Physics 5300, Theoretical Mechanics Spring 2015 Assignment 6 solutions The problems numbers below are from Classical Mechanics, John R. Taylor, University Science Books (2005). Problem 1 Taylor 13.1 Solution: 1 L = mx˙ 2 2 ∂L = mx˙ p= ∂ x˙ 1 1 p2 H = px˙ − L = mx˙ 2 − mx˙ 2 = mx˙ 2 = 2 2 2m ∂H p x˙ = = ∂p m ∂H =0 ∂x p0 p0 x˙ = , x = t + x0 m m p˙ = − p = mx˙ = p0 , Problem 2 Solution: (1) (2) (3) (4) (5) (6) Taylor 13.2 Using x oriented downwards, we have 1 L = mx˙ 2 + mgx 2 (7) p = mx˙ (8) p2 − mgx 2m p x˙ = m p˙ = mg H= 1 (9) (10) (11) Problem 3 Taylor 13.5 Solution: 1 1 1 T = m[z˙ 2 + R2 φ˙ 2 ] = m[c2 φ˙ 2 + R2 φ˙ 2 ] = m[c2 + R2 ]φ˙ 2 2 2 2 (12) V = mgz = mgcφ (13) 1 L = T − V = m[c2 + R2 ]φ˙ 2 − mgcφ 2 p = m[c2 + R2 ]φ˙ (16) ∂H p φ˙ = = 2 ∂p m[c + R2 ] (17) m[c2 + R2 ]φ¨ = −mgc, ∂H = −mgc ∂φ φ¨ = − gc , 2 [c + R2 ] (18) z¨ = − gc2 [c2 + R2 ] (19) Taylor 13.9 Solution: 1 L = m[x˙ 2 + y˙ 2 ] − mgy 2 px = mx, ˙ py = my˙ H= p2y p2x + + mgy 2m 2m px x˙ = m py y˙ = m p˙x = 0 p˙y = −mg Problem 5 (15) p2 1 + mgcφ H = pφ˙ − L = m[c2 + R2 ]φ˙ 2 + mgcφ = 2 2m[c2 + R2 ] p˙ = − Problem 4 (14) Taylor 13.26 2 (20) (21) (22) (23) (24) (25) (26) Solution: We have dV kx4 , V = dx 4 where we can set an arbitrary additive constant in V to zero. F = −kx3 = − (27) 1 kx4 L = mx˙ 2 − 2 4 (28) p = mx˙ (29) H= p2 kx4 + 2m 4 x˙ = p (30) (31) p˙ = −kx3 (32) p x Figure 1: Phase space orbits. Problem 6 Solution: Taylor 13.28 1 V = − kx2 2 1 1 L = mx˙ 2 + kx2 2 2 p = mx˙ F = kx, 3 (33) (34) (35) H= For p2 1 − kx2 2m 2 p x˙ = m p˙ = kx (36) (37) (38) p2 1 − kx2 = E < 0 2m 2 we have x2 = (39) 2 p2 [ + |E|] k 2m (40) Since p ≥ 0, we have r 2|E| k The orbits come from |x| = ∞ and return to |x| = ∞. For p2 1 − kx2 = E > 0 2m 2 we have 1 p2 = 2m[ kx2 + |E|] 2 Thus √ |p| ≥ 2mE |x| ≥ (41) (42) (43) (44) Thus a particle travelling to the right keeps travelling to the right, while one travelling to the left keeps travelling to the left. U(x) p x x (a) (b) Figure 2: (a) The potential (b) Phase space orbits. 4
© Copyright 2025