IAEA Regional Training Course on Sediment Core Dating Techniques. RAF7/008 Project J.M. Abril Department of Applied Physics (I); University of Seville (Spain) Lecture 1: Radionuclides of the environment and general aspects •Concentration and distribution factors. •kd variability •Granulometric speciation • kd in saturated porous media : “intrinsic” values • Experiments on depth penetration patterns J.M. Abril, University of Seville Some radionuclides and other hazardous materials, such as heavy metals, are highly particle-reactive. Their uptake by suspended particulate matter (SPM) and bottom sediments plays an important role in the fate of these pollutants. Remember: Depending on the pollutant, 1 gram of SPM can uptake more activity (or units of pollutants) than 1 m3 of water. J.M. Abril, University of Seville •Naturally occurring particulate matter in aquatic systems usually exhibits areas with uncompensated negative charges. •The uptake is a surface-mediated phenomenon. SPM has very high specific surface area (SSA) J.M. Abril, University of Seville Kd provides a convenient means to describe the relationship between radionuclide concentrations in SPM or bottom sediments and water asolid Bq / kg kd aw Bq / kg 4 Notes: •Field observation •Laboratory experiments •Dynamic equilibrium J.M. Abril, University of Seville 5 J.M. Abril, University of Seville Concentration facfors Concentration in plant CF Concentration in soil 6 J.M. Abril, University of Seville 7 J.M. Abril, University of Seville Concentration facfors Concentration factors of selected radionuclides in the fresh water environment (from Santchi and Honeyman, 1989) Sediment Nuclide Half life Source Phytoplankton Zooplacton Fish 3 12.3 yr C-A 1 1 1 H 1 7 8 Be 14 C 40 K 54 Mn 74 Se 90 Sr 99 Tc 109 Cd 133 Ba 137 Cs 210 Pb 226 Ra 238 U 239 Pu 241 Am 53 d 5700 y 1,3x109yr 300 d 120 d 28 yr 2x105 yr 1,3 yr 8,9 yr 30 yr 22 yr 1,600 yr 4,5x109yr 2,4x104yr 460 d C C-A P A A A A A A A P P P A A 250 9,000 10,000 6,000 8,000 200 40 500 100 900 7,000 2,000 20 900 200,000 20,000 10,000 1,000 50 100 100 1,000 100 100 1,000 100 5 100 2,000 Source of nuclide: C= cosmogenic, P=primordial, A= anthropogenic J.M. Abril, University of Seville 1.0x103 20,000 2.0x103 4,000 400 2,0x108 50 1,0X103 10 2,0x102 15 1,0x102 200 1,0x104 10 1,0X104 1,000 5,0x103 200 1,0X107 500 3,0x104 1 5,0x102 4 1,0x104 50 1,0x105 Kd variability For many radionuclides, field kd values from different environments, can vary within a range of more than two orders of magnitude (IAEA, 1985) 9 J.M. Abril, University of Seville Kd vs. particle-size Basic model handling spherical particles Pores and free edges 10 J.M. Abril, University of Seville asolid Bq / kg kd aw Bq / kg Definitions: as , ac, ξ 11 J.M. Abril, University of Seville Man-made radionuclides interacting with “natural” particles 12 J.M. Abril, University of Seville Naturally occurring radionuclides • ac > 0 •The full equation has to be used •Two extreme behaviors depending on radionuclide solubility •Depleted outer layer for relatively soluble radionuclides •Enriched outer layer for highly particle-reactive radionuclides 13 J.M. Abril, University of Seville 14 J.M. Abril, University of Seville Caesium 15 J.M. Abril, University of Seville 16 J.M. Abril, University of Seville “Many particles” effects in kd variability SPM in natural waters is mainly present in the form of flocs (or aggregates) mixed with single mineral particles. 17 J.M. Abril, University of Seville 18 J.M. Abril, University of Seville Global effects of particle size spectra and mineralogical composition 19 J.M. Abril, University of Seville 20 J.M. Abril, University of Seville Understanding spatial speciation… "mapdu.da t" 35 30 25 20 15 10 5 0 40 35 30 25 10 20 20 30 15 40 10 50 60 70 5 Bathymetric map for lake HÁRSVATTEN (Sweden). 21 J.M. Abril, University of Seville -4 "sec1t" -2 0 70 Water depth (m) 80 2 4 6 60 8 1 m/min 50 10 12 40 0 5 10 15 20 25 30 X-coordinate (x 13.15 m) 30 20 Z Hydrodynamic transport 1m/min 10 0 35 30 25 20 15 10 5 Settling velocity Stokes’ Law 22 Path length J.M. Abril, University of Seville 35 40 23 J.M. Abril, University of Seville 24 J.M. Abril, University of Seville 210Pb 25 J.M. Abril, University of Seville Competition with cations related to SALINITY [ S ] 26 J.M. Abril, University of Seville More details in: Parts I and II 27 J.M. Abril, University of Seville 28 J.M. Abril, University of Seville A phosphate fertilizer factory pumped into the Odiel river (SW Spain) a suspension of PG particles (NORM material). We wanted to know how these radionuclide-enriched material was spread onto bottom sediments Direct gamma measurements of radionuclide concentrations would provide concentrations under MDL 29 J.M. Abril, University of Seville C(r) kd PG susp F1 r r C(r) kd F2 Natural p. r 30 J.M. Abril, University of Seville r kd r 31 J.M. Abril, University of Seville Materials and methods 3-5 kilograms of sediments were collected at each sampling point The samples were dried (24 h at 110°C), mechanically disaggregated and sieved in a sieving-pile. 32 J.M. Abril, University of Seville 234Th 33 J.M. Abril, University of Seville 226Ra 34 J.M. Abril, University of Seville Benoit and Hemond, 1991. Geochimica et Cosmochimica Acta 55, 1963-75. Evidence for diffusive redistribution of 35 210Pb Bickford Reservoir (USA) J.M. Abril, University of Seville in lake sediments 99.95 % in solids Bickford Reservoir (USA) 36 J.M. Abril, University of Seville Bickford Reservoir (USA) 37 J.M. Abril, University of Seville Radionuclide uptake by sediment columns H. Barros and J.M. Abril 0.5 mm 30 cm 10 cm 14 cm 38 J.M. Abril, University of Seville Concentración de 133Ba en la columna de agua [Bq/mL] 0.12 0.1 0.08 0.06 aw(t) calculada a distintas profundidades (desde la superficie del agua) ___ ____ 0.04 ---- aw(t) a 10 cm aw(t) a 11 cm aw(t) a 12 cm 0.02 0 0.01 0.1 1 10 100 1000 10000 t [horas] Figura 4.10. Cinética de transferencia del 133Ba desde la columna de agua hacia los sedimentos. Experimento con sedimentos bajo una columna de agua en reposo. R2 (41 días) y + R3 (221 días). Debido a la estratificación en la columna de agua sobrenadante, se representan las simulaciones para los 10, 11 y 12 cm de profundidad. 39 J.M. Abril, University of Seville Concentración de 133Ba en sedimentos sólidos [Bq g-1] ____ 1 ____ R1 41 días R2 221 días 0.1 0.01 0.001 Límite de detección 0.0001 1e-05 0 5 10 15 20 25 30 Profundidad [mm] Figura 4.6. Experimentos R1y R2 con sedimentos en reposo. Perfiles de concentración de 133Ba en el agua intersticial y en la fase sólida para dos tiempos de observación diferentes. Las líneas continuas corresponden a las medidas, que se representan con barras de error que corresponden a ±0.5 mm en la escala horizontal y a la ±1 de incertidumbre analítica en la escala vertical. Las discontinuas corresponden a la descripción mediante el modelo. 40 J.M. Abril, University of Seville
© Copyright 2024