a) NATIONALADVISORYCOMMI~EE FOR AERONAUTICS [ TECHNICALNOTE 2486 THEORETICAL CHARACTERISTICS OF TWO-DIMENSIONAL SUPERSONIC CONTROL SURFACES By Robert R. Morrissette and Lester F. Oborny Langley Aeronautical Laboratory Langley Fieldj Va. “t .--f Washington October 1951 ., .3”%9tQ/#7 . .- -- .- ..— TECHLIBRARYUFB, NM”-- 11111111111 1 .gg+gsaq . -. NATIONALADVISORYCOMMITTEEFOR AERONAWICS TECHNICALNCYIT2h86 THEORETICALCHARW91ERISTICS OF TWO-DIMENSIONAL SUPERSONICCONTROLSURFACES1 By RobertR. Morrissetteand LesterF. Oborny ,.U !!RIWNEW “‘~.,.,.,. REdRD. . ‘: The ‘kzsemsnnsecond-order-approxhationtheory”for the pressure distributionover a two-dimensional airfoilh s~ersonic flow was used” to determinesome of the aerodynamiccharacteristics of unceaibered symmetricalparabolicand double-wedgeairfoilswith leading-edgeand trailing-edgeflaps. The tivestigation was origkl~ titendedfor applicationto aileronstudiesbut, since the analysisis based on twodimensionalflow, the resultsare applicableto all t~es of control surfaces. The use of the term “aileron’’may consequentlybe replacedk the presentpaper by the term “controlsurface.“ The chemcteristlcs presentedand discussedare: allemn effectivenessfactor,rate of changeof hinge-momentcoefficientwith ailerondeflection,rate of change.ofthe pitching-moment coefficientabout the mldchordwith aileron deflection,and the locationof the centerof pressureof the airfoilailezwnconibhation. h supersonicflow leading-edgeaileronswere found to be nnzchmore effectivethen tmiling-edge ailerons. Neitherailercm, however,is as effectivein supemonic flow es the trailing-edgeaileron in Sul)sonic flow. The calculationsshow that, for a given thictiess ratio,trailing-edge ailerons are more effectiveon wedge airfoilsthan on parabolicairfoilsjwhereasleading-edgeaileronsare more effective on parabolicairfoilsthan on wedge airfoils. The magnitudeof the valuesof the rate of chengeof the hinge-momentcoefficientwith aileron deflectionand the rate of changeof pitching-moment coefficientabout the midchordwith ailerondeflectionis greaterfor leading-edgeailerons than for trailing-edgeailerons. lXTRODUCTION x * In investigations of the aerodynamiccharacteristics of ailerons, the influenceof certainfactorsis not found in the predictionsbased on a linearizedsolution. Higher-ordersolutionsare thereforenecessez’yand consequentlythe emalysismust be made for a two-dimensional wing. The resultsere applicablenot only to aileronsbut to all types of controlsurfaces. Severalmethodsare k use at this time for calculat@ the P=ssue distributionoyer thti airfoilsin a supersonicair stream. The prevailingmethodsare: the graphicalmethod of references1 and 2, the %zpersedes the recentlydeclassifiedNACAWMG12, “Theoretical Characteristics of Two-Dimensional SupersonicControlSurfaces”by RobertR. Morrissetteand LesterF. Oborny,1948. . !2 . ~cA TN 2M16 Ackeretthin-airfoiltheory,the Busemannsecond-orderapproximation used in reference3, and the power seriesof references2 aud 4. None of thesemethodsare exactas they do noti-onsiderthe effectof the bounda~ layeron the airfoil. In this paper the 13usemann second-ordera~yroxifition”is used as the best compromise%ecaueethis approximation givesexpressionswhich are simpleenoughto he used in desiguw~rk aud which are probablyas accuatieas couldbe expectedof any method that neglectsthe boundarylayer thickness. The Busemannapproximation uses only the first--two terns of the power seriesfound in references2 and 4. Figures2, 12, and 13 of reference2 show that the f’irsttwo terms of the power series give resultsthat-arecloseapproximations to the resultsobtained%y we of the oblique-shock equationsad the isentropic-eqansion and compressionequations. The methodused herein is a closerapproximation than the Ackerettheoryas the TJusemamn approximation” tshs into account the effectsofllachnumber,airfoilthickness,and airfoilshape. .—. — The second-orderap~roximation.is limitedto sma~ anglesand thin airfoils. Reference2 statesthat the theoryused is notmcmsldered accuratefor Mach nwibersless than approximate= 1.3. This lower-limlt has been used arbitrarilyM this analysis. Also, the theoryis not good for I&ch rnmibers below that at which the shockwave detaches. Reference2 givesvaluesfor the minimumMach numberfor the existenceof an attachedshockas a functionof the flow-de”flection angle. ,. The factorsvaried in this analysisare airfoilthicknessratio, Mach number,airfoilshape,ratio of aileronchord to wing chord,and locationof aileron. The characteristics investigatedincludedaileron effectiveness factor,rate of changeof hinge-ant~uefficient with ailerondeflection,rate of changeof pitching-umentcoefficientwith ailerondeflection,and locationof centerof pressureof the alrfoilalleroncombination.The equationsused hereinand”a s~le derivation are found i?ithe sectionentitled“ANALYSIS. “ SYMBOLS c chord of airfoil (takenas = 1.0 herein) c~ chordof aileron,fractionof airfoilchord Cl and C2 constantsused in first and secondterms of Busemsmn approximation for pressurecoefficientin supersonic flow Cha aileronsectionhinge-momentcoefficient(ha/qocZJ m ... — m’ — 8-. – 3 NACA TN 2M6 ● cl ✎✎✍✌ %.5 airfoilsectionlift coefficient airfoilsectionpitching-nnnent coefficientabout midchord (%5/w2) centerof ~ressuremeasuredfrom leadingedge, fraction of chord aileronsectionhingemoment airfoilsectionpitchingmoment aloutmidchord free-streamMach nunher free-stresmdynamicpressure ( $oTc?) meximumthicknessof airfoilsection free-streamvelocity distancebehind leadingedge, fractionof chord ordinatefrom chord line to any point on surfaceof airfoil,fractionof chord . .. Ap/q pressurecoefficient dcza/d5a dcZ/da aileroneffectiveness factor airfoilangle of attack a deflectionof aileronrelativeto chord line (considered positivewhen it gives ailerona positiveangle of attack) 6a a geometricparsmeterused in determiningcenter-of-pressure location e localanglebetweenQ petit on surfaceof airfoil~d free-streamdirection I free-streamdensity ratio of specificheats (1.4) )+ ..–. NACATN 2A-86 Subscripts: a aileron h aileronhinge-lineposition exceptwhen used in c %) L lower surfaceof airfoil u upper surfaceof airfoil ● ( — ANALYSIS The analysiswed in this paper is based on the BusemannsecondAy order approximation for the pressurecoefflclenti~ in supersonic flow* This coefficientis expressedin references-in the following form: Ap —= !I Cle + c@2 .. where “=l&- —..— yMo4 + M.2-Q2 ( . ) C2 = %2( 1)2 — The procedureused in deriv~ the equaliiou”f~r the”-parameters consideredIs illustratedby the followingderivationof the aileron efTectlveness factorof a parabolicairfoilwith a trailing-edge aileron. The otherparametersare obtainedby a similaranalysis. .% U NACA TN 2h86 5 .— -- . AileronEffectivenessFactor -? Parabolicairfoilwith trailing-edgeaileron.- The equationfor the u~yer surfaceof a parabolicairfoilwith the leadingedge at the ori@n and the trailingedge at x = 1.0 is = ‘u () 2LX-X2 c The slope at any point on the upper surfaceof the airfoilis () u E =231 .— - 2x) u The localar@e 19 betweenany point on the surfaceof the airfoil end the free-stresmdirection,therefore,is ‘%=-a+ () f%! G u = -~ + 2ql c .- - 2x) -T and ‘L =a- () Q dx L .a+2~(l -2x) It followsthen that () Ap T = Cleu + c2eu2 ---— u =C~ -a+ 231 - 2xjl + C2~a + 231 - 2x)12 [ NACA TN and ‘“” 2M16 . .— (%L[ sc1Cz+231- “1+C++2:’1-+12 . The pressurecoefficientrfor the airfoilthen Is or AP —=c~(2CL) ~ + C2 8CL# [’- -4 The lift-coefficient of the airfoilis P1. o . p.o =2a /[ cl+ 4C23L -2X)1 -. dx 1.0 = 2CL c~x + 4C2;(X [ - X2 ] o The rate of changeof liflrcoefficient with emgle of attack thereforeis . NACA TN 2M6 7 The lift coefficientof the aileron Cza due to some aileron deflection ba can le found in a similarmanner. Becauseof the linearnature of the equationsfor pressurecoefficient,the pressurecoefficientat a point on the airfoilcan’befound by addingthe pressurecoefficientfor the wing at angle of attack a with unreflectedaileronsto the pressurecoefficientfor the wing at zero anglq of attackwith the aileronat angle of attack 5a. The contributionof the ailerondefinesthe controlforce on the wing and for that reasonmay be treatedas a separateaileronpressurecoefficient. The pressurecoefficientfor the aileron AL ()o) therefore,is the [’la sane as that found for the airfoilexceptthat the ailerondeflection ba is used in place of the angle of attack a. Thus, Then, the lift coefficientfor the ailerondue to some deflectionis rl”O pl.o . 28a ][ cl+J+@l - 2X) Cuc 1 Xh 1.0 =28aC~X+4C&X [ OJ , -X2 Xh 9 :.. .-. 8 NJ4CA TN 2486 and, therefore,the rate of changeof lift coefficientof aileronwith ail&rondeflectionis - = 2(’- ‘h)(+- ‘Q:xh) The aileroneffectiveness factorfor a parabolicairfoilwith trailingedge aileronthus is — . dcl da = 2c~ / ( =1 “hl )( - C2 4- ~xh cl c ) Parabolicairfoilwith leading-edgeaileron.-The aileroneffectivefacturfor a pa?.%bolic airfoilwith a leading-edgeaileronis . Wedge airfoilwith trail@q-edge aileron.-The aileroneffectivefactorfor a wedge airfoilwith a trailing-edge aileronwhen O.’jo is —. dcla dba / dc@ uld when =1 ( .xhl-&— )( C2 t c1 c ) — ‘h ~0050, . ‘cza?~a dcllda =l-xhl+z—- () . C2 t cl c ! 9 NACA TN 2M6 Wedge airfoilwith leading-edgeaileron.- The aileroneffectiveness factorfor a wedge airfoilwith a leading-edgeaileronwhen xh .>o.~ -t iB dcza ma / ‘=%+~f:(’-xh) “l/& and when ~h SO.50, ‘cza/d5a ,_=xhl+2~; dcZ/da () C2 t Rate of Chsmgeof AileronH%nge-MomentCoefficientwith Aileron Deflection & Parabolicairfoilwith trai~~-edge aUenn.- The equationfor the rate of changeof aileronhinge-momentcoefficientwith ailerondeflection of a parabolicairfoilhavinga trailing-edgeaileronis given .5a Parabolicairfoilwith leadm-edge aileron.-The rate of changeof aileronhinge-momentcoefficientwith ailerondeflectionof a parabolic airfoilwith a leading-edgeaileronis .. Wedge airfoilwith trail--edge aileron.- The rate of changeof aileronhinge-momentcoefficientwith aile?xmdeflectionof a wedge airfoil with a trailing-edgeai leron when xh 20.50. is . NACA TN 10 2h86 and when xh <0.%, = ach g= , (1- 2%2) 41 + ~2; (’ -‘J Wedge airfoilwith leading-edgeaileron.- The rate of changeof aileronhinge-momentcoefficknt with ailerondeflectionof a wedge airfoil having a leading-edgeaileronwhen ~ bha —=% at5a ~00~ ( . C2: 1 - k’xh+ is ) 2xh2 2 xh and when %= <0.50, Rate of Changeof Pitching-Moment Coefficient-shout Midchordwith AileronDeflection Parabolicairfoilwith trailing-edgeaileron.- The rate of ch~e of pitching-mmentcoefficient–aboutnnidchord with ailerondeflection of-a parabolicairfoilhavinga trailing-edge aileron is given a8 k. 3x~+ 1 ) Parabolicairfoilwith leading-ed~eaileron.-The rate of change of pitching-mxnent coefficientaboutmidchordwith ailerondeflection of a parabolicairfoilwith a leading-edgeaileronIs . < NACA TN 2&86 U Wedge airfoilwith trailing-edgeailenm. - The rate of changeof ~itching-moment coefficientabout midchordwith ailerondeflectionfor a trailing-edge aileronwhen Xh >0.50 is . and when xh <0.50, . Wedge airfoilwith leading-edgeaileron.- The rate of changeof pitching-moment coefficienta%out midchoniwith ailerondeflectionfor a leading-edgeaileron . . and when xh 5 0.50, Rate of Changeof Pitching-Moment CoefficientaboutMidchord with Angle of Attack %ralolic airfoil.-The rate of cha.uge of pitching-moment coefficient aboutmidchordwith angle of attack for a parabo31cairfoilis — . a % “51tt -,2—. & 3C — — 12 NACATN 2M6 Wedge airfoil.- The equationfor the rate of changeof pitching?mxuent coefficientabout.midchordwith angle of attackfor a wedge airfoil is given as * .. — .— . “5 % . These equationswere obtainedfrom equationefound in reference3 end are givenhere for the sdse of completeness.. — Centerof Pressure Parabolicairfoilwith trailing-edge ailezxm.- The center-ofpressureequationfor a parabolicairfoilhavinga trailing-edge aileron is as follows: 1 CP = 4c2t 4e2t+8a —1 + 3xh2 - kxh3 ] -Zq; T1-=h2-3clc ( [._...__._._... 5 2+ $1 -Xh 2- + >h ( )( ) 1 . . Parabolicairfoilwith lead~-edge aileron.-The followingcenterof-pressureequatlanfor a parabolicairfoilwith a leading-edgeaileron is expressedas: L — = Wedge airfoilwith trailing-edge aileron---The centerof pressure ‘oep aileronwhen xh = for a wedge airfoilwith a trailing-edge ia r. . :- WCA TN 2h86 and when Xh ~ 0.50, .— Wedge airfoilwith leading-edgeaileron.- The centerof pressurefor a wedge airfoilwith a leading-edgeaileronWhOn xh >OC50 is CP and WhOn xh~ 0*50, 6 C2 t l’-C—; +xh2+l+2~; 1 () c P= 2 + ~h~ C2 t 1+2— C2 t C1 c () 1 .— NACA TN 14 2486 “ IaRu3ms r. Drawingsof the yarabollcand wedge airfoilsectionsused in the calculationsmay be seen in figure1. These two shapeswere chosen becausethey are frequmtly consideredfor use in the wings of supersonicaircraft. In figures2 to 40 is shown the variation of the aerodynamic characteristics of aileronswith airfoilshape,locationof aileron,airfoil thicknessratio,free-stremllachnuniber, ratio of aileronchord to wing chord,and the ratio of ailerondeflectionto the angle of attsck. Table I is an indexof the figures. ti fi~ 2 (fig. 9 of reference5 excejt Busemanncurve)a comparison is shown of the resultsobtainedby the msthod of calculationWed hereinaud the resultsobtainedby both the Ackerettheoryand the in this paper gives results method of reference1. The method‘presented that approachthose of the method of reference1 much closerthan the Ackerettheory. This closer result Is due to the fact that thickness “ ratio,Mach number,and airfoilshape are taken into considerationin the second-orderapproximation, whereasthese factorsare neglectedin the Ackerettheo~. Figure 2 also shows that the ailercmeffectivenessfor trailingedge aileronsin subsonicflow is much higherthen the aileroneffectivenessof trailing-e@eaileronsIn supersonicflow. The reaaonfor this result is that the flow ahead of the aileronis affectedby the ailenn in subsonicflow,whereasthe flow in this region is not affectedby the aileronin supersonicflow. -. . Unlike the Ackerettheo~, the analysisused hereingives the followingresultsfor an airfoil-aileron combinationin supersonic flow: (l) Leadfng-edgeaileronsare more effectivethan traillng-edge ailerons. (Seefigs. 3 to 7.) (2) The magnitudeof the valuesof ‘ha/bba ‘d ~. 51a6a is — greaterfor leadhg-edge aileronsthsn for tr&Lling-edge ailerons. (Seefigs. 13 to 1’7end 22 to 26. ) ‘ (3) The centerof pressureof an airfoil-aileron combination havingmaximumthichess at the midchordand zero ailerondeflection is ahead of the tidchord(figs.31 to 34)* .. . . . Mach number.-An Increasein the free-streamlkch number gives the followingresults: (1) Above a Mach numberof approximately1.75 fdependlngon thickness ratio),the aileroneffectiveness for leading-edgeaileronsis XACA TN 2k86 increased=d the aileroneffectiveness for trailing-edgeaileronsis decreased. (Seefigs. 8to u.) (2} The magnitude of the valuesof &h aba and & ~.5[a6a ‘“ / decreasedfor both leading-edgeand trailing-~dgeailerons(figs.18 to21and27to 30). (3) b Keneti, above a Mach nuniberof approximately1.7 the centerof pressureof an airfoil-aileron combinationmoves forwardas shown in figures31 to 34. Thiclsness ratio.-The main differencebetweenthe first-orderand second-orderapproximationsis the thickness-ratio effect. The secondorder approximationshows that an increasein airfoilthicknessntio: (1) ticreasesthe effectivenessof leading-edgeaileronsand decreasesthe effectivenessof trailing-edgeailerons. When the thickness ratio is zezm,the effectivenessis the saue for both leading-edge and trailing-edge ailerons. (Seefig. 12.) . (2) lhcreasesthe magnitudeof the values of ‘ha/aba ‘d ~b for leading-edgeaileronsand decreasesthe magnitudefor %.5/ a trail&g-edgeaileronsas shown in figures18 to 21 and 27 to 30. . tion forward (fig.40). (3) ~~es the cent= of pressureof the airfoil-aileron combinaAirfoilshape.-For a given thicknessratio of the airfoilscon- “ sideredherein,the surfaceslo~enear both the leadingand trailing edges of the Tarabolicairfoilis greaterthan the slo~e at corresponding poSitionson the wedge airfoil. In these regio~, therefore,the -p~bolic airfoilacts like an airfoilwith a largerthicknessratio. It then followsthat: (1) For a given value of t/c, trailing-edgeaileronsare more whereasleadingeffectiveon wei@e airfoilsthan on parabolicairfoikj edge aileronsere ?mre effectiveon paraboMc airfoilsthan on wedge airfoils. (Seefigs. 3 to 7.) (2) The centerof pressureis fartherfommrd for the parabolic airfoilthan for the wedge airfoil (figs.31 to 39). . -1 Ratio of aileronchord to winR chord.- An increasein the chord of the aileronincreasesthe surfacearea of the aileron. As a resultof this increasein aileronsurface: (1) The aileron effectiveness is increased (figs. 2 to 7). 16 NACA TN 2k86 (2) The magnitudeof the value of b &a increasesuntil the %/ ●5 aileronchordreachesa value of half the wi~ chordjthen it decreases as the ailem chord Is increasedfurther. (Seefigs.22 to 26. ) Since the pressuredistribution over the wedge airfoilis independent of the chordwise location aa long as the surface slqe is a co~t~t, the vake of achaj%-a is independent of the ratio of the aileron chord to the wing choti. After the value of ca/c exceeds 0.5,- however,the surfaceslopechangesand the pressurecoefficientis no longerindependentof the chordwiselocation. Thus, for furtherincreases ‘- in ca/c beyondthis value,the value of bch /& a then decreasesfor a ailerons and increases negatively for tmiling-edge ailerons leading-edge (figs.14, 16, and 17). The theoryshowsthe ~ressuredistributionover a parabolicairfoil to be a functionof the chordwiselocation. As a result,when the ratio ca~c is increased,the value of ?)ch bba decreasesfor leadingal edge aileronsand increasesnegativelyfor trailing-edge ailerons. (See figs*13, 15, ad 17”) Ratio of ailerondeflectionto angle of attack.-Ihcreasingthe ratio of the ailerondeflectionto the angle of attackresults in a relativelyhigherpressureon the aileron-surfaces than on the rest of the airfoil. The centerof pressureis thus shiftedforwardwhen leading-edge aileronsare us~d and backwardwhen trailing-edge ailerons are used. @ee figs. 31to 34.) .. .~. . CONCLUSIONS The %usemann second-orde~approximation theory”for the pressure distributionover a two-dimensional airfoilin supersonicflow was used to determinesome of the aerodynamiccharacteristics of’uncambered symmetricalparabolicand double-wedge airfoilswith leading-edgeend trailing-edge ailerons. Within the limitatio~ of the thea?yused, the followingconclusicmsmay be drawnabout the effectiveness of.ailerons in the Mach numberrange (1.3 to 4.0) investigated: 1. Neitherleading-edge nor trailing-edgea ilerons mea effective in supersonicflow as the trailing-edge aileronin subsonicflowo For a givenairfoilshayeat high Mach%umbers, leading-edge aileronsare much more effectivethan trailing-edge ailerons. However, the relativeeffectiveness of leading-edgeand trailing-edge aileronsis a functionof thicknessratio and the differencebetweenthe two becomes smallerwith smallerthicknessratios. 2. ~, . NACA TN 17 2486 .>:’ 3. For a given thicknessratio the aileroneffectivenessis greater for leading-edgeaileronson parabolicairfoilsthan for leading-edge aile?mnson s-trlcal wedge-shapeairfoilsjhowever,trailing-edge aileronsare more effectiveon symmetricalwedge-shapeairfoilsthan on parabolicairfoils. -. 4. An incmmse in airfoilthicknesstends to decreasethe atleron effectiveness when trailing-edgeaileronsare used, whereas it increases the aileroneffectiveness when leading-edgeaileronsare used. 5. The magnitudeof the values of the rate of changeof the hinge- — moment coefficientwith ailerondeflectionand the rate of change of pitching-moment coefficientabout the midchordwith ailerondeflection is greaterfor leading-edgeaileronsthan for trailing-edgeailerons. . LangleyAeronauticalLaboratory NationalAdvisoryCammitteefor Aeronautics La@ey Field,Va., April 13, 1948 RlmEKENcEs 6 . 1. Ivey, H. Reese,Stickle,GeorgeW., and Schuettler,AIberta: Charts for Determiningthe Characteristics of Sha~-Nose AirfoilsinTwoDimensionalFlow at SupersonicSpeeds. NACATN 1143, 1947. 2. Laitone,EdmundV. : =t cmd ApproximateSolutionsof Two-Dimensional O%liqueShock Flow. Jour. Aero. SCi., vol. 14, no. 1, Jan. 1947, PP. 25-410 3. Bonney,E. Arthur: AerodynamicCharacteristicsof RectangularWings at SupersonicSpeeds. Jour. Aero. Sci., vol. 14, no. 2, Feb. 1947, pp. UO-U6. 4. Busemann,A.: &rodynamic Lift at Supersonic Speeds. Rep. No. BritishA.R.C.,Feb. 3, 1937. (FromLuftfahrtforschung, Bd. M?, Nr. 6,-Ott.3,’1935, Pp: 23-0-220.) 2844, 5. Ivey, H. Reese: Notes on the TheoreticalCharacteristicsof Two. DimensionalSupersonicAirfoils NACA TN 1179, 1947. ● ~, ,,~.:-. .. . ........ .. . -= .— !,-.- ● NACA TN 2U86 TABZE I – lXOEX OF FIGURIS ~ 1 2 tiation ~ airfoil aileron TJW of Plot ‘me of eJrroil sectionswed ........- ‘2a~6a. — egakt ca/o VeQe ‘%1~ -..-.-— Trailing edge ‘Z.#a — ‘cl/b “ 4 ‘Za~a egainet caJo VeQe doda Z/ 5 ‘la~a — egatitcaio parabolicLaada edge do da II 7 ‘Z~~a do#a t/c cap baja ------a- ---- 4.0 ---- --- 0 to 0.05 ~.~ --- TraiLlng 1.5,3.0,.05,Oti .10 1.0 --‘a/c ‘-ho’io *e 4“0 3 6 -_ % ~almt oaic Wedge Traillng 1.5,3.0,.05,ok edge 4.0 .lo 1.0 ‘-1.5,3.0,.05,Otu --4.0 .lo 1.0 Leadlrlg “ 1.5,3.0, .05,Oto --edge %a a% ‘are.bcmc ‘rrail.lng and / agaiDEt ca/o endwedge Leadingedgaq &c da 4.0 4.0 .10 1.0 .10 to0 lo --. ll dcla d8a / againet ~ — 9 ‘laP 8a -W dc11b ~ We&e la ‘laP 8a egahet dc1/da ~ ‘arabollc 11 acl~a — ‘ilk ‘tit % dc G 11 1.3to 4.0 09“05> .2 ...10 Tralllng edge 1.3b 4.0 0,“05> .2 .-. .lo Leading 1.3to 4.0 0,.05, ,2 -=.10 1.3to 4.0 0>“05) .2 .io ‘arabom Trailing e- 8 Wedge edga LZlading edge -.. ‘l#a ‘“ w “akt “c 13 % — egaixlet Cafe &a “out ‘Zega ‘:;’3”0;‘;F “2 ‘-- 1.5,2.0,.05,oh ‘mbolic ~rtiling edge 4.0 .-1o1.0 ‘-- .-. 2k86 NACA TN 19 TABLE I – INDEZ OF FIGURES-Continued Pint ~c ~, % ~ egalnet Cajc 15 b% — 16 % — egainet Gala a% egalnet ca/c Type of airfofl LOoationof e.ilercm Wedge Trailing edge 1.5,2.0> 0.05, 0 to .I.o 1.0 ‘-- ParabolicLeading edge 1.5,2.0, .05, Oto .lo 1.0 4.0 --- , ;.~,2.o, .05, oh . 1.0 .10 --- Wedge &a *, ‘h 17 — 18 b ‘a — egalllet~ 19 ‘% — Z. a6a egalnet oa/c a5a a~a % q age.inet ~ ~ht ~ Le@ edge t/o % 4.0 and Parabol.ioTrell.lng endwe~e leadingedges 4.0 .lo ca/o :: . 6~a --- Tre.illng edge 1.3to 4.0 “053 .2 .10 --- TrailAw edge 1.3b 4.0 .05, .2 .lo --- ParaboUa Leaahg edge 1.3 to .05, .2 .lo --- 4.0 Wedge L9ad.hg 1.3to 4.0 .lo “05> .2 --- .05, Oto .I.o 1.0 --- 1.5,2.0, .05, Ot o --- Parabo13c Wedge . % 21 — 22 — 23 — a6a againet ~ a%.5 agalsLetCalc a~a %.5 PexalIolfo TrailiIw edge %.5 — Wedge Trail@ againet Ca/c Parabolic Leading 1.5,2.0, Wedge IeaCmlg edge a~a 25 %.5 — agalnetca/o 26 %.5 agalnet ca/c &a a8a 1.5,2.0, k.o a&ahlet ca/c &a 24 edge edge eUge Parabollo Tmiung and .lo 4.0 1.0 .05, Ota --- 1.5,2.0, .05, Oim .lo 1.0 --- 4.0 k.o edges‘ =a wedgeleading 2.0 .lo 1.0 .lo ;0 .h =3=” --.— NACA TN 2J 2h86 TABLE I..-INDEX OF FIGURES-Concluded { Plot Ugure 27 Typeof alrfo11 %., — aoa E@Ilst~ Locationof aUeron % 1.3to t/c a/o 0.05, (3.2 .lo 8+ ..- Parabolic Trailing edge Wedge Trailing edge 1.3to .05, .10 .2 --- 4.0 4.0 28 %., — 29 %.3 — againet~ ParaboMo Leding edge 1.3to 4.0 .lo .05, .2 --- 30 %.5 — Egainat -~ Wedge Leaahg edge 1.3ia 4.0 .05, .10 .2 --- Pambollo Traillng edge 1.3to .I.o .2 om~ Wedge Trailing edge 1.3to .I.o .2 oa~ i3gainat~ , &a ~ &a &a 31 ‘P 32 Cp EgaIllEt ~ 33 (+ agalnet ~ 34 ~ E@net ~ Wedge 35 Cp egahet calc Parabol.io 36 Cp against cap Wedge 37 Cp O&Etit oa/o Parabollo egalnet o Wedge 38 39 CP eg.aillEt ~ Cp E@net J ca/c Parab9Mo LeedlI12 edge Iad~ eke 4.0 4.0 1.3to k.o .I.O .2 o~to 1.3to 4.0 .lo .2 0~~ .05, Oto ~,. Trailing 4.0 .10 1.0 Trailing e‘> 4.0 “05? Oto .10 1.0 l,o Leading edge 4.0 .05, oh 1,() Lsadlng 4.0. edge Parabolic TraIllngand and w’@3~ ~ *e 4“0 .lo 1.0 .05, 0 to .10 1.0 lo “ .10 ;m: 1.0 . 40 ($ againet t/c ti Perabo130 .TrailJng leadinged.gw ;.:,3.0, . oJb ,2 1.0 . . NACA TN 2M6 21 . “ n (a) Parabolle airfoil. *. . ‘0 (b) Wedge airfoil. Figure 1.- Airfoil seotlons used In caloulatlons. ,-- NACA TN 2486 22 1.0 09. .8 Sutmonio (Xe= o) *7 .6 ●5 . ●4 ,. ●3 .2 .1. T o 0 ,2 .k .6 .s 1.0 Aileron oho~wing ohoti, odo . rlgure2.- Aileraneffeetiveneeeau a ?unotlonof the ratio of a:lwonchord to wing ahord for ● n unoamberedwedge airfoilhavingWImum ttitokneen at midohordand trailing-edge aileron. = 0.05. 5 (~urvea tithexoeptlon or~unemani curveapefrom figure9, referenoe5.) NACA TN 2U6 23 1.0 . . , .9 ●g ●7 .6 ,4 .3 .2 .1 0 .6 ●L! 1.0 AilerondIord/wingohord, o~o . (a) ~ = 0.05. Figure 3.-Aileron etfestiveness ae a ~unotlkn of the . ratio-of aileronohorclto ulng ahord for an uncamberedparabolloairfoilhavin maximumthiokness et midahomiand trailing-edgealferon. .-. .._ . ., 1.0 -. ●9 F .- . ●2 .1 0 0 . ●2 .4 .( “d 1.0 —. -.. -.._ .— _.. .—. — _ Aileron ohord/wingohord, odo (b) ; = 0.10. Figure 3.-Oonoluded. -, . 4 NACA TN . 25 2h86 1.0. I Y .9 ●g ●7 .6 .5 1.5 .0 .0 .4 93 .2 y ●1‘ o -o .2 .4 .6 ●g 1.0 AileronohorcVwingohord, OJO . . (a) J a = 0.05. lUgure 4.-Aileron effeatlveneseas a funotionof the ratio of aileronohord to wing ohord for an unoamberecl wedge alrfollhavingmaximumthlokness ‘at mldohordand trailing-edgeaileron. -. — . ,, , I .8 ● 1.0 Aileronohord/wingohord, Oa/O (b) ; = 0.10. . Figure4.- Oonoluded. . NACA m . 27 2h86 .- “m . . .6 .- T w ● 5t———7—7 .4 4.0 3.0 !11 .3 ●2’ .“ .1 , .g Aileron ahord/ulngohord,o~o (a) { = 0.05. 50-Alleron effeotiveneaa an a funotlonof the ratio of aileron ohord to wlna ohord for an unoamberedparabollaairfoilhavlfig maximum thloknessat midohordand leading-edgeaileron. Figure 1.0 . 1.C Ho — .$ .@ I .7 I .6 I ●5 .4 k? . .3 .2 4- ●1 =K?=” o ● . ● . 1.0 Aileronohord/wLngohord,OJO (b) $ = 0.10. 0 Flgur65.- Oonolutled. . ““ .-- 29 NACA TN 2486 . .g - ●7 I I , .6 M. 4.0 .5 .4 . ●3 .2 .1 omv .Z 1. .+ ● , Q . .e . 1.. 0 Aileron ohord/wingchord, o~ . . (a) $= 0.05. 6.-Aileron effeotlveaee8 a8 a funotlonof the ratio of aileron ohord to wing ohord ror an unoamberedwedge alrfollhaving maximumthloknese at ml&ohordand leading-edgeaileron. Figure — . 1.0 . ● 9“ .8 .7 .6 ●5 ,4 . .3 ,2 .1 Aileron ohord/wingohord,e~o (b) +=0.10. > Figure 6.- Oonolu&ed. . — NACATN 31 2k86 L.o —Parabollo alrfotl —. Wedge airfoil .9 / .8 ●7 .Leadlng-edgeaileron I 1} ‘ .6 / I I 95 / I * .4 u Tralltng-e&geaileron / // ●3 / .2 / / /’ ‘ .1 - 0 / .2 . ● .8 1;0 Aileron ohordiwlngohoti,o~a Figure 7.-Aileronerfeotiveneaeas a funotlonof the ratio of aileronohord to wing chord for unoambtired airfoilshe?lng.msulmumtblqkneee●t mldohord. M. =4.0;;: 0.10. 32 WA TN 2M6 ●22 .eor Aakeret “’ .M T ● t/c o 1 .16 .14 .12 ● / Y 10 \ ,0s .06 .04 # T ,02 0 1.0 — 1.5 2.0 2.5 ~.o 3.5 4.0 Free-stream Maoh number,MO Flgurag.- Aileroneffeotlveneaa as a funotlonof the freeetreamMaoh numberfor an unoamberea parabolioairfoil havingmaximumthickness at midohordand tralllng-edge aileron. ~: 0,2. . NACATN 2M16 33 -. .— .22 I I I / .20 “ .18 / - .16 - .14 - ● 12 .10 . . ,0111 .06 .. . .02 0. 1.0 1.5 23 2.5 3.0 3.5 4.0 I%ee-stream Mach number,M. . Figure9.- Aileroneffeotiveneas as a funotionof the free-rntream Maoh numberrop an unoamberedwedgealrfOllhavingmaximum thlokness at mldohord and trailing-edgeaileron. := 0,2. NACA TN 2M16 . .36 . tfo . ●9 .32 ●“Y .211 .- .— - .26 . . .24 .22 .2a ,la 1( o Aokeret 1.5 2.0 2.5 3.0 3*5 4, Free-stream Maoh number,M. Figure10.-Aileroneffeotlveneas as a funotionof the free-stream prabolio airfoilhaving maximum Maoh numberfor an unoambered thiokneasat mldoho~dand leading-edge aileron. ~ = O*2” . NACA 35 .36 . .* — .32 .30 .2/3 .26 * . ,24 .22 .20 hokeret o T I ,:a 1.5 ( . . “2.5 2.0 “’3.0 3*5 4.0 Free-stretim M6iohnumber,Ho ,... ng a funotlonof the free-atreem P@ure 11.-Alleroneffeotlveneee ~ maximum Ueh. nwber.f9pafl. W~~?rp.d. ,wd&?e airfoil.m?$~ thldsnetis”at rntdohord and-lea’~ln~-ed%e”’allerona .. J.rj T +..;: TJ.‘. ..it, . .’ ,.. l ~ = Oeza ,----- .- ,... ,~. ., ~.’ ,- .--! ... ;-, .: ~. . WA 36 .2 .l!J .16- ● 14“ \ .12 \ ,10 .Og \ .06 .04 .02 T 00 .02 .04 .06 Thlckneesratio, ●M .10 t/o (a) Trailing-edge●ileron. Figure 12.- ALleron effeotlveneaean a funotion of thiokne~aratioforan unoamberedpa*olio #rfoll having maximum thlokneoaat midohord. += 0.2. TN 2h86 ●38 I ● 36 Ii. I ● 34 / .32 ●3O .2U . .26 . .24 ,22~ .20 ● w .06 I ● Thieknesa ratio, t/e (b) badlng-edge aileron. . . Figure 12.- (lonoluded. (0 NACAl!N 2486 -l.& I . -1.6 ,, -1,4- -1.2 -1.0 , _lL -od . . -*6 4.0 -.4 I — -*2 ‘o .2 ,4 ● o Aileronohord/wing ohord,e~o (a) : = 0.05, Figure13.-Rateof ohangeof aileron hinge-moment ae a ooeffioient withaileron tlefleotion funotlonof theratioof aileronohordto wing ohordfor an unoembered parabolio airfoilhaving maximum thlokness at midehord and trailing-edge ●ileron. . NJWATN2M6 39 . %)- 2.0 . . / 0 .4 .2 .6 .l!l Aileron ohord/ning ohord,o~o . (b) ~ = 0.10. Figure13..Oonoluded. . 1 --- 40 NACA TN 2#6 -2.0 . # . Ho -leg 1. / -1.6 , — -1.4 -1.2 2.0 -1.0- — — -cg . . -*6 . -* 4 -02 I I 00 I . ● I I .6 .8 1,o Aileron ohortl/wing ohord, OJO (a) & 0.05. Figure 14.- Rate of ohango of aileronhinge-moment ooeffioitint with ailerondefleotlonas a funotlonof the ratio of aileron ohora to wing ohord for an unoamberedwedge alrrollhaving maximum thlokneesat midohordand trailing-edge aileron. NIWATN 2486 41 -2.0 . . -log -1.6 1.5 / -1.4 -1.2- -1.0 / . -*a T . -*6 -04 \ -.2 T O(j . . . I ● Aileron ohord/wingohomi, o~o (b) .{ = 0.10. . Figure 14.-Uonoluded. 1.0 42 . .— . 2.4 2,0 1.6 1.2 .8 . .4 =5=” 0.n b. .4 . ,b 1.0 Aileron ohord/wing ohord, Oa/o (a) {=0.050 15.- Rate of ohange of aileron hinge-moment ooeffloient with aileron deflection as a funotion of the ratio of aileron ohord to wing chord for an unoambered parabolic airfoil having maximum thiokness at midchord and leading-edge aileron. Figure . , mm m 2k86 43 * 2.4! 2.4 - 2,0 d 106 1.2 . . .s .4 =s= o~ ● Aileron chord/wl.ng (b) . ● ● Figure chord, 1 : 0.lO. 0 15.- Concluded. 9 1.0 mm m 2J186 44 . 3.2 . 2.8 2.4 2.0 . . .- — I O.! .2 ● .6 l,, t!/ 1 o Aileron chord/wingchord,o~o . 16.- ~te of change d aileronhinge-moment ooeffioientwith ailerondefleotlonas a funotlonof the ratio of aileronchord to wing ohord for an unoambered wedge airfoil having maximum thlokness at midohotiand leading-edge aileron. Figure . NACATN 45 2M6 * 2.8 2,4 2.0 1,6 1.2 . . .tl .4 “o .4 .2 .6 Aileron ohord/wing ohord, (b) ~ = 0.10, Figure 16.. . Ooneluded. .g OJO 1.0 NWA TN 2W6 46 1.2 1.0 .s .6 .4 — - — Parabolloairfoil Wedge ●irfoil .2 . — 0 . Tralll~edgo aileron -.2 — \ —. \ -04 — -*6 .— =s$= -*‘o — .2 .4 .6 .8 1.0” Aileron ohord/uingohord, oa~o B’lgure Z7.. Rate of ohange of aileron hinge-eoment aoeffloientwith aileron&efleotionaa a funotlon of the ratio of aileron ohord to wing ohord for unoamberedairfoils having maxiDWE thlokne8sat mldohord. Ho= 4.0; ; = 0.10. . NACA TN “ 47 2486 -log \ -1.6‘ . -1.4” “ ! -1.2‘ -1.0- -mg . . \ -06 I I -.4 I ● -o 2 0 i.o —. 1*5 2.0 3.0 3*5 4.0 E%ee-8trehm Maoh number, M. . ~igure 18.- Rate of ohange of aileron hinge-moment eoefflolent with aileron deflection as a function of free-stream Maoh number for an unoambered parabolio klrfoll having maximum thloknetaeat mldohord and trailing-edge aileron. a 0.2. + -.—— . -2.0 - . -1.s -1.6- \ -1.4 -1.2 -1.0 -*8 -06 -o -.2 ‘ ?. o 1.5 2.0 2.5 3.0 3*5 Free-streamMaoh number, If. Tlgure 19.-Rateof ohange of aileron hinge-momentooeffiolent with aileron defleotlon as a functionof free-stream Maoh numberror an unoamberedwedge airfoil havin2 EUIMUQ thiokness at midohord and trailing-edgeh~lerofie ~ = 0.2. . 49 4.0“ 3.6 3.2 2.t4 2,b -, 2.0 . 1.6. . 1.2 .g .4 n i.o 1.5 2.0 2.5 3.0 3*5 4.0 Free-streamMaoh number, M. . Figure 20.- Rate or ohange or aileron hinge-momentooerfiolent with aileron defleotlonas a function of free-stream Haoh number for an unombered paraboM@ ●irfoil baring ma&IIUUQthlokneseat tidohord and leading-edgeaileron. ~ a O*2. 50 . 3.6 — . 3.2 2.g 2.4 2.0 1.6 . . 1.2 .g .— .4 I ? 5 2 ) 2.5 II 3.0 i 3*5 4 o ““ ‘- Free-stream Maoh number,M. Figure21.- Rateof ohangeof aileronhinge-moment ooeffioient with ailerondeflectionas a functionof free-stream wedgeairfoilhavingqaxlmum Maoh numberfor an unoambered thlokness at midohordand leading-edge aileron. $Z 0.20 . . NXA TN 2W6 -.4[ 06 -% . -.40 -* 32 -.24 -.16 -.08 . 0 . .da .16 .2k .32 Aileron ohordlwfng, ohord, a#3 (A) g=o.05. Figure 22.- Rate of ohange or pltoting-momentooeftiolent about mldohordwith aileron defleotlonas a funotlonof the ratio of ai$eron ohord to wlqg ohord for an unoamberedparabolloalrft)ll htivingmaxlmun thioknessat midohordand trailing-edge●ileron. 52 NACA TN 2~6 . -.48 . -.40 I -* 32 -.24 -.16 -.00 . 0 \ < ● OIJ .16 .24 .320 .2 .4 .6 1.0 Aileron ohord/wingohord, o~o (b) ~= 0.10. Figure22.- Oonolufied. . NACA TN 2U6 53 ‘ -*U “ ,. .. . ,, I . 0 -.40 -.32 . f -.24 / -.16 -.og . /’ # . o .Og’ .16 .24 .2 .6 .& 1*O Aileron ohord/wing ohord,o~o (a) ~ = 0.050 Figure 23.- Rate of ohangeOr pitching-moment ooefrioient about@dohord withailerondefleotlon as a runotlonor theratioor aileronohordto wingohord ror an unoambered wedgeairfoilhavingmaximum thiokness at mldohoti and trailing-edge aileron. WA 54 ~ 2h86 -.48 . -.40 -.32 -.24 -.16 -cog o .Og ,16 .24, .2 .$ .& .$ 1.0 Aileron ohorU/wingohofi, OJO (b) ~= 0.10. 6’lgure23.- Uonoluded. . 1.0 99 .8 ●7 .6 .5 . ,4 .2 .1 0 0 .2 . Aileron‘ohord/uing ohord,e~a (a) : = 0.05. 24.Rate of ohange of pltohlng-moment coeffloient about mldohordwith ailerondefleotlonas a fumtlon of the ratio of aileronohord to wing ohord for an unoamberedparabolloairfoilhaving maximum thloknessat mldohordand l@adlng-8dgaaileron. Figure . . .9 .8 ●7 .6 ?5 .k . . ●3 ,, / ●2 .1 0 I I ● IZ . .b ● ●o Aileronohordiwlngohofl,o~o (b) ~= 0,10. . Figure24.- :Oneluded . 57’ 100 .9 .8 ●7 .6 - ●5 “ . / — 1 MO .4 . / .3 .2 ‘.1 0 . . 0 .2 . .6 .6 1.0 Aileron ohordlwingohord, o~o (a) :=0.05. Figure25.- Rate of ohange of pltohlng-momentooeffioient about mldohordwith aileron defleotlonas a fUnotlOnof the ratio of aileron ohord to wing ohord for an unoamberedwedge airfoilhaving maximum thioknees at mldohordand leading-edgeaileron. . 1.0. a < s ●9 if .— .8 .7 .6 ●5 . .4 . ●3 .2 / .1‘ .2 ,4 .6 ‘“ .8 Aileron ohord/uingohord,o~o - 1.0 . (b) ~= O.1OO P@ure 25.- Oonoluded. . 59 NACATT?2M6 .6 ●5 ●4 I ● 3 //’’’.adli g-edge .11.,0. \ .2 \ \ .1 0 -.1 Trailing-edge \’ aileron, -.2 — Parabolioairfoil ——Wedge airfoil -.3 -oq . . y .2 4 ● .tf o Aileron ohordlwingohord, ado Figure 26.- Rate of ohange of pltohing-momentcoefflolent about mldohord with aileron defleotlonas a func!tlonof the ratio or aileron ohofi to wing ohord maximum’thtokneseat for unoamb,ered airfoils having midohoti, M. : 200; { = 0,10. NACA TN 2~6 60 ● . -.40 . -.36 . -.32 -.28- -.24. . . t/o $4 0 t-l o i 1-.0 1*’5 2.0 Wee-stream 2W5 3.0 3.5 4.0 Maoh number,M. Slgure 27.- Rate of ohangeof pitohing-nonentooeffiolentabout mldohordwith ailerondefleotlonan a funotionof freeetream Maoh number for an unoamberedparabolloairfoilhaving maximum thloknessat midohord and trailing-edge aileron. + : 0.2. 61 d . 1.0 . , 1*5 2.0 2.5 3.0 3.5 Free-streamMaoh number,M. Figure 2&l.-?late of ahange of pitohing-momentaoeffioient about mldohordulth ailerondefleotlonas a Maoh number for an unoambered funotlonof free-stream wedge airfoilhaving maximum t.hlokneea at midohord and trailing-edgeaileron. !?S= 0.2. 4.0 62 NWA TN .- 2k86 Y ““’rr . ●9 ,eg 97 .6 .s-l-. . H- ---F=k3 .1 Q 1.0 1.5 i o T 2s5 3.0 3*5 Free-streamMaoh number,No U’igure 29.- Rate of ohangeof pitohing-momentooeffioient about ml~ohordwith ailerondefleotlonas a function of free-etreamMaoh number for an unoamberedparabolic maxlm~ thioknefre ‘atmldohordand leadingai~roil having &a= Oz. edge aileron. “ 4 ,0 . . . 63 NACA TN 2W6 1,0 .9 # TTT .8 .7 .6 Free-streamHaah number, Ho Figure 30.- Rate or ohange 0? pltohlng-momentooeffleientabout midohord with aileron deflectionas a funotlon of freeetream Xaoh number for an unoamberedwedge airfoil having maxim~ thidsnetas at midohordand l,eading-edge aileron. !& 0.2, ,- 64 1.0 T 6a/a ●9’ . .Go “ . -— — p-o .8 ●7 10 .6 3 2 ●5 /-6 , 0 .4 . T 93 ●2 T ,1 7 2 3 1.5 2.0 2.5 3 ) 3.5 Free-stream Maoh number,M. FL- 31.- Looation of oenter of pressure ae a runction of Parabolio airtree-etreamMaoh numberfor an unoambered foil having maximqm thiokness at mldohord and traillngedge aileron. +:0.2; {=0,10. . 65 NACA TN 2U6 m 10 F 2 1 0 I ,+,5 . — ,0 . . I I ,, ,0 . Free-stream . ,5 . Maoh number,M. 32.- Looatlon of oenter of preeaureae a funoti.onof free-streamMaoh number for an unoamberedwe e alrfoll having maxlmqm thlokneseat midohox and tral Y Ing-edge aileron. +~0.2; ~= 0.10. Figure “ ,0 . 66 NJK!A TN 2k86 ● .— .6“ J ●5 6a/a o .b 2 .3 .2 — - —A Au ● — ~ — 100 .1 “ 00 t T o 1.0 1*5 2.0 Free-stream E.y 3.0 Maoh number, 3*5 4.0 MO Figure 33.- Looation Or oenter Or pressure as a funotlon Or free-streamMaoh number for an unoamberedparabolioairfoil having maximum thioknessat midohord and leadingedge aileron. +$=0.2; ;. t - 0.10. . NACA TN 2U6 67 w .6 .5 .4 . ●3 .2 .1 0 1.0 195 2.0 Free-stream Figure 34.- 295 3.0 3*5 Maoh number, MO Looation of center of pressure as a funotion of free-stream Maoh number for an uncambered wedge airfoil having maximum thickness at mldohord and leading-edge 3 = 0.10. += 0.2; = aileron. . . 4.0 NMATN2A86 68 ● k 54 4 ,52 ,50 .4$ .46 — .44 .42 .40 .38 .36 7 .340 .4 .2 .6 1.0 Aileron ohordlwlngohord, o~o Figure 35.- Looatlonof oenter of pressureae a funotionof the ratio of aileron ohord to wln& ohord for an unoamberedparabolloairfoilhaving maximum thlokneesat mldohordand trailing-edge aileron. M. = 4.0; : = 1,0. ● . NACA TN 2h86 69 .54 .52 .50 .4a &l .40 ● 38 .36 ● 340 .2 .4 .6 .8 .— 1.0 Aileron ehordivlngohord, o~o of oenterof preoaure an a funotion Figure 36.- Looatlon of the ratio of aileron ohord to wing chofl for an unoamberedwedge airfoil having maximum thlokne:sat &dohord and trailing-edgeaileron. Ho s 4.0; $ = 1.0. . . ● ● 1 — ✎ ✌ ‘e / * 4 7 -1-- , . .2 ● . D chord,o~o Aileron ohord/wing I’lgure37.- Lcwtlon of oenterof pressurean a runotlon or the ratio of aileron ohord to wing ohord for an unoamberedparabolioairfoil having maximum thlolcqess ‘a at midchordand leading-edgeaileron. M. = 4.0; ~ s 1.0. NACA TN 2M6 ● ● ✎ r u . L u ●28 .260 ‘ I, .2 .4 I1 .6 .8 1 Aileron ohordlwingohord, ode Figure 3&J.-Looatlon of oenter of preeaure ● e R runotlon of the ratio of aileron ohord to wing ohord for an unoamberedwedge airfoil having maximum thlokn~a at mldchord and Ieadlng-edgeaileron. Ico= 4,0;+= 1,0, —— NACAm 2k86 72 .46 P \ / ● \ / / .44 / \\ / / / .42 \ / \ Ja .40- I \ 1/ I P lling-edgeaileron \ — / / .YLl--- \ 7 I i~a~i~-edge aileron \ .32 ,/ / \_/ / / .30 .2LI \ I .26; / — —— [ I I .2 ,4 — Parabollohlrfoll Wedge alrroll - I .6 .a 1 1.0 Aileron ohotiiwlng ohord, ado Figure 39.- Looatlonof oenter of preaaureaO a function of the ratio of aileron ohofi to wing chord for unoamberedalrfolla having maximum thickneeeat midohord. M. =4,0; :=1.0; := O.1O* 10 NACATT?2M6 73 . . .6: . .9 Ho .4( .4+ . . ,0 ●Y . L- L I .C .02 Thlokness ratio, ● 1 Og .10 t/o (a) Trailing-edge aileron. @,Looatlon of aenter of preaaure aa a funotlon of the thlokness ratio for an unoarabered?xrabollo alrfoll havln% maximum tblokness at midoh&3. Figure . Ca —= G 0.2; : = 1.0. 74 NACA ~ 2W6 . .62. . “ .58 - ● 54 ,50 .46 .42 , .y!! . ●* ● \ \ 30 =E!T= .26 0 .02’ .04 .06 .o&l .. . Thiokness ratio, t/o (b) Leading-edge aileron. Figure 40.- Conoluded. . NAcA-I.ang16y -lo-24-51- 1000
© Copyright 2024