Gaussian kernels have also Gaussian minimizers Paweł Wolff University of Warsaw & Polish Academy of Sciences Probability and Analysis, Bedlewo, ˛ May 4, 2015 joint work with Franck Barthe (University of Toulouse) Paweł Wolff Gaussian kernels have also Gaussian minimizers Lieb’s principle: Gaussian kernels have Gaussian maximizers For p, q ≥ 1 consider T : Lp (Rn1 ) → Lq (Rn2 ) Z Tf (x) = K (x, y )f (y ) dy Rn1 Question: kT k =? Paweł Wolff Gaussian kernels have also Gaussian minimizers Lieb’s principle: Gaussian kernels have Gaussian maximizers For p, q ≥ 1 consider T : Lp (Rn1 ) → Lq (Rn2 ) Z Tf (x) = K (x, y )f (y ) dy Rn1 Question: kT k =? Gaussian function: f (x) = exp(−Q(x) + `(x) + c) Q is a psd quadratic form; if Q is pd then f is a non-degenerate Gaussian function ` is a linear form; if ` ≡ 0 then f is centered CG — non-degenerate and centered Gaussian functions Paweł Wolff Gaussian kernels have also Gaussian minimizers Lieb’s principle: Gaussian kernels have Gaussian maximizers For p, q ≥ 1 consider T : Lp (Rn1 ) → Lq (Rn2 ) Z Tf (x) = K (x, y )f (y ) dy Rn1 Question: kT k =? Gaussian function: f (x) = exp(−Q(x) + `(x) + c) Q is a psd quadratic form; if Q is pd then f is a non-degenerate Gaussian function ` is a linear form; if ` ≡ 0 then f is centered CG — non-degenerate and centered Gaussian functions Theorem (Lieb ’90) If K (x, y ) = exp − Q1 (x) − Q2 (y ) − B(x, y ) then kTf kLq kT k = sup : f ∈ CG kf kLp Paweł Wolff Gaussian kernels have also Gaussian minimizers Lieb’s principle: more general setting H, H1 , . . . , Hm Euclidean spaces; c1 , . . . , cm > 0 exponents R fi : Hi → [0, ∞) measurable with 0 < Hi fi < ∞ Bi : H → Hi surjective linear maps Q : H → H self-adjoint, psd (Q ≥ 0) Example: H = Rn , Hi = R, Paweł Wolff Bi = h·, ui i, ui ∈ H Gaussian kernels have also Gaussian minimizers Lieb’s principle: more general setting H, H1 , . . . , Hm Euclidean spaces; c1 , . . . , cm > 0 exponents R fi : Hi → [0, ∞) measurable with 0 < Hi fi < ∞ Bi : H → Hi surjective linear maps Q : H → H self-adjoint, psd (Q ≥ 0) Example: H = Rn , Hi = R, Bi = h·, ui i, ui ∈ H The functional J R J(f1 , . . . , fm ) = H Q ci e−hQx,xi m i=1 fi (Bi x) dx ci R Qm f i=1 Hi i Paweł Wolff Gaussian kernels have also Gaussian minimizers Lieb’s principle: more general setting H, H1 , . . . , Hm Euclidean spaces; c1 , . . . , cm > 0 exponents R fi : Hi → [0, ∞) measurable with 0 < Hi fi < ∞ Bi : H → Hi surjective linear maps Q : H → H self-adjoint, psd (Q ≥ 0) Example: H = Rn , Hi = R, Bi = h·, ui i, ui ∈ H The functional J R J(f1 , . . . , fm ) = H Q ci e−hQx,xi m i=1 fi (Bi x) dx ci R Qm f i=1 Hi i Theorem (Brascamp-Lieb ’76 (Q = 0, dimHi = 1), Lieb ’90) sup J(f1 , . . . , fm ) = f1 ,...,fm Paweł Wolff sup g1 ,...,gm ∈CG J(g1 , . . . , gm ) Gaussian kernels have also Gaussian minimizers Lieb’s principle: remarks hi ∈ Lpi (Hi ), pi = 1/ci , fi = |hi |pi R −hQx,xi Q hi (Bi x) dx He Q ≤ J(|h1 |p1 , . . . , |hm |pm ) khi kLpi Paweł Wolff Gaussian kernels have also Gaussian minimizers Lieb’s principle: remarks hi ∈ Lpi (Hi ), pi = 1/ci , fi = |hi |pi R −hQx,xi Q hi (Bi x) dx He Q ≤ J(|h1 |p1 , . . . , |hm |pm ) khi kLpi J(g1 , . . . , gm ) for gi ∈ CG: let A be positive definite and gA (x) = e−πhAx,xi Z gA (x) dx = (det A)−1/2 Paweł Wolff Gaussian kernels have also Gaussian minimizers Lieb’s principle: remarks hi ∈ Lpi (Hi ), pi = 1/ci , fi = |hi |pi R −hQx,xi Q hi (Bi x) dx He Q ≤ J(|h1 |p1 , . . . , |hm |pm ) khi kLpi J(g1 , . . . , gm ) for gi ∈ CG: let A be positive definite and gA (x) = e−πhAx,xi Z gA (x) dx = (det A)−1/2 J(gA1 , . . . , gAm ) R = P Q 1 det(Q + ci Bi∗ Ai Bi ) − 2 e−hQx,xi e−ci hAi (Bi x),(Bi x)i dx Q Q = (det Ai )ci (det Ai )−ci /2 Paweł Wolff Gaussian kernels have also Gaussian minimizers Lieb’s principle: examples Nelson’s hypercontractivity (’73): (Pt )t≥0 acting on f : R → R Z p (Pt f )(x) = f (e−t x + 1 − e−2t y ) γ(dy ) [Pt : Lp (γ) → Lp (γ) has norm 1 for all t ≥ 0 and 1 ≤ p ≤ ∞] Paweł Wolff Gaussian kernels have also Gaussian minimizers Lieb’s principle: examples Nelson’s hypercontractivity (’73): (Pt )t≥0 acting on f : R → R Z p (Pt f )(x) = f (e−t x + 1 − e−2t y ) γ(dy ) [Pt : Lp (γ) → Lp (γ) has norm 1 for all t ≥ 0 and 1 ≤ p ≤ ∞] Theorem (Nelson ’73) If 1 < p < q < ∞ and t > 0 satisfy e−2t ≤ Pt : Lp (γ) → Lq (γ) Paweł Wolff p−1 q−1 then has norm 1 Gaussian kernels have also Gaussian minimizers Lieb’s principle: examples Nelson’s hypercontractivity (’73): (Pt )t≥0 acting on f : R → R Z p (Pt f )(x) = f (e−t x + 1 − e−2t y ) γ(dy ) [Pt : Lp (γ) → Lp (γ) has norm 1 for all t ≥ 0 and 1 ≤ p ≤ ∞] Theorem (Nelson ’73) If 1 < p < q < ∞ and t > 0 satisfy e−2t ≤ Pt : Lp (γ) → Lq (γ) p−1 q−1 then has norm 1 Equivalently: R 1/p R 1/q 0 R p dγ q 0 dγ (P f )(x)g(x) γ(dx) ≤ |f | |g| , or t R Paweł Wolff Gaussian kernels have also Gaussian minimizers Lieb’s principle: examples Nelson’s hypercontractivity (’73): (Pt )t≥0 acting on f : R → R Z p (Pt f )(x) = f (e−t x + 1 − e−2t y ) γ(dy ) [Pt : Lp (γ) → Lp (γ) has norm 1 for all t ≥ 0 and 1 ≤ p ≤ ∞] Theorem (Nelson ’73) If 1 < p < q < ∞ and t > 0 satisfy e−2t ≤ Pt : Lp (γ) → Lq (γ) p−1 q−1 then has norm 1 Equivalently: R 1/p R 1/q 0 R p dγ q 0 dγ (P f )(x)g(x) γ(dx) ≤ |f | |g| , or t R Z Z 1/p Z 1/q 0 1/q 0 −Qt (x,y ) 1/p e f1 (x)f2 (y ) dx dy ≤ f1 dx f2 dx R2 Paweł Wolff Gaussian kernels have also Gaussian minimizers Lieb’s principle: examples Young’s convolution inequality with sharp constant (Beckner ’75, Brascamp-Lieb ’76) Let p, q, r ∈ [1, ∞] such that 1 p + 1 q =1+ 1 r For all f ∈ Lp , g ∈ Lq , kf ∗ gkLr ≤ Cp,q kf kLp kgkLq Paweł Wolff Gaussian kernels have also Gaussian minimizers Lieb’s principle: examples Young’s convolution inequality with sharp constant (Beckner ’75, Brascamp-Lieb ’76) Let p, q, r ∈ [1, ∞] such that 1 p + 1 q =1+ 1 r For all f ∈ Lp , g ∈ Lq , kf ∗ gkLr ≤ Cp,q kf kLp kgkLq Equivalently Z f (x)g(x − y )h(x) dx dy ≤ Cp,q kf kLp kgkLq khkLr 0 R2 Paweł Wolff Gaussian kernels have also Gaussian minimizers Lieb’s principle: examples Young’s convolution inequality with sharp constant (Beckner ’75, Brascamp-Lieb ’76) Let p, q, r ∈ [1, ∞] such that 1 p + 1 q =1+ 1 r For all f ∈ Lp , g ∈ Lq , kf ∗ gkLr ≤ Cp,q kf kLp kgkLq Equivalently Z f (x)g(x − y )h(x) dx dy ≤ Cp,q kf kLp kgkLq khkLr 0 R2 0 2 0 2 Sharp for f (x) = e−p x , g(x) = e−q x , h(x) = e−r Paweł Wolff 0x 2 Gaussian kernels have also Gaussian minimizers Converse inequalities: Borell’s reversed hypercontractivity f ≥ 0 =⇒ Pt f > 0 for t > 0 (positivity improving) Paweł Wolff Gaussian kernels have also Gaussian minimizers Converse inequalities: Borell’s reversed hypercontractivity f ≥ 0 =⇒ Pt f > 0 for t > 0 (positivity improving) Digression: for p ∈ R ∪ {±∞} and f ≥ 0 let R 1/p kf kLp (γ) = f p dγ Paweł Wolff Gaussian kernels have also Gaussian minimizers Converse inequalities: Borell’s reversed hypercontractivity f ≥ 0 =⇒ Pt f > 0 for t > 0 (positivity improving) Digression: for p ∈ R ∪ {±∞} and f ≥ 0 let R 1/p kf kLp (γ) = f p dγ for p < 0 if γ(f = 0) > 0 then kf kLp (γ) = 0 kf kL−∞ (γ) = ess inf f p 7→ kf kLp (γ) is non-decreasing Paweł Wolff Gaussian kernels have also Gaussian minimizers Converse inequalities: Borell’s reversed hypercontractivity f ≥ 0 =⇒ Pt f > 0 for t > 0 (positivity improving) Digression: for p ∈ R ∪ {±∞} and f ≥ 0 let R 1/p kf kLp (γ) = f p dγ for p < 0 if γ(f = 0) > 0 then kf kLp (γ) = 0 kf kL−∞ (γ) = ess inf f p 7→ kf kLp (γ) is non-decreasing p < 1, any measure, f ≥ 0 Z nZ o 0 kf kLp = inf fg : g ≥ 0, g p = 1 , Paweł Wolff p0 = p <1 p−1 Gaussian kernels have also Gaussian minimizers Converse inequalities: Borell’s reversed hypercontractivity f ≥ 0 =⇒ Pt f > 0 for t > 0 (positivity improving) Digression: for p ∈ R ∪ {±∞} and f ≥ 0 let R 1/p kf kLp (γ) = f p dγ for p < 0 if γ(f = 0) > 0 then kf kLp (γ) = 0 kf kL−∞ (γ) = ess inf f p 7→ kf kLp (γ) is non-decreasing p < 1, any measure, f ≥ 0 Z nZ o 0 kf kLp = inf fg : g ≥ 0, g p = 1 , p0 = p <1 p−1 Theorem (Borell ’82) −∞ < q < p < 1. If e−2t ≤ 1−p 1−q then kPt f kLq (γ) ≥ kf kLp (γ) Paweł Wolff Gaussian kernels have also Gaussian minimizers Converse inequalities: more examples Converse Young’s convolution ineq. (Brascamp-Lieb ’76) Let p, q, r ∈ (0, 1] such that f,g ≥ 0 =⇒ 1 p + 1 q =1+ 1 r kf ∗ gkLr ≥ Cp,q kf kLp kgkLq Paweł Wolff Gaussian kernels have also Gaussian minimizers Converse inequalities: more examples Converse Young’s convolution ineq. (Brascamp-Lieb ’76) Let p, q, r ∈ (0, 1] such that f,g ≥ 0 =⇒ 1 p + 1 q =1+ 1 r kf ∗ gkLr ≥ Cp,q kf kLp kgkLq t For λ ∈ (0, 1), taking p = λt , q = 1−λ and letting t → 0+ 1−λ Z λ Z 1−λ Z y x −y λ g dx ≥ g f ess sup f λ 1−λ y (Prékopa-Leindler); more general inequalities by Barthe (’98) Paweł Wolff Gaussian kernels have also Gaussian minimizers Converse inequalities: more examples Converse Young’s convolution ineq. (Brascamp-Lieb ’76) Let p, q, r ∈ (0, 1] such that f,g ≥ 0 =⇒ 1 p + 1 q =1+ 1 r kf ∗ gkLr ≥ Cp,q kf kLp kgkLq t For λ ∈ (0, 1), taking p = λt , q = 1−λ and letting t → 0+ 1−λ Z λ Z 1−λ Z y x −y λ g dx ≥ g f ess sup f λ 1−λ y (Prékopa-Leindler); more general inequalities by Barthe (’98) Converse Brascamp-Lieb ineq. (Chen-Dafnis-Paouris ’13) Under certain assumptions on ci and Bi (some of ci ≥ 1, the remaining ci < 0): Z Y m H i=1 fici (Bi x) dx ≥ m Z Y i=1 Paweł Wolff fi ci Hi Gaussian kernels have also Gaussian minimizers Main result ci ∈ R \ {0}, c1 , . . . , cm+ > 0, cm+ +1 , . . . , cm < 0 Q : H → H self-adjoint Paweł Wolff Gaussian kernels have also Gaussian minimizers Main result ci ∈ R \ {0}, c1 , . . . , cm+ > 0, cm+ +1 , . . . , cm < 0 Q : H → H self-adjoint R J(f1 , . . . , fm ) = H Q ci e−hQx,xi m i=1 fi (Bi x) dx ci R Qm f i=1 Hi i Paweł Wolff Gaussian kernels have also Gaussian minimizers Main result ci ∈ R \ {0}, c1 , . . . , cm+ > 0, cm+ +1 , . . . , cm < 0 Q : H → H self-adjoint R J(f1 , . . . , fm ) = H Q ci e−hQx,xi m i=1 fi (Bi x) dx ci R Qm f i=1 Hi i Theorem (Barthe-W. ’14) If (i) x 7→ (B1 x, . . . , Bm+ x) from H to H1 × · · · Hm+ is onto (ii) s+ (Q) + dim H1 + . . . + dim Hm+ ≤ dim H then inf J(f1 , . . . , fm ) = f1 ,...,fm inf g1 ,...,gm ∈CG J(g1 , . . . , gm ) Moreover, if (i) or (ii) fails then either J ≡ ∞ or inf J = 0. Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: the setting Setting: Q = 0, H = Rn , Hi = R, Bi = h·, ui i, assume Paweł Wolff R fi = 1 Gaussian kernels have also Gaussian minimizers Proof: the setting Setting: Q = 0, H = Rn , Hi = R, Bi = h·, ui i, assume R fi = 1 Rn (thus m+ = n) (i) and (ii) ⇐⇒ (u1 , . . . , um+ ) is a basis in Z Y J(f1 , . . . , fm ) = fici (hx, ui i) dx Rn Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: the setting Setting: Q = 0, H = Rn , Hi = R, Bi = h·, ui i, assume R fi = 1 Rn (thus m+ = n) (i) and (ii) ⇐⇒ (u1 , . . . , um+ ) is a basis in Z Y J(f1 , . . . , fm ) = fici (hx, ui i) dx Rn Example: converse Young’s convolution inequality 1 1 1 H = R2 , m = 3; c1 = , c2 = ≥ 1, c3 = 0 < 0 p q r hx, u1 i = x1 , hx, u2 i = x1 − x2 , hx, u3 i = x2 Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: the setting Setting: Q = 0, H = Rn , Hi = R, Bi = h·, ui i, assume R fi = 1 Rn (thus m+ = n) (i) and (ii) ⇐⇒ (u1 , . . . , um+ ) is a basis in Z Y J(f1 , . . . , fm ) = fici (hx, ui i) dx Rn Example: converse Young’s convolution inequality 1 1 1 H = R2 , m = 3; c1 = , c2 = ≥ 1, c3 = 0 < 0 p q r hx, u1 i = x1 , hx, u2 i = x1 − x2 , hx, u3 i = x2 √ Gaussian functions: gai (x) = ai exp(−πai x 2 ) D X E Y c Y c /2 gaii (hx, ui i) = ai i exp − π ci ai ui ⊗ ui x, x Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: the setting Setting: Q = 0, H = Rn , Hi = R, Bi = h·, ui i, assume R fi = 1 Rn (thus m+ = n) (i) and (ii) ⇐⇒ (u1 , . . . , um+ ) is a basis in Z Y J(f1 , . . . , fm ) = fici (hx, ui i) dx Rn Example: converse Young’s convolution inequality 1 1 1 H = R2 , m = 3; c1 = , c2 = ≥ 1, c3 = 0 < 0 p q r hx, u1 i = x1 , hx, u2 i = x1 − x2 , hx, u3 i = x2 √ Gaussian functions: gai (x) = ai exp(−πai x 2 ) D X E Y c Y c /2 gaii (hx, ui i) = ai i exp − π ci ai ui ⊗ ui x, x P If ci ai ui ⊗ ui > 0 (is p.d.) then 1/2 Q ci a P i J(ga1 , . . . , gam ) = det ci ai ui ⊗ ui Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: Gaussian computation J(ga1 , . . . , gam ) = Q det P 1/2 c ai i ci ai ui ⊗ui +∞ if P ci ai ui ⊗ ui > 0 otherwise Define D 1/2 := inf a1 ,...,am >0 J(ga1 , . . . , gam ) i.e. D ≥ 0 is the best (greatest) constant s.t. for all ai > 0 X X Y c ci ai ui ⊗ ui ≥ 0 =⇒ ai i ≥ D · det ci ai ui ⊗ ui (1) Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: Gaussian computation J(ga1 , . . . , gam ) = Q det P 1/2 c ai i ci ai ui ⊗ui +∞ if P ci ai ui ⊗ ui > 0 otherwise Define D 1/2 := inf a1 ,...,am >0 J(ga1 , . . . , gam ) i.e. D ≥ 0 is the best (greatest) constant s.t. for all ai > 0 X X Y c ci ai ui ⊗ ui ≥ 0 =⇒ ai i ≥ D · det ci ai ui ⊗ ui (1) Goal: J(f1 , . . . , fm ) ≥ D 1/2 Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: monotone mass transport Fix fi : R → [0, ∞) regular Ii := {fi > 0} bd open int. for i ≤ m+ and Ii = R for i > m+ Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: monotone mass transport Fix fi : R → [0, ∞) regular Ii := {fi > 0} bd open int. for i ≤ m+ and Ii = R for i > m+ P −1 Fix ai > 0 s.t. ci ai ui ⊗ ui > 0 Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: monotone mass transport Fix fi : R → [0, ∞) regular Ii := {fi > 0} bd open int. for i ≤ m+ and Ii = R for i > m+ P −1 Fix ai > 0 s.t. ci ai ui ⊗ ui > 0 Monotone transport fi (x)dx onto gai (y )dy by θi : Ii → R Z x Z θi (x) fi (t) dt = gai (y ) dy , i.e. fi (x) = gai (θi (x))θi0 (x) −∞ −∞ Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: monotone mass transport Fix fi : R → [0, ∞) regular Ii := {fi > 0} bd open int. for i ≤ m+ and Ii = R for i > m+ P −1 Fix ai > 0 s.t. ci ai ui ⊗ ui > 0 Monotone transport fi (x)dx onto gai (y )dy by θi : Ii → R Z x Z θi (x) fi (t) dt = gai (y ) dy , i.e. fi (x) = gai (θi (x))θi0 (x) −∞ Let Ω = {x ∈ −∞ Rn : ∀i≤m+ hx, ui i ∈ Ii } (bd, open, convex) P and define θ : Ω → Rn as θ(x) = ci ui θi (hx, ui i). Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: monotone mass transport Fix fi : R → [0, ∞) regular Ii := {fi > 0} bd open int. for i ≤ m+ and Ii = R for i > m+ P −1 Fix ai > 0 s.t. ci ai ui ⊗ ui > 0 Monotone transport fi (x)dx onto gai (y )dy by θi : Ii → R Z x Z θi (x) fi (t) dt = gai (y ) dy , i.e. fi (x) = gai (θi (x))θi0 (x) −∞ Let Ω = {x ∈ −∞ Rn : ∀i≤m+ hx, ui i ∈ Ii } (bd, open, convex) P and define θ : Ω → Rn as θ(x) = ci ui θi (hx, ui i). Z Y J(f1 , . . . , fm ) = fici (hx, ui i) dx n ZR Y Y 0 = gacii θi (hx, ui i) θi (hx, ui i)ci dx Ω Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: monotone mass transport Fix fi : R → [0, ∞) regular Ii := {fi > 0} bd open int. for i ≤ m+ and Ii = R for i > m+ P −1 Fix ai > 0 s.t. ci ai ui ⊗ ui > 0 Monotone transport fi (x)dx onto gai (y )dy by θi : Ii → R Z x Z θi (x) fi (t) dt = gai (y ) dy , i.e. fi (x) = gai (θi (x))θi0 (x) −∞ Let Ω = {x ∈ −∞ Rn : ∀i≤m+ hx, ui i ∈ Ii } (bd, open, convex) P and define θ : Ω → Rn as θ(x) = ci ui θi (hx, ui i). Z Y J(f1 , . . . , fm ) = fici (hx, ui i) dx n ZR Y Y 0 = gacii θi (hx, ui i) θi (hx, ui i)ci dx Ω On Ω+ := {x ∈ Ω : Dθ(x) = P Paweł Wolff ci θi0 (hx, ui i)ui ⊗ ui ≥ 0} use (1) Gaussian kernels have also Gaussian minimizers Proof: duality of quadratic forms P ci ui θi (hx, ui i) Z Y (1) J(f1 , . . . , fm ) ≥ D · gacii θi (hx, ui i) · det Dθ(x) dx Recall: θ(x) = Ω+ Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: duality of quadratic forms P ci ui θi (hx, ui i) Z Y (1) J(f1 , . . . , fm ) ≥ D · gacii θi (hx, ui i) · det Dθ(x) dx Recall: θ(x) = Ω+ Z ≥D· Ω+ P inf ci ui yi =θ(x) Paweł Wolff Y gacii (yi ) · det Dθ(x) dx Gaussian kernels have also Gaussian minimizers Proof: duality of quadratic forms P ci ui θi (hx, ui i) Z Y (1) J(f1 , . . . , fm ) ≥ D · gacii θi (hx, ui i) · det Dθ(x) dx Recall: θ(x) = Ω+ Z ≥D· Ω+ ≥D· Y c /2 ai i Z · Ω+ P inf ci ui yi =θ(x) Y gacii (yi ) · det Dθ(x) dx exp − π P sup X ci ui yi =θ(x) {z | Gaussian f. with Cov= Paweł Wolff P ci ai yi2 · det Dθ(x) dx ci ai−1 ui ⊗ui } Gaussian kernels have also Gaussian minimizers Proof: duality of quadratic forms P ci ui θi (hx, ui i) Z Y (1) J(f1 , . . . , fm ) ≥ D · gacii θi (hx, ui i) · det Dθ(x) dx Recall: θ(x) = Ω+ Z ≥D· Ω+ ≥D· Y c /2 ai i Z · Ω+ P Y inf ci ui yi =θ(x) gacii (yi ) · det Dθ(x) dx exp − π P sup ci ui yi =θ(x) {z | Gaussian f. with Cov= =D· Y c /2 ai i X Z · g Ω+ P ci ai−1 ui ⊗ui Paweł Wolff P ci ai yi2 · det Dθ(x) dx ci ai−1 ui ⊗ui } −1 θ(x) · det Dθ(x) dx Gaussian kernels have also Gaussian minimizers Proof: duality of quadratic forms P ci ui θi (hx, ui i) Z Y (1) J(f1 , . . . , fm ) ≥ D · gacii θi (hx, ui i) · det Dθ(x) dx Recall: θ(x) = Ω+ Z ≥D· Ω+ ≥D· Y c /2 ai i Z · Ω+ P Y inf ci ui yi =θ(x) gacii (yi ) · det Dθ(x) dx exp − π P sup ci ui yi =θ(x) {z | Gaussian f. with Cov= =D· Y c /2 ai i θ : Ω+ Z · onto n →R ≥ X g Ω+ P ci ai−1 ui ⊗ui det P ci ai yi2 · det Dθ(x) dx ci ai−1 ui ⊗ui } −1 θ(x) · det Dθ(x) dx 1/2 ci ai−1 ui ⊗ ui Q −1 c (ai ) i P D· Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: optimizing over Gaussian functions For any ai > 0 s.t. P ci ai−1 ui ⊗ ui > 0 we have proved onto J(f1 , . . . , fm ) θ : Ω+ → Rn ≥ D· Paweł Wolff det 1/2 ci ai−1 ui ⊗ ui Q −1 c (ai ) i P Gaussian kernels have also Gaussian minimizers Proof: optimizing over Gaussian functions For any ai > 0 s.t. P ci ai−1 ui ⊗ ui > 0 we have proved onto J(f1 , . . . , fm ) θ : Ω+ → Rn ≥ D· det 1/2 ci ai−1 ui ⊗ ui Q −1 c (ai ) i P Take sup over ai > 0 to get J(f1 , . . . , fm ) ≥ D · D −1/2 = D 1/2 . Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: Surjectivity of θ(x) = P ci ui θi (hx, ui i) : Ω+ → Rn ...? Let φi : Ii → R s.t. φ0i = θi ; then φi convex. Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: Surjectivity of θ(x) = P ci ui θi (hx, ui i) : Ω+ → Rn ...? Let φi : Ii → R s.t. φ0i = θi ; then φi convex. Note that θ(x) = ∇φ(x), where X X |ci |φi (hx, ui i) ci φi (hx, ui i) − φ(x) = φ+ (x) − φ− (x) = i≤m+ Paweł Wolff i>m+ Gaussian kernels have also Gaussian minimizers Proof: Surjectivity of θ(x) = P ci ui θi (hx, ui i) : Ω+ → Rn ...? Let φi : Ii → R s.t. φ0i = θi ; then φi convex. Note that θ(x) = ∇φ(x), where X X |ci |φi (hx, ui i) ci φi (hx, ui i) − φ(x) = φ+ (x) − φ− (x) = i>m+ i≤m+ φ+ : Ω → Rn is convex; extend to convex on Rn φ+ (x0 ) = lim inf φ+ (x) x→x0 Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: Surjectivity of θ(x) = P ci ui θi (hx, ui i) : Ω+ → Rn ...? Let φi : Ii → R s.t. φ0i = θi ; then φi convex. Note that θ(x) = ∇φ(x), where X X |ci |φi (hx, ui i) ci φi (hx, ui i) − φ(x) = φ+ (x) − φ− (x) = i>m+ i≤m+ φ+ : Ω → Rn is convex; extend to convex on Rn φ+ (x0 ) = lim inf φ+ (x) x→x0 Goal: for any y0 ∈ Rn , find x0 ∈ Ω+ s.t. θ(x0 ) = ∇φ(x0 ) = y0 Paweł Wolff Gaussian kernels have also Gaussian minimizers Proof: Surjectivity of θ(x) = P ci ui θi (hx, ui i) : Ω+ → Rn ...? Let φi : Ii → R s.t. φ0i = θi ; then φi convex. Note that θ(x) = ∇φ(x), where X X |ci |φi (hx, ui i) ci φi (hx, ui i) − φ(x) = φ+ (x) − φ− (x) = i>m+ i≤m+ φ+ : Ω → Rn is convex; extend to convex on Rn φ+ (x0 ) = lim inf φ+ (x) x→x0 Goal: for any y0 ∈ Rn , find x0 ∈ Ω+ s.t. θ(x0 ) = ∇φ(x0 ) = y0 x0 = arg min φ+ (x) − φ− (x) − hx, y0 i Note that x0 ∈ Ω. Therefore ∇(φ+ − φ− − h·, y0 i)(x0 ) = 0, i.e. ∇φ(x0 ) = y0 D 2 (φ+ − φ− − h·, y0 i)(x0 ) = Dθ(x0 ) ≥ 0, i.e. x0 ∈ Ω+ Paweł Wolff Gaussian kernels have also Gaussian minimizers
© Copyright 2025