What can we learn of AGB evolution from surveys of the Milky Way

What can we learn about late-­‐stage stellar evolu3on from surveys of the Milky Way and the satellite galaxies? Mikako Matsuura STFC Ernest Rutherford Fellow Cardiff University Post main-­‐sequence stellar evolu3on •  AGB stars (1-­‐8 M¤) •  Red supergiants AGB AGB RGB Key to understand the post-­‐main sequence stellar evolu3on R Sculptoris Mass loss AGB stars in the Milky Way and Magellanic Clouds Post-­‐main sequence stellar evolu3on: unresolved problems §  How do stars evolve aRer the main sequence? §  How do stars lose the mass ? 1)  How does metallicity affect the stellar evolu3on? •  Chemistry •  Mass-­‐loss rate 2)  Are AGB stars and red-­‐supergiants important source of dust? AGB stars in the Milky Way and Magellanic Clouds Observa3ons Milky Way Large & Small Magellanic Clouds Spitzer AKARI 1.2-­‐2.5” 9.7” @3.6-­‐24 µm @2.4-­‐24 µm (5-­‐bands) (9-­‐bands) 18.3-­‐14.2 mag (SN~3) 2MASS ~2” JHK 15.8-­‐14.3 mag (S/N~10) Post-­‐main sequence stellar evolu3on: unresolved problems §  How do stars evolve aRer the main sequence? §  How do stars lose the mass ? 1)  How does metallicity affect the stellar evolu3on? •  Chemistry •  Mass-­‐loss rate 2)  Are AGB stars and red-­‐supergiants important source of dust? AGB stars in the Milky Way and Magellanic Clouds AKARI/MIR All Sky photometric Survey Ishihara et al. (2011) 9µm map
Band 9µm 18µm Spa3al resolu3on 9.4” 90mJy Sensi3vity (5σ) 50mJy Num. of 844,649 194,551 sources 870,973 Blue : 9µm
Red : 18µm
Classifying AGB stars/YSOs etc C-­‐rich AGB (C/O>1) O-­‐rich AGB (C/O<1) Ishihara et al. (2011) AGB stars in the Milky Way and Magellanic Clouds Object classifica3ons by colours YSOs Em C-­‐AGB T Tau O-­‐AGB/RSGs Post-­‐AGB PNe S-­‐stars AGB stars in the Milky Way and Magellanic Clouds Be Normal galaxies Seyferts O-­‐M stars Galac3c distribu3ons of C-­‐rich and O-­‐rich AGB stars Carbon-­‐rich AGB O-­‐rich AGB: inner galaxy C-­‐rich AGB: outer galaxy Impact of metallicity High metallicity at the inner galaxy -­‐> high ini3al O-­‐abundance -­‐> high O/C ra3o Oxygen-­‐rich AGB Oxygen-­‐rich AGB Post-­‐main sequence stellar evolu3on: unresolved problems §  How do stars evolve aRer the main sequence? §  How do stars lose the mass ? 1)  How does metallicity affect the stellar evolu3on? •  Chemistry •  Mass-­‐loss rate 2)  Are AGB stars and red-­‐supergiants important source of dust? AGB stars in the Milky Way and Magellanic Clouds How does metallicity affect the mass loss rate? •  Stellar wind (mass loss) •  Radia3on pressure on dust grains •  Hydrodynamical model predic3on •  Low metallicity -­‐> smaller mass of dust -­‐> lower mass loss rate ¤
yr-­‐1) Z=0.01 M=2.5 M¤ Z=0.001 M=2.5 M¤ Mass-­‐loss rate 10-­‐4 (M
Age Wachter et al.(2008) 6x10-­‐5 (M¤yr-­‐1) How does metallicity affect the mass loss rate? Theory: stars in galaxies with higher metal content have more dust and CO Metal content: Milky Way (Z¤) > Large Magellanic Cloud (~1/2 Z¤) Flux (Jy) Herschel SPIRE spectra LMC red-­‐supergiant IRAS 05280−6910 CO 12-­‐11 Flux (Jy) Observa3ons Dust (from SED) Observed frequency (GHz) Wavelength (micron) CO: gas mass-­‐loss rate Dust mass-­‐loss rate Matsuura et al. (in prepara3on) How does metallicity affect the mass loss rate? Theory: stars in galaxies with higher metal content have more dust and CO Observa3ons Conclusion: No obvious influence of metal contents on CO or dust Individual stellar property (=luminosity/mass) is the key Mass-­‐loss rate (M¤yr-­‐1) Metal content: Milky Way (Z¤) > Large Magellanic Cloud (~1/2 Z¤) Luminosity (L¤) Matsuura et al. (in prepara3on) Post-­‐main sequence stellar evolu3on: unresolved problems §  How do stars evolve aRer the main sequence? §  How do stars lose the mass ? 1)  How does metallicity affect the stellar evolu3on? •  Chemistry •  Mass-­‐loss rate 2)  Are AGB stars and red-­‐supergiants important source of dust? AGB stars in the Milky Way and Magellanic Clouds Are AGB stars important dust sources of galaxies? (1, 2) Msun kpc-­‐2 Myear-­‐1 (3) 10-­‐2 Msun yr-­‐1 In case of the Milky Way Tielens (2005) Dwek (1998) Gehrz (1985) AGB stars Novae SN Ia Red supergiants 8.0 0.3 2.3 0.2 6.5 <0.006 3.6 1.1-­‐6.8 0.01 SN II Wolf Rayet 12 0.06 8.5 0.02 0.02-­‐0.5 AGB stars in the Milky Way and Magellanic Clouds 0.1-­‐0.6 0.01 Large & Small Magellanic Clouds Lirle ambiguity of distances to AGB stars LMC SMC AGB stars in the Milky Way and Magellanic Clouds Spitzer Magellanic Clouds photometric & spectroscopic surveys 3.6 micron: blue 8.0 micron: green 24 micron: red Spitzer Space Telescope Detec3ng almost en3re dust embedded AGB stars in LMC & SMC Dust thermal emission Meixner et al. (2006) AGB stars in the Milky Way and Magellanic Clouds Matsuura et al. (2009) Spitzer LMC & SMC spectroscopic surveys LMC: > 250 sources; SMC: >200 sources Kemper et al. (2010); Woods et al. (2011); Ruffle et al. (2015) YSOs Carbon-­‐rich AGB Oxygen-­‐rich AGB Object classifica3ons Matsuura et al. (2011; 2014); Woods et al. (2011); Ruffle et al. (2015) Mass-­‐loss rate analysis SED modelling of 40 AGB/RSGs –> dust mass-­‐loss rate Empirical formula of mass-­‐loss rate vs colour -3
Dust mass-­‐loss rate 3.1x10-­‐8 M¤ yr-­‐1 Log mass-­‐loss rate) log ((mass-loss
rate)
-4
-5
-6
-7
-8
-9
0
1
2
3
4
5
6
7
K-[8.0]
K-­‐[8.0] Groenewegen et al. (2007, 2009) Matsuura et al. (2009; 2013) y = (m1/(m0+m2)+m3)
First census of dust from evolved stars in a galaxy Carbon-­‐rich Oxygen-­‐rich Detec3ng AGB stars in Magellanic Clouds, and measuring their dust mass, using Spitzer Matsuura et al. (2009; 2013) AGB stars in the Milky Way and Magellanic Clouds Global dust budget in the Magellanic Clouds •  Caveat –  AGB dust: dust injec3on rate from AGB stars X Dust life3me was es3mated to be 4-­‐8x108 yrs (Jones et al. 1994) –  Life3me of dust is uncertain; effects of SN shocks ISM dust 2x106 M¤ AGB dust (2-­‐9)x104 M¤ LMC ISM dust 3x105 M¤ AGB (3-­‐7)x103 M¤ Over (4-­‐8)x108 years SMC Matsuura et al. (2009, 2013) Sta3s3cally... •  Majority of stars are low-­‐mass loss rate stars •  A few ten high mass-­‐loss rate stars (=intermediate mass origin?) dominates the dust inputs from AGB stars Mass-­‐loss rate C.f. C-­‐AGB only AGB stars in the Milky Way and Magellanic Clouds Matsuura et al. (2009) Does the past star-­‐forma3on histories of galaxies (=age of stars) impact on dust inputs? Key: Spa3al distribu3on of stars Census of dust producing stars Low mass-­‐loss rate High mass-­‐loss rate Spa3ally resolved stellar popula3ons Disk: >11 Gyrs & <1 Gyrs old Bar: 3-­‐5 Gyrs ago Spitzer – dust Op3cal survey 3-­‐5 Gyrs old stars are numerous some <1 Gyrs old are important for current dust inputs C.F. GAIA: Milky Way Matsuura et al. (2009; 2013) Constraints on stellar evolu3on models Theore3cal isochrones, including dust + star-­‐forma3on history <0.5 Gyrs old Spitzer observa3ons AGB stars in the Milky Way and Magellanic Clouds Dell'Agli et al. (2015) Summary •  Within the range of 1-­‐1/2 Z¤, metallicity dependence of mass-­‐
loss rate is not obvious •  Magellanic Clouds: the first census of mass-­‐losing AGB stars in the en3re galaxies –  In the LMC & SMC, AGB stars alone are insufficient to account for dust in the ISM •  Other dust sources (SNe or ISM grain growth?) •  Star-­‐forma3on histories of galaxies •  Evolu3on of mass-­‐loss rate is about to be resolved by theories AGB stars in the Milky Way and Magellanic Clouds