ProblemoftheMonth:OnceUponaTime TheProblemsoftheMonth(POM)areusedinavarietyofwaystopromoteproblem solvingandtofosterthefirststandardofmathematicalpracticefromtheCommon CoreStateStandards:“Makesenseofproblemsandpersevereinsolvingthem.”The POMmaybeusedbyateachertopromoteproblemsolvingandtoaddressthe differentiatedneedsofherstudents.Adepartmentorgradelevelmayengagetheir studentsinaPOMtoshowcaseproblemsolvingasakeyaspectofdoing mathematics.Itcanalsobeusedschoolwidetopromoteaproblem‐solvingthemeat aschool.Thegoalisforallstudentstohavetheexperienceofattackingandsolving non‐routineproblemsanddevelopingtheirmathematicalreasoningskills.Although obtainingandjustifyingsolutionstotheproblemsistheobjective,theprocessof learningtoproblemsolveisevenmoreimportant. TheProblemoftheMonthisstructuredtoprovidereasonabletasksforallstudents inaschool.ThestructureofaPOMisashallowfloorandahighceiling,sothatall studentscanproductivelyengage,struggle,andpersevere.ThePrimaryVersion LevelAisdesignedtobeaccessibletoallstudentsandespeciallythekeychallenge forgradesK–1.LevelAwillbechallengingformostsecondandthirdgraders. LevelBmaybethelimitofwherefourthandfifth‐gradestudentshavesuccessand understanding.LevelCmaystretchsixthandseventh‐gradestudents.LevelDmay challengemosteighthandninth‐gradestudents,andLevelEshouldbechallenging formosthighschoolstudents.Thesegrade‐levelexpectationsarejustestimatesand shouldnotbeusedasanabsoluteminimumexpectationormaximumlimitationfor students.Problemsolvingisalearnedskill,andstudentsmayneedmany experiencestodeveloptheirreasoningskills,approaches,strategies,andthe perseverancetobesuccessful.TheProblemoftheMonthbuildsonsequentiallevels ofunderstanding.AllstudentsshouldexperienceLevelAandthenmovethroughthe tasksinordertogoasdeeplyastheycanintotheproblem.Therewillbethose studentswhowillnothaveaccessintoevenLevelA.Educatorsshouldfeelfreeto modifythetasktoallowaccessatsomelevel. Overview IntheProblemoftheMonthOnceUponaTime,studentsusemeasurement,number properties,andcirculargeometrytosolveproblemsinvolvingtimeandangles.The mathematicaltopicsthatunderliethisPOMaretimemeasurement,including conversionbetweenyears,months,weeks,days,hours,minutes,andseconds; modulararithmeticthatinvolvesdivisibilityandremainders;patternrecognition,as wellascirclesandangularmeasurement. InLevelAofthePOM,studentsarepresentedwiththetaskofdetermininghow manyminuteswillpassbeforethelargehandcatchesuptothesmallhandona ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). clock.Theirtaskinvolvescountingupandunderstandinghowaclockmeasures time.AtLevelB,thestudentsareaskedtoconverttheiragefromyearsintoseasons, months,andweeks.Studentsarealsoaskedtodeterminewhatdaynumberthe currentdateisintheyear.InLevelC,studentsaregivenaproblemthatrequiresan understandingofdivisibilityandmaybedeterminedbyusingknowledgeof relativelyprimefactors.InLevelD,thestudentispresentedwithaproblemthat involvesthreedifferent‐sizedalarmclocksthatringatvariedintervals.Thetaskis todetermineiforwhenthethreeclockschimesimultaneously.Somestudentsmay useanunderstandingofmodulardivisiontosolvetheproblem.InLevelE,students areaskedtodeterminethetimesinadaythattheclockhandsformanangleof48 degrees. MathematicalConcepts ThisPOMinvolvescyclicalpatternsandmeasurement.Themostcommoncyclical patternistimemeasurement.Timemeasurementandcirclesareintertwined.The factthatcircleshave360degreeshasitsrootsintheoriginalcalendarsthat determinedayearwas360days.Cyclicalrelationshipsareoftenrepresentedby circlesandtheircomponentparts,suchasanglesandsectors.Cyclicalrelationships arecommonthroughoutmathematicswithlinksbetweennumber,geometry, algebra,trigonometry,andmeasurement. ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). Problem of the Month Once Upon a Time Level A: When it is four o’clock, how many minutes must pass before the big hand (minute hand) gets to where the little hand (hour hand) was at four o’clock? How did you figure it out? When it is six-thirty, how many minutes must pass before the big hand (minute hand) gets to where the little hand (hour hand) was at six-thirty? Explain the way you figured it out. Problem of the Month Once Upon a Time Page 1 © Noyce Foundation 2013. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level B: How old are you? • State your answer in years. • State your answer in seasons. • State your answer in months. • State your answer in weeks. What date is it? What number day of the year is it? How many more days until January 1? Problem of the Month Once Upon a Time Page 2 © Noyce Foundation 2013. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level C: I met a man who said, “If you can guess my age, I will pay you one dollar for each year that I have lived. I will also give you two hints. If you take my age and divide it by any odd number greater than 1 and less than 9, you will get a remainder of 1. But if you take my age and divide it by any even number greater than 1 and less than 9, you will not get a remainder of 1.” How much money could you earn? Explain your solution and how you know it is the only correct answer. Problem of the Month Once Upon a Time Page 3 © Noyce Foundation 2013. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level D: An eccentric clockmaker built three different clocks. The first clock was a five-minute clock designed with an alarm set to sound each time the hand reached the number 2. The second clock was a six-minute clock designed to sound each time the hand reached the number 3. The third clock was a seven-minute clock designed to sound each time the hand reached the number 4. The clockmaker started the clocks simultaneously one day, and each clock began to sound at its appropriate time. Was there a time when all three clocks sounded their alarms together? If so, tell when it occurred and explain why. If not, explain why not. 4 7 6 5 1 1 6 1 5 2 5 3 2 2 4 3 4 3 Problem of the Month Once Upon a Time Page 4 © Noyce Foundation 2013. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Level E: The minute hand and the hour hand on a clock form a 48˚angle. What time is it? At what other times during the day do the hands on the clock form a 48˚ angle? How many times in a day (24 hour period) do the hands form a 48˚ angle? Explain your reasoning. Problem of the Month Once Upon a Time Page 5 © Noyce Foundation 2013. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). Problem of the Month Once Upon a Time PrimaryVersionLevelA Materials:Alargedemonstrationclock,asmallclockpergroup Discussionontherug:Teacherholdsuptheclocksetat4:00.“What time does this clock say?”Teachersolicitsanswersfromstudents.“Which is the minute hand? Which is the hour hand?”Teachersolicitsanswersfromstudents;teacher mayrefertohandsasbigandsmall.“How do the hands move around the clock?”Studentsdemonstrate.“Which hand moves faster?” Insmallgroups:Eachgrouphasanindividualclock.Theteacherstatesthe following:“Set your clock to 4 o’clock. Which direction do the hands move? Which is the minute hand (big hand)? How many minutes must pass before the minute hand gets to where the hour hand (little hand) is now? Draw a picture or use words to explain how you know.” “Set your clock to 6:30. Which direction do the hands move? Which is the minute hand (big hand)? How many minutes must pass before the minute hand gets to where the hour hand (little hand) is now? Draw a picture or use words to explain how you know.” Attheendoftheinvestigationhavestudentseitherdiscussordictatearesponseto thesesummaryquestions. Problem of the Month Once Upon a Time Page 6 © Noyce Foundation 2013. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US). ProblemoftheMonth OnceUponaTime TaskDescription–LevelA Thistaskchallengesastudenttodeterminehowmanyminuteswillpassbeforethelargehandwill catchupwiththesmallhandonananalogclock.Astudentwillunderstandhowananalogclock measurestimeandwillusingcountingprinciplestoworkonthistask. CommonCoreStateStandardsMath‐ContentStandards CountingandCardinality Knownumbernamesandthecountsequence. K.CC.1Countto100byonesandbytens. K.CC.5Counttoanswer“howmany?”questionsaboutasmanyas20thingsarrangedinaline,a rectangulararray,oracircle,orasmanyas10thingsinascatteredconfiguration;givenanumber from1–20,countoutthatmanyobjects. OperationsandAlgebraicThinking Understandadditionasputtingtogetherandaddingto,andunderstandsubtractionastaking apartandtakingfrom. K.OA.1Representadditionandsubtractionwithobjects,fingers,mentalimages,drawings,sounds (e.g.,claps),actingoutsituations,verbalexplanations,expressions,orequations. Addandsubtractwithin20. 1.OA.5Relatecountingtoadditionandsubtraction(e.g.,bycountingon2toadd2). Representandsolveproblemsinvolvingadditionandsubtraction. 2.OA.1Useadditionandsubtractionwithin100tosolveone‐andtwo‐stepwordproblemsinvolving situationsofaddingto,takingfrom,puttingtogether,takingapart,andcomparing,withunknownsin allpositions,e.g.,byusingdrawingsandequationswithasymbolfortheunknownnumberto representtheproblem. MeasurementandData Tellandwritetime. 1.MD.3Tellandwritetimeinhoursandhalf‐hoursusinganaloganddigitalclocks. Workwithtimeandmoney. 2.MD.7Tellandwritetimefromanaloganddigitalclockstothenearestfiveminutes,usinga.m.and p.m. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.7Lookforandmakeuseofstructure. Mathematicallyproficientstudentslookcloselytodiscernapatternorstructure.Youngstudents,forexample, mightnoticethatthreeandsevenmoreisthesameamountassevenandthreemore,ortheymaysorta collectionofshapesaccordingtohowmanysidestheshapeshave.Later,studentswillsee7x8equalsthewell‐ remembered7x5+7x3,inpreparationforlearningaboutthedistributiveproperty.Intheexpressionx2+9x+ 14,olderstudentscanseethe14as2x7andthe9as2+7.Theyrecognizethesignificanceofanexistinglinein ageometricfigureandcanusethestrategyofdrawinganauxiliarylineforsolvingproblems.Theyalsocanstep backforanoverviewandshiftperspective.Theycanseecomplicatedthings,suchassomealgebraicexpressions, assingleobjectsorasbeingcomposedofseveralobjects.Forexample,theycansee5–3(x–y)2as5minusa positivenumbertimesasquareandusethattorealizethatitsvaluecannotbemorethan5foranyrealnumbers xandy. MP.8 Lookforandexpressregularityinrepeatedreasoning. Mathematicallyproficientstudentsnoticeifcalculationsarerepeated,andlookbothforgeneralmethodsandfor shortcuts.Upperelementarystudentsmightnoticewhendividing25by11thattheyarerepeatingthesame calculationsoverandoveragain,andconcludetheyhavearepeatingdecimal.Bypayingattentiontothe calculationofslopeastheyrepeatedlycheckwhetherpointsareonthelinethrough(1,2)withslope3,middle schoolstudentsmightabstracttheequation (y–2)/(x–1)=3.Noticingtheregularityinthewaytermscancelwhenexpanding(x–1)(x+1),(x– 1)(x2+x+1),and(x–1)(x3+x2+x+1)mightleadthemtothegeneralformulaforthesumofageometricseries.As theyworktosolveaproblem,mathematicallyproficientstudentsmaintainoversightoftheprocess,while attendingtothedetails.Theycontinuallyevaluatethereasonablenessoftheirintermediateresults. ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). ProblemoftheMonth OnceUponaTime TaskDescription–LevelB Thistaskchallengesastudenttoconverttheiragefromyearsintoseasons,months,andweeks.A studentisalsoaskedtodeterminewhatdaynumberthecurrentdateisintheyear.Astudentmay useunitconversionsandvariables. CommonCoreStateStandardsMath‐ContentStandards OperationsandAlgebraicThinking Representandsolveproblemsinvolvingadditionandsubtraction. 2.OA.1Useadditionandsubtractionwithin100tosolveone‐andtwo‐stepwordproblemsinvolvingsituations ofaddingto,takingfrom,puttingtogether,takingapart,andcomparing,withunknownsinallpositions,e.g.,by usingdrawingsandequationswithasymbolfortheunknownnumbertorepresenttheproblem. NumberandOperationsinBaseTen Useplacevalueunderstandingandpropertiesofoperationstoaddandsubtract. 2.NBT.5Fluentlyaddandsubtractwithin100usingstrategiesbasedonplacevalue,propertiesofoperations, and/ortherelationshipbetweenadditionandsubtraction. Useplacevalueunderstandingandpropertiesofoperationstoperformmulti‐digitarithmetic. 3.NBT.2Fluentlyaddandsubtractwithin1000usingstrategiesandalgorithmsbasedonplacevalue,properties ofoperations,and/ortherelationshipbetweenadditionandsubtraction. Useplacevalueunderstandingandpropertiesofoperationstoperformmulti‐digitarithmetic. 4.NBT.4Fluentlyaddandsubtractmulti‐digitwholenumbersusingthestandardalgorithm. MeasurementandData Solveproblemsinvolvingmeasurementandconversionofmeasurementsfromalargerunittoasmaller unit. 4.MD.1Knowrelativesizesofmeasurementunitswithinonesystemofunitsincludingkm,m,cm;kg,g;lb,oz.;l, ml;hr,min,sec.Withinasinglesystemofmeasurement,expressmeasurementsinalargerunitintermsofa smallerunit.… 4.MD.2Usethefouroperationstosolvewordproblemsinvolvingdistances,intervalsoftime,liquid volumes,massesofobjects,andmoney,includingproblemsinvolvingsimplefractionsordecimals,and problemsthatrequireexpressingmeasurementsgiveninalargerunitintermsofasmallerunit ExpressionsandEquations Applyandextendpreviousunderstandingsofarithmetictoalgebraicexpressions. 6.EE.2Write,read,andevaluateexpressionsinwhichlettersstandfornumbers. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.7Lookforandmakeuseofstructure. Mathematicallyproficientstudentslookcloselytodiscernapatternorstructure.Youngstudents,forexample, mightnoticethatthreeandsevenmoreisthesameamountassevenandthreemore,ortheymaysorta collectionofshapesaccordingtohowmanysidestheshapeshave.Later,studentswillsee7x8equalsthewell‐ remembered7x5+7x3,inpreparationforlearningaboutthedistributiveproperty.Intheexpressionx2+9x+ 14,olderstudentscanseethe14as2x7andthe9as2+7.Theyrecognizethesignificanceofanexistinglinein ageometricfigureandcanusethestrategyofdrawinganauxiliarylineforsolvingproblems.Theyalsocanstep backforanoverviewandshiftperspective.Theycanseecomplicatedthings,suchassomealgebraicexpressions, assingleobjectsorasbeingcomposedofseveralobjects.Forexample,theycansee5–3(x–y)2as5minusa positivenumbertimesasquareandusethattorealizethatitsvaluecannotbemorethan5foranyrealnumbers xandy. MP.8 Lookforandexpressregularityinrepeatedreasoning. Mathematicallyproficientstudentsnoticeifcalculationsarerepeated,andlookbothforgeneralmethodsandfor shortcuts.Upperelementarystudentsmightnoticewhendividing25by11thattheyarerepeatingthesame calculationsoverandoveragain,andconcludetheyhavearepeatingdecimal.Bypayingattentiontothe calculationofslopeastheyrepeatedlycheckwhetherpointsareonthelinethrough(1,2)withslope3,middle schoolstudentsmightabstracttheequation (y–2)/(x–1)=3.Noticingtheregularityinthewaytermscancelwhenexpanding(x–1)(x+1),(x– 1)(x2+x+1),and(x–1)(x3+x2+x+1)mightleadthemtothegeneralformulaforthesumofageometricseries.As theyworktosolveaproblem,mathematicallyproficientstudentsmaintainoversightoftheprocess,while attendingtothedetails.Theycontinuallyevaluatethereasonablenessoftheirintermediateresults. ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). ProblemoftheMonth OnceUponaTime TaskDescription–LevelC Thistaskchallengesastudenttodetermineaman’sageandtoexplainthesolutionandhowitisthe onlycorrectsolution.Twohintsaregiven.Astudentwillusebasicoperationsandunderstand remaindersinareal‐lifecontext.Astudentwilluseanunderstandingofdivisibilityandthe knowledgeofrelativelyprimefactorstoworkonthistask. CommonCoreStateStandardsMath‐ContentStandards OperationsandAlgebraicThinking Gainfamiliaritywithfactorsandmultiples. 4.OA.4Findallfactorpairsforawholenumberintherange1–100.Recognizethatawholenumber isamultipleofeachofitsfactors.Determinewhetheragivenwholenumberintherange1–100isa multipleofagivenone‐digitnumber.Determinewhetheragivenwholenumberintherange1–100 isprimeorcomposite. Analyzepatternsandrelationships. 5.OA.3Generatetwonumericalpatternsusingtwogivenrules.Identifyapparentrelationships betweencorrespondingterms.Formorderedpairsconsistingofcorrespondingtermsfromthetwo patterns,andgraphtheorderedpairsonacoordinateplane.Forexample,giventherule“Add3”and thestartingnumber0,andgiventherule“Add6”andthestartingnumber0,generatetermsinthe resultingsequences,andobservethatthetermsinonesequencearetwicethecorrespondingterms intheothersequence.Explaininformallywhythisisso. TheNumberSystem Computefluentlywithmulti‐digitnumbersandfindcommonfactorsandmultiples. 6.NS.2Fluentlydividemulti‐digitnumbersusingthestandardalgorithm. 6.NS.4Findthegreatestcommonfactoroftwowholenumberslessthanorequalto100andtheleast commonmultipleoftwowholenumberslessthanorequalto12. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.7Lookforandmakeuseofstructure. Mathematicallyproficientstudentslookcloselytodiscernapatternorstructure.Youngstudents,for example,mightnoticethatthreeandsevenmoreisthesameamountassevenandthreemore,or theymaysortacollectionofshapesaccordingtohowmanysidestheshapeshave.Later,students willsee7x8equalsthewell‐remembered7x5+7x3,inpreparationforlearningaboutthe distributiveproperty.Intheexpressionx2+9x+14,olderstudentscanseethe14as2x7andthe9 as2+7.Theyrecognizethesignificanceofanexistinglineinageometricfigureandcanusethe strategyofdrawinganauxiliarylineforsolvingproblems.Theyalsocanstepbackforanoverview andshiftperspective.Theycanseecomplicatedthings,suchassomealgebraicexpressions,assingle objectsorasbeingcomposedofseveralobjects.Forexample,theycansee5–3(x–y)2as5minusa positivenumbertimesasquareandusethattorealizethatitsvaluecannotbemorethan5forany realnumbersxandy. MP.8 Lookforandexpressregularityinrepeatedreasoning. Mathematicallyproficientstudentsnoticeifcalculationsarerepeated,andlookbothforgeneral methodsandforshortcuts.Upperelementarystudentsmightnoticewhendividing25by11thatthey arerepeatingthesamecalculationsoverandoveragain,andconcludetheyhavearepeatingdecimal. Bypayingattentiontothecalculationofslopeastheyrepeatedlycheckwhetherpointsareonthe linethrough(1,2)withslope3,middleschoolstudentsmightabstracttheequation (y–2)/(x–1)=3.Noticingtheregularityinthewaytermscancelwhenexpanding(x–1)(x+1),(x– 1)(x2+x+1),and(x–1)(x3+x2+x+1)mightleadthemtothegeneralformulaforthesumofageometric series.Astheyworktosolveaproblem,mathematicallyproficientstudentsmaintainoversightofthe process,whileattendingtothedetails.Theycontinuallyevaluatethereasonablenessoftheir intermediateresults. ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). ProblemoftheMonth: OnceUponaTime TaskDescription–LevelD Thistaskchallengesastudenttodeterminewhenthealarmsonthreedifferentmodularclocksthat ringatvariedintervalswillallsoundatthesametime.Astudentwillneedadeepunderstandingof placevalueandquantitiesforworkingonthistask.Somestudentsmayuseanunderstandingof modulardivisiontosolvetheproblem. CommonCoreStateStandardsMath‐ContentStandards OperationsandAlgebraicThinking Gainfamiliaritywithfactorsandmultiples. 4.OA.4Findallfactorpairsforawholenumberintherange1–100.Recognizethatawholenumberisa multipleofeachofitsfactors.Determinewhetheragivenwholenumberintherange1–100isamultipleofa givenone‐digitnumber.Determinewhetheragivenwholenumberintherange1–100isprimeorcomposite. Analyzepatternsandrelationships. 5.OA.3Generatetwonumericalpatternsusingtwogivenrules.Identifyapparentrelationshipsbetween correspondingterms.Formorderedpairsconsistingofcorrespondingtermsfromthetwopatterns,andgraph theorderedpairsonacoordinateplane.Forexample,giventherule“Add3”andthestartingnumber0,and giventherule“Add6”andthestartingnumber0,generatetermsintheresultingsequences,andobservethat thetermsinonesequencearetwicethecorrespondingtermsintheothersequence.Explaininformallywhythis isso. TheNumberSystem Computefluentlywithmulti‐digitnumbersandfindcommonfactorsandmultiples. 6.NS.2Fluentlydividemulti‐digitnumbersusingthestandardalgorithm. 6.NS.4Findthegreatestcommonfactoroftwowholenumberslessthanorequalto12.… ExpressionsandEquations Solvereal‐lifeandmathematicalproblemsusingnumericalandalgebraicexpressionsand equations. 7.EE.4Usevariablestorepresentquantitiesinareal‐worldormathematicalproblem,andconstruct simpleequationsandinequalitiestosolveproblemsbyreasoningaboutthequantities. Analyzeandsolvelinearequationsandpairsofsimultaneouslinearequations. 8.EE.7Solvelinearequationsinonevariable. CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.7Lookforandmakeuseofstructure. Mathematicallyproficientstudentslookcloselytodiscernapatternorstructure.Youngstudents,forexample, mightnoticethatthreeandsevenmoreisthesameamountassevenandthreemore,ortheymaysorta collectionofshapesaccordingtohowmanysidestheshapeshave.Later,studentswillsee7x8equalsthewell‐ remembered7x5+7x3,inpreparationforlearningaboutthedistributiveproperty.Intheexpressionx2+9x+ 14,olderstudentscanseethe14as2x7andthe9as2+7.Theyrecognizethesignificanceofanexistinglinein ageometricfigureandcanusethestrategyofdrawinganauxiliarylineforsolvingproblems.Theyalsocanstep backforanoverviewandshiftperspective.Theycanseecomplicatedthings,suchassomealgebraicexpressions, assingleobjectsorasbeingcomposedofseveralobjects.Forexample,theycansee5–3(x–y)2as5minusa positivenumbertimesasquareandusethattorealizethatitsvaluecannotbemorethan5foranyrealnumbers xandy. MP.8 Lookforandexpressregularityinrepeatedreasoning. Mathematicallyproficientstudentsnoticeifcalculationsarerepeated,andlookbothforgeneralmethodsandfor shortcuts.Upperelementarystudentsmightnoticewhendividing25by11thattheyarerepeatingthesame calculationsoverandoveragain,andconcludetheyhavearepeatingdecimal.Bypayingattentiontothe calculationofslopeastheyrepeatedlycheckwhetherpointsareonthelinethrough(1,2)withslope3,middle schoolstudentsmightabstracttheequation (y–2)/(x–1)=3.Noticingtheregularityinthewaytermscancelwhenexpanding(x–1)(x+1),(x– 1)(x2+x+1),and(x–1)(x3+x2+x+1)mightleadthemtothegeneralformulaforthesumofageometricseries.As theyworktosolveaproblem,mathematicallyproficientstudentsmaintainoversightoftheprocess,while attendingtothedetails.Theycontinuallyevaluatethereasonablenessoftheirintermediateresults. ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). ProblemoftheMonth OnceUponaTime TaskDescription–LevelE Thistaskchallengesastudenttodeterminethetimesinadaywhenthehandsofananalogclockwill forma48degreeangle.Astudentwillusetheirunderstandingofangleandangularmeasuresto workonthistask. CommonCoreStateStandardsMath‐ContentStandards Geometry Drawandidentifylinesandangles,… 4.G.1Drawpoints,lines,linesegments,rays,angles(right,acute,obtuse),… RatiosandProportionalRelationships6.RP Understandratioconceptsanduseratioreasoningtosolveproblems. 6.RP.1Understandtheconceptofaratioanduseratiolanguagetodescribearatiorelationship betweentwoquantities.Forexample,“Theratioofwingstobeaksinthebirdhouseatthezoowas 2:1,becauseforevery2wingstherewas1beak.”“ForeveryvotecandidateAreceived,candidateC receivednearlythreevotes.” 6.RP.3Useratioandratereasoningtosolvereal‐worldandmathematicalproblems,e.g.,by reasoningabouttablesofequivalentratios,tapediagrams,doublenumberlinediagrams,or equations. 6.RP.3.dUseratioreasoningtoconvertmeasurementunits;manipulateandtransformunits appropriatelywhenmultiplyingordividingquantities. TheNumberSystem Computefluentlywithmulti‐digitnumbersandfindcommonfactorsandmultiples. 6.NS.2Fluentlydividemulti‐digitnumbersusingthestandardalgorithm. 6.NS.4Findthegreatestcommonfactoroftwowholenumberslessthanorequalto12.… ExpressionsandEquations Solvereal‐lifeandmathematicalproblemsusingnumericalandalgebraicexpressionsand equations. 7.EE.4Usevariablestorepresentquantitiesinareal‐worldormathematicalproblem,andconstruct simpleequationsandinequalitiestosolveproblemsbyreasoningaboutthequantities. Analyzeandsolvelinearequationsandpairsofsimultaneouslinearequations. 8.EE.7Solvelinearequationsinonevariable. HighSchool–Algebra‐CreatingEquations Createequationsthatdescribenumbersorrelationships. A‐CED.1Createequationsandinequalitiesinonevariableandusethemtosolveproblems. HighSchool–Geometry‐Congruence Experimentwithtransformationsintheplane G‐CO.1Knowprecisedefinitionsofangle,circle,perpendicularline,parallelline,andlinesegment, basedontheundefinednotionsofpoint,line,distancealongaline,anddistancearoundacirculararc. G‐CO.4Developdefinitionsofrotations,reflections,andtranslationsintermsofangles,circles, perpendicularlines,parallellines,andlinesegments. Makegeometricconstructions G‐CO.12Makeformalgeometricconstructionswithavarietyoftoolsandmethods(compassand straightedge,string,reflectivedevices,paperfolding,dynamicgeometricsoftware,etc.). CommonCoreStateStandardsMath–StandardsofMathematicalPractice MP.7Lookforandmakeuseofstructure. Mathematicallyproficientstudentslookcloselytodiscernapatternorstructure.Youngstudents,for example,mightnoticethatthreeandsevenmoreisthesameamountassevenandthreemore,or theymaysortacollectionofshapesaccordingtohowmanysidestheshapeshave.Later,students willsee7x8equalsthewell‐remembered7x5+7x3,inpreparationforlearningaboutthe distributiveproperty.Intheexpressionx2+9x+14,olderstudentscanseethe14as2x7andthe9 ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). as2+7.Theyrecognizethesignificanceofanexistinglineinageometricfigureandcanusethe strategyofdrawinganauxiliarylineforsolvingproblems.Theyalsocanstepbackforanoverview andshiftperspective.Theycanseecomplicatedthings,suchassomealgebraicexpressions,assingle objectsorasbeingcomposedofseveralobjects.Forexample,theycansee5–3(x–y)2as5minusa positivenumbertimesasquareandusethattorealizethatitsvaluecannotbemorethan5forany realnumbersxandy. MP.8 Lookforandexpressregularityinrepeatedreasoning. Mathematicallyproficientstudentsnoticeifcalculationsarerepeated,andlookbothforgeneral methodsandforshortcuts.Upperelementarystudentsmightnoticewhendividing25by11thatthey arerepeatingthesamecalculationsoverandoveragain,andconcludetheyhavearepeatingdecimal. Bypayingattentiontothecalculationofslopeastheyrepeatedlycheckwhetherpointsareonthe linethrough(1,2)withslope3,middleschoolstudentsmightabstracttheequation (y–2)/(x–1)=3.Noticingtheregularityinthewaytermscancelwhenexpanding(x–1)(x+1),(x– 1)(x2+x+1),and(x–1)(x3+x2+x+1)mightleadthemtothegeneralformulaforthesumofageometric series.Astheyworktosolveaproblem,mathematicallyproficientstudentsmaintainoversightofthe process,whileattendingtothedetails.Theycontinuallyevaluatethereasonablenessoftheir intermediateresults. ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US). ProblemoftheMonth OnceUponaTime TaskDescription–PrimaryLevel Thistaskchallengesastudenttoworkwithanalogclockstolayafoundationforunderstandingtime.A discussionisheldsothatastudentwouldunderstandthemeasurementoftimewithananalogclock.The teacheraskstheclass,whenshownananalogclock,whichistheminutehandandwhichisthehourhand.A teacheralsoneedstoaskaboutthemovementofthehandsandwhichhandmovesfasterthantheother.Each groupofstudentshasanindividualclockwhichtheysetat4o’clock.Thentheyareaskedhowmanyminutes mustpassbeforetheminutehandgetstowherethehourhandisnow.Eachstudentisaskedtodrawapicture orexplainhowtheyknow.Thegroupsaretheninstructedtosettheclockat6:30andasked,“Howmany minutesmustpassbeforetheminutehandgetstowherethehourhandisnow?”Eachstudentdrawsapicture orexplainshowtheyknow. CommonCoreStateStandardsMath‐ContentStandards CountingandCardinality Knownumbernamesandthecountsequence. K.CC.1Countto100byonesandbytens. K.CC.5Counttoanswer“howmany?”questionsaboutasmanyas20thingsarrangedinaline,arectangular array,oracircle,orasmanyas10thingsinascatteredconfiguration;givenanumberfrom1–20,countoutthat manyobjects. OperationsandAlgebraicThinking Understandadditionasputtingtogetherandaddingto,andunderstandsubtractionastakingapartand takingfrom. K.OA.1Representadditionandsubtractionwithobjects,fingers,mentalimages,drawings,sounds(e.g.,claps), actingoutsituations,verbalexplanations,expressions,orequations. Addandsubtractwithin20. 1.OA.5Relatecountingtoadditionandsubtraction(e.g.,bycountingon2toadd2). Representandsolveproblemsinvolvingadditionandsubtraction. 2.OA.1Useadditionandsubtractionwithin100tosolveone‐andtwo‐stepwordproblemsinvolvingsituations ofaddingto,takingfrom,puttingtogether,takingapart,andcomparing,withunknownsinallpositions,e.g.,by usingdrawingsandequationswithasymbolfortheunknownnumbertorepresenttheproblem. MeasurementandData Tellandwritetime. 1.MD.3Tellandwritetimeinhoursandhalf‐hoursusinganaloganddigitalclocks. Workwithtimeandmoney. 2.MD.7Tellandwritetimefromanaloganddigitalclockstothenearestfiveminutes,usinga.m.andp.m. CommonCoreStateStandardsMath– StandardsofMathematicalPractice MP.7Lookforandmakeuseofstructure. Mathematicallyproficientstudentslookcloselytodiscernapatternorstructure.Youngstudents,forexample, mightnoticethatthreeandsevenmoreisthesameamountassevenandthreemore,ortheymaysorta collectionofshapesaccordingtohowmanysidestheshapeshave.Later,studentswillsee7x8equalsthewell‐ remembered7x5+7x3,inpreparationforlearningaboutthedistributiveproperty.Intheexpressionx2+9x+ 14,olderstudentscanseethe14as2x7andthe9as2+7.Theyrecognizethesignificanceofanexistinglinein ageometricfigureandcanusethestrategyofdrawinganauxiliarylineforsolvingproblems.Theyalsocanstep backforanoverviewandshiftperspective.Theycanseecomplicatedthings,suchassomealgebraicexpressions, assingleobjectsorasbeingcomposedofseveralobjects.Forexample,theycansee5–3(x–y)2as5minusa positivenumbertimesasquareandusethattorealizethatitsvaluecannotbemorethan5foranyrealnumbers xandy. MP.8 Lookforandexpressregularityinrepeatedreasoning. Mathematicallyproficientstudentsnoticeifcalculationsarerepeated,andlookbothforgeneralmethodsandfor shortcuts.Upperelementarystudentsmightnoticewhendividing25by11thattheyarerepeatingthesame calculationsoverandoveragain,andconcludetheyhavearepeatingdecimal.Bypayingattentiontothe calculationofslopeastheyrepeatedlycheckwhetherpointsareonthelinethrough(1,2)withslope3,middle schoolstudentsmightabstracttheequation (y–2)/(x–1)=3.Noticingtheregularityinthewaytermscancelwhenexpanding(x–1)(x+1),(x– 1)(x2+x+1),and(x–1)(x3+x2+x+1)mightleadthemtothegeneralformulaforthesumofageometricseries.As theyworktosolveaproblem,mathematicallyproficientstudentsmaintainoversightoftheprocess,while attendingtothedetails.Theycontinuallyevaluatethereasonablenessoftheirintermediateresults. ©NoyceFoundation2013. ThisworkislicensedunderaCreativeCommonsAttribution‐NonCommercial‐NoDerivatives3.0 UnportedLicense(http://creativecommons.org/licenses/by‐nc‐nd/3.0/deed.en_US).
© Copyright 2025