Name ________________________________________ Date __________________ Class__________________ LESSON 11-4 Reteach Spheres Volume and Surface Area of a Sphere Volume The volume of a sphere with radius r is V Surface Area 4 3 Sr . 3 The surface area of a sphere with radius r is S 4Sr2. Find each measurement. Give your answer in terms of S. 1. the volume of the sphere 2. the volume of the sphere _________________________________________ ________________________________________ 3. the volume of the hemisphere 4. the radius of a sphere with volume 7776S in3 _________________________________________ ________________________________________ 5. the surface area of the sphere 6. the surface area of the sphere _________________________________________ ________________________________________ © Houghton Mifflin Harcourt Publishing Company 324 Holt McDougal Analytic Geometry Name ________________________________________ Date __________________ Class__________________ LESSON 11-4 Reteach Spheres continued The radius of the sphere is multiplied by 1 . 4 Describe the effect on the surface area. new surface area, radius multiplied by original surface area: S 4Sr 2 4S(16)2 S r 16 1024S m2 Simplify Notice that 1024 x 1 16 1 : 4 4Sr 2 4S(4)2 r 64S m2 Simplify. 4 64. If the dimensions are multiplied by 1 , 4 2 1 § 1· . the surface area is multiplied by ¨ ¸ , or 16 ©4¹ Describe the effect of each change on the given measurement of the figure. 7. surface area 8. volume The radius is multiplied by 4. The dimensions are multiplied by _________________________________________ 1 . 2 ________________________________________ Find the surface area and volume of each composite figure. Round to the nearest tenth. 9. Hint: To find the surface area, add the lateral area of the cylinder, the area of one base, and the surface area of the hemisphere. 10. Hint: To find the volume, subtract the volume of the hemisphere from the volume of the cylinder. _________________________________________ ________________________________________ © Houghton Mifflin Harcourt Publishing Company 325 Holt McDougal Analytic Geometry 12. Consider the octahedron as two square pyramids with different altitudes, h1 and 1 B(h1 h2) Note that altitude is h 2. V 3 always a positive number. 9. The volume is multiplied by 10. S | 271.6 in2; V | 234.8 in3 11. S | 446.0 cm2; V | 829.4 cm3 Practice C 13. V | 433.3 units3 1. Possible answer: Problem Solving 1. V | 940.0 m3 2. V 50.75S cm3 3. V | 210.8 cm3 4. V 98S in3 5. A 6. G 2. Possible answer: S 7. A 1. V | 3141.6 cm 3 2. V 3. V | 277.3 in3 28 ft 3. S 3 Practice A 1. V 4 3 Sr 3 2. S 4Sr2 3. V 288S cm3 4. V 486S in3 30 mm 256S ft2 9. V 36S m3; S 3 10. V 972S m ; S 8. S 64S yd2 36S m2 2 324S m 2. V 8. V 375S 3 in 32 4 S(x2 y2 z2)3 3 125S 3 9. V in 32 1. V 500 S mm3 3 2. V 3. V 16 S 3 ft 3 4. r 5. S 196S in2 6. S 2048 S cm3 3 18 in. 400S m2 1 . 8 9. S | 1442.0 cm2; V | 4580.4 cm3 10. S | 216.8 in2; V | 141.4 in3 Challenge 3. d 5. S 4S(x2 y2 z2); V 8. The volume is multiplied by 3888S mm3 1 8788S 3 ft 2929 ft3 3 3 10m 250 S 4. V cm3; V 3 7. S 6 in. 7. The surface area is multiplied by 16. 69S mi2 Practice B 1. V 6. h Reteach 11. The volume is multiplied by 27. The surface area is multiplied by 9. 81S mi3; S 4. h | 11.1 in. 2 10. 66 3 6. the sphere 7. S 3Sr2 Sr2 5. h | 6.9 in. 4. V | 3534.3 ft3 11-4 SPHERES 12. V 4Sr2 r2 r2 4 S 2 1 Reading Strategies 5. r 8 . 125 32 S cm3 9 1. 16S in2; 24S in2; 16S in3; 16S in2; 32 S in3 3 2. 100S cm2; 150S cm2; 250S cm3; 100S 500 cm2; S cm3 3 484S in2 48S yd2; S 16S yd2 1372 S 1 7. V km3 457 S km3 3 3 8. The surface area is divided by 16. 6. S 3. 400S ft2; 600S ft2; 2000S ft3; 400S ft2; 4000 S ft3 3 © Houghton Mifflin Harcourt Publishing Company A61 Holt McDougal Analytic Geometry
© Copyright 2024