©Bundesforschungszentrum für Wald, Wien, download unter www.zobodat.at FOREST-LITTER DECOMPOSITION RATE AS A S I T E FACTOR F. Delecour and F. Weissen Centra de Recherches et de Promotion Forestières Section Pédologie Forestière (I.R.S.I.A.) GEMBLOUX (Belgium) Keywords Acid brown soils, Beechwood, Organic matter turn-over, Productivity. 1 . INTRODUCTION An organic matter decomposition rate coefficient has been introduced by Jenny e t a t . (1949) . It can be calculated following an equation of the type K 100 A A + L where A is the annual fall of plants residues, more specifically the autum nal leaf fall, and L is the total existing litter or holorganic horizons, 0, before leaf fall. The value of K can be expressed on a dry matter, organic matter, or any nutrient basis. This coefficient represents the proportion of fresh decomposable matter at the beginning of the annual cycle, after leaf fall (Delecour, 1969). It is a partial expression of the intensity of the nutrient turn-over, indicating to which extent these tend to accumulate in the O horizons, whenever the biogeochemical cycles are slowing down. First, this coefficient was looked at as a climatic index, decreasing from equatorial to temperate regions, as well as from lowlands to highlands (Jenny e t a t . , 1949). However, Maldague (1967) found a sharp increase of K from mor- to mull-maplestands in Canada. So, from the few data available in the litterature, it appears that the litter decomposition rate varies under the influence, among other factors, of tree species, of climatic factors, and of humus form. Some investigation has been carried on in the beechwoods, and, to a les ser extent, in the sprucewoods of Belgian Ardennes, in order to see if it was possible to share the part of regional and of local factors in the va riations of the K coefficient. The technical specifications of the sampling have been discussed elsewhere (Delecour e t a t . , 1967).Since then, ithasbeen found that the relative standard error is of the same order of magnitude if the sampling area is reduced to 0.25 m 2, provided that at least 15 samples are collected in each site. 117 ©Bundesforschungszentrum für Wald, Wien, download unter www.zobodat.at 2. STUDIED STANDS The present discussion is restricted to natural beechforest. The studied stands are situated in the Belgian Ardennes, the mean coor dinates being 5°30' E longitude, and 50° N latitude. The elevation varies from 350 to 600 m. The soils are acid brown soils (F.A.O. dystric Cambisols U.S.D.A. Dystrochrepts) on schist or sandstone substrata of the Lower Devonian. The pH of the Ah horizon is about 4.0 to 4.5, and the base saturation is very low, less than 20 % in the mineral horizons (Delecour and Weissen, 1977) .The beechwoods belong to the L u z u t o - F a g io n Lohm and Tx, and represent subgroups of the L u z u Z o -F a g e turn bo ve a tZ a n t'Lcu m (Noirfalise and Vanesse, 1977) . In "normal" stands corresponding to 180 stems/ha and 80 % covering at the age of 150 years (Dagnelie, 1956), the autumnal leaf fall amounts to an average of 3.4 t/ha, on a dry matter basis, with little variation from one stand to the other. The amount of litter varies greatly, from less than 2 t/ha in mull stands to more than 30 t/ha in dysnoder stands (*) , before leaf fall. 3. OBSERVATIONS The interpretation of the values of the litter decomposition rate coef ficient can be made from different points of view. First, we shall locate the beechwoods of Belgian Ardennes in comparison with other stands in the World. Then, we shall consider it as an expression of the dynamics of the nutrients during the decomposition. Finally, we shall consider its relationships with the forest productivity. 3.1. World values of the K c o e f f i c i e n t Table 1 shows intermediate values for the Belgian beechwoods. Although the interpretation must be careful and take into account that we are compa ring very different ecosystems, the influence of the general climate is clear ly evident. (*) The definition of humus forms is given in Delecour (1980) . 118 ©Bundesforschungszentrum für Wald, Wien, download unter www.zobodat.at Table 1 World values of K coefficient in different forest types (dry mat ter basis) Country Forest type Columbia Rain forest 48 Q u e rcu s k e l l o g i i elev. 1200 m elev. 1500 m 12 6 Belgium Beechwood 15 Canada Maplewood mull mor 35 5 USA, California 3.2. Dynam ic s Jenny e t a l . 63 Musanga fallow Zaire Source K, Jenny e t a l . Maldague of the d e c o m p o s i t i o n Table 2 shows the average values as well as the standard variation of the K coefficient, expressed on different bases. Table 2 Average values of K coefficient (different bases) Element K, % V, % 14.5 15.8 33 N P S Mg 9.4 10.4 9.0 10.8 40 35 39 39 CA 22.0 20 K 27.5 25 Dry matter C The analysis of the data shows that they are distributed into four groups significantly different from each other. Following decreasing evolu tion speedness, the elements can be arranged as follows K > Ca > C = dry matter > N = S = P = M g . Although K- and Ca-liberation depend to some extent on the organic mat ter decomposition, it is not quite parallel to the transformation of the organic compounds. Both elements are situated in the vacuole solutions or are adsorbed on the colloids of the cell components. They are more readily set free, namely as a result of physical leaching, than other nutrients in timately integrated with the organic matter such as N, P, and S, and so, they seem to be much more dependent upon the general climatic conditions. 119 ©Bundesforschungszentrum für Wald, Wien, download unter www.zobodat.at The mineralization of N and of S, in our beechforests has been descri bed by Van Praag (1972), and Van Praag and Weissen (1977)• As N-, S-, and P-mineralization rates are smaller than C-mineralization, the former accu mulate relatively in the litter. That is the reason why, for instance, the C/N-ratio decreases from mull to dysmoder in the holorganic 0 horizons (Delecour, 1975). It is noteworthy that Mg behaves like the integrated elements and so differs from Ca, other earth-alkali. Mg is much more intimately associated to the organic matter, e.g. in the chlorophyll molecule where it can repre sent up to 30 % of the plant magnesium (Mengel, 1968). In spruce litters, Van Praag (oral communication) has identified high proportions of apparent ly little degraded chlorophyll, by means of chromatography. This behaviour difference between Ca and Mg was also observed in a detailed study of their distribution in the L, F, and H litter layers, as well as by means of frac tionation in the organic and mineral horizons (Delecour e t a l . , 1977). 3.3. R e l a t i o n s h i p with forest p r o d u c t i v i t y Table 3 gives the variation of the values of litter decomposition coef ficient and of forest productivity, in relation to different beechwood types and humus forms. Table 3 Litter decomposition coefficient, K, and forest productivity, Iv7b* Beechwood types Humus forms Blueberry (V a c c in iu m m y r t ï l l u s ) Woodrush ( L u z u la a l b i d a ) dysmoder moder Nb of sites K ^v7b 5 7-10 4.2-4.5 8 9-18 4.5-6.4 18 6.5-7.0 Wood Fescue (F e stu ca a lt is s im a ) mullike moder 2 id acid mull 2 Woodruff ( A s p e r u la o d o r a t a ) acid mull 1 19-21 20 7.4-7.5 6.7 As a site index, we have made use of the mean annual increment of tree volume over 7 cm diameter at 150 years, expressed in cubic meters per hec tare. K coefficient is given on a dry matter basis. The correlation coefficient between these factors equals 0.958 (Dele cour, 1978) , and is not significantly different with the other "organic" expressions of K (C, N, P, or S basis). The relation is least with the coef ficient expressed on the base of potassium (0.254). So, this litter decomposition coefficient appears to be a very inte resting site factor in the studied beechwoods. The productivity could be estimated from the K coefficient by means of the equation Prod. = 0.227 (K coeff) + 2.566. 120 ©Bundesforschungszentrum für Wald, Wien, download unter www.zobodat.at However, this site effect is likely to interfere with a more general, or regional effect whose causes can be very diverse climatic differences, forestry management, historical factors, etc... The superimposition of the local and regional effects could possibly make understandable the rather large range of K and I in the woodrush beechwoods, with moder humus form. 4. DISCUSSION The use of a litter decomposition rate coefficient taking into account the autumnal leaf fall (A) and the litter (L) allows one to show up diffe rences in the rate of evolution of the nutrients during the decomposition, and, on the other hand, to put to evidence a very good relationship with forest productivity. This coefficient is an approximate expression of the speedness of the nutrient turn-over, and the results obtained in the Belgian beechwoods tend to corroborate the hypothesis of Hartmann (1959) following which the inten sity of the biogeochemical cycles explains the productivity in poor soils better than does the chemical fertility of the soil itself. From calculations of data of Heilmann and Gessel (1963), it appears that the K coefficient could be used to follow soil and stand responses to fertilization a N-input in a Douglas fir stand increased the flow of N throughout the ecosystem and, at the same time, increased the value of the K coefficient. In "normal" beechwoods, as they were defined by Dagnelie (1956), the A value is rather constant, so that a rough estimation of the K factor can be made by means of the sole determination of the L value. However, there are some limitations to the possibility of using this K coefficient. Comparisons may be made only in well defined ecological con ditions as regards the regional climate, the tree species, and the substra ta which must lie in a rather narrow range of chemical fertility. Besides, its determination is valid only for stands which have reached a steady sta te, i.e., stands where leaf fall equals the fraction of litter decomposed annually. This is not yet the case in most of the articifial sprucewoods of Southern Belgium. On the other hand, the spatial variation of the L value being rather large (Delecour et at., 1967) , it is hardly possible to use the K coefficient as an indicator of seasonal evolution, unless a very large number of samples are collected, which would make this kind of research most tedious and ti me-consuming . REFERENCES Dagnelie, P., 1956 Recherches sur la productivité des hêtraies d'Ardenne en relation avec les types phytosociologiques et les facteurs écologi- 121 ©Bundesforschungszentrum für Wald, Wien, download unter www.zobodat.at ques. 2e partie. Bull. Inst. Agron. Stat. Rech. Gembloux, vol. 24, n° 4, 249-284. Delecour, F., 1969 Problems of forest fertilization. The importance of the nutrient cycle. Agri-Digest, n° 17, 3-9. Delecour, F., 1975 Note sur la distribution du carbone et de l'azote dans les fractions humiques de quelques sols forestiers. Pédologie, vol. 25, n° 2,, 118-125. Delecour, F. , 1978 Facteurs édaphiques et productivité forestière. Ibid. vol. 28, n° 3, 271-284. Delecour, F. , 1980 Essai de classification pratique des humus. Ibid., vol 30, n° 2 (to be published). Delecour, F., Van Praag, H. and Weissen, F., 1977 Edaphologie du site fo restier de Mirwart. ¿n Productivité biologique en Belgique. Trav. Sect, belge P.B.I. (P. Duvigneaud et P. Kestemont, éd.), 73-105. Delecour, F. and Weissen, F. , 1977 Les sols bruns acides des forêts de l'Ardenne Définition et amélioration. Annales de Gembloux, vol. 83, n° 1, 27-42. Delecour, F., Weissen, F. and Nanson, A., 1967 Aspects techniques de l'é chantillonnage des retombées annuelles et des horizons holorganiques des sols de forêts. Bull. Rech. Agron. Gembloux, vol. 2, n° 3, 429-449. Hartmann, F., 1959 Dynamik und Naturgesetzlichkeit im Nährstoffhaushalt des Waldes. Centr. Gesamt. Forstw. Bd 76, 36--64. Heilmann, P.E. and Gessel, S.P., 1963 : Nitrogen requirements and biologi cal cycling of nitrogen in Douglas-fir stands in relationship to the effect of nitrogen fertilization. Plant and Soil, vol. 18, 386-402. Jenny, H., Gessel, S.P. and Bingham, F.T., 1949 : Comparative study of de composition rates of organic matter in temperate and tropical regions. Soil Sei., vol. 68, 419-432. Maldague, E., 1967 Aspects faunistiques de la fertilité des sols fores tiers et spécialement des sols forestiers équatoriaux. Thèse, Centre Chim. Biol, et Coll, du Sol, Louvain, 265 p. (draft). Mengel, K., 1968 : Ernährung und Stoffwechsel der Pflanze. Fisher Verlag, Stuttgart, 436 p. Noirfalise, A. and Vanesse, R., 1977 : La hêtraie naturelle à luzule blan che en Belgique (L u z u lo - F a g e t w n ) . Comm. Centre Ecol. Forest, et Rura le, nouv. série, n° 13, 29 p. + annexes. Van Praag, H.J., 1972 Contribution àl'étude de la disponibilité de l'azo te et du soufre dans les sols forestiers oligotrophes de l'Ardenne. Thèse, Fac. Sei. Agron. Gembloux, 278 p. (draft). Van Praag, H.J., and Weissen, F., 1977 : Evaluation de la quantité d'azote minéralisé par an, dans le sol de la "hêtraie nue" de Mirwart. in Pro ductivité biologique en Belgique. Trav. Sect, belge P.B.I. (P. duvi gneaud et P. Kestemont, éd.), 327-334. SUMMARY For natural beechwoods of Belgian Ardennes, the authors discuss a lit ter decomposition rate coefficient, K, giving a ratio of leaf fall, A, to forest litter, L (K = 100.A/(A+L)). This coefficient shows up the differen ces of evolution of the nutrients during the humification, namely the dif ferences between Ca and Mg. From an other point of view, the proposed coef ficient exhibits a very good relationship with the forest productivity, 122 ©Bundesforschungszentrum für Wald, Wien, download unter www.zobodat.at which makes it an interesting site factor. ZUSAMMENFASSUNG Laubstreuzersetzungskoeffizient als S ta n d o r t s f a k t o r Der benutzte Laubstreuzersetzungskoeffizient K wird durch das Verhält= nis des im herbstlichen Laubfall enthaltenen (Element-)Gewichts (A) zur to talen (Element-)Reserve der organischen Bodenauflage nach dem Laubfall (A+L) dargestellt (K = 100.A/(A+L)). In den naturnahen Buchenwäldern der belgi= sehen Ardennen zeigt dieser Koeffizient in welchem Masse verschiedene Ele= mente gleich oder unterschiedlich schnell umlaufen. Auf das ungleiche Ver= halten der Erdalkali Ca und Mg wird hingewiesen. Zwischen mehreren Ausdrucks^ weisen des genannten Koeffizients und der Produktivität bestehen höchst si= gnifikante Korrelationen. RESUME Vitesse de d é c o m p o s i t i o n des litières, facteur de station Pour des hêtraies naturelles de l'Ardenne belge, les auteurs discutent d'un coefficient de décomposition des litières, K, exprimant un rapport en tre la retombée automnale de feuilles, A, et l'ensemble de la litière pré sente sur le sol, L (K = 100.A/(A+L)). Ce coefficient permet de mettre en évidence des différences de vitesse d'évolution des éléments nutritifs au cours de 1'humification, en particulier entre Ca et Mg. D'autre part, le coefficient proposé montre une excellente relation avec la productivité, ce qui en fait un intéressant facteur de station. 15.02.1980 123
© Copyright 2024