High-speed optical communications Terahertz detection Remote sensing and Spectroscopy Nature Photonics. 4, 297, (2010) Graphene Photodetectors • Fast photoresponse • Lower photoresponsivity • Due to “Intrinsic” properties of Graphene (carriers generated and transported in graphene) • Photoelectric vs photothermoelectric? Nature Nano. 7, 363, (2012) Hybrid Graphene-QD Phototransistors • High photoresponsivity • Slow photoresponse 15 • Carriers generated external to graphene but transferred to /transported by graphene PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ (single photon) photodetector APD PMT (eg. MgO) Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 16 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Theory of Photodetection (semiclasical) If I(t)=I constant If I(t) fluctuating, superpoissonian Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 17 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Theory of Photodetection (quantum) But: any (random) loss will randomize the photons (det. Subpoissonian challenging) Purdue University Spring 2014 Key: high Q.E. Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 18 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Noise in Photodiodes Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 19 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Shot Noise (“quantum noise”) Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 20 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 21 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ (classical) Noise Reduction Also: feed-forward Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 22 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Experimental Observation of quantum nature of light: sub-poissonian light Use sub-poissonian electrons to gernerate SubP-light Sub-poissonian counting statistics Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 23 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Sub-shot noise photocurrent Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 24 PHYS522 Introduction to Quantum Optics & Quantum Photonics ECE695 (“Coherent Optics & Quantum Electronics”) http://www.physics.purdue.edu/academic_programs/courses/phys522/ Next Lecture (10): quantum optics of photons • FQ Chap 5. Purdue University Spring 2014 Prof. Yong P. Chen ([email protected]) Lecture 13 (3/10/2014) Slide 25
© Copyright 2025