/home/travis/build/casadi/binaries/casadi/docs/tutorials/python/src/tools/temp.py June 30, 2015 CasADi tutorial 1 52 f = S X F u n c t i o n ( ’ f ’, [ s t a t e s . c a t ] , [ x * y * z ] ) 53 f = S X F u n c t i o n ( ’ f ’, [ s t a t e s ] , [ x * y * z ] ) In many cases, states will be auto-cast to SX: 0 1 2 3 4 5 6 # # # # # # # Expanded structure syntax and ordering The structure defnition above can also be written in expanded syntax: This tutorial file explains the use of structures Structures are a python-only feature from the tools library: 14 15 from c a s a d i . t o o l s i m p o r t * The struct tools offer a way to structure your symbols and data It allows you to make abstraction of ordering and indices. Put simply, the goal is to eleminate code with ’magic numbers’ numbers such as: f = MXFunction(’f’, [V],[ V[214] ]) # time ... x_opt = solver.getOutput()[::5] # Obtain all optimized x’s and replace it with f = MXFunction(’f’, [V],[ V[“T”] ]) ... shooting(solver.getOutput())[“x”,:] Introduction 63 64 65 66 67 More information can be attached to the entries shape argument : specify sparsity/shape print 74 print [ [ y_0 , y_2 ] , [ y_1 , y_3 ] ] 75 states [ "y" ] x , y , z = s t a t e s [ ... ] The cat attribute will return the concatenated version of the struct. This will always be a column vector print print states.cat [ x, y, z ] repeat argument : specify nested lists 84 85 86 87 88 89 s t a t e s = struct_symSX([ e n t r y ("w", r e p e a t = 2), e n t r y (" v ", r e p e a t = [ 2,3 ] ), ]) print This structure is of size: 47 print s t a t e s [ "w" ] [ SX( w_0 ), SX( w_1 ) ] s t a t e s . s i z e , " = ", s t a t e s . c a t . s h a p e 3 = (3, 1) 50 51 states.cat [ x_0 , x_1 , x_2 , y_0 , y_1 , y_2 , y_3 , z_0 , z_1 , z_2 ] To obtain aliases, use the Ellipsis index: 44 states [ "z" ] Note that the cat version of this structure does only contain the nonzeros 78 y 41 print [ [ z_0 , 00 ] , [ z_1 , z_2 ] ] Superficially, states behaves like a dictionary print states [ "y" ] states s y m b o l i c SX w i t h f o l l o w i n g s t r u c t u r e : S t r u c t u r e w i t h t o t a l s i z e 3. Structure holding 3 entries. O r d e r : [ ’ x ’, ’ y ’, ’ z ’ ] y = 1- by -1 ( d e n s e ) x = 1- by -1 ( d e n s e ) z = 1- by -1 ( d e n s e ) 38 states [ "x" ] [ x_0 , x_1 , x_2 ] s t a t e s = s t r u c t _ s y m S X ( [ " x "," y "," z " ] ) print s t a t e s = struct_symSX([ e n t r y (" x ", s h a p e = 3), e n t r y (" y ", s h a p e = (2,2)), e n t r y (" z ", s h a p e = S p a r s i t y . l o w e r (2)) ]) 71 72 73 74 75 76 77 Create a structured SX.sym 33 34 35 s i m p l e s t a t e s = struct_symSX([ e n t r y (" x "), e n t r y (" y "), e n t r y (" z ") ]) 87 print states [ "v" ] [ [ SX( v _ 0 _ 0 ), SX( v _ 0 _ 1 ), SX( v _ 0 _ 2 ) ] , [ SX( v _ 1 _ 0 ), SX( v _ 1 _ 1 ), SX( v _ 1 _ 2 ) ] ] Notice that all v variables come before the v entries: /home/travis/build/casadi/binaries/casadi/docs/tutorials/python/src/tools/temp.py 91 92 June 30, 2015 f o r i , s i n e n u m e r a t e ( s t a t e s . l a b e l s ()) : print i , s 0 [ w,0,0 ] 1 [ w,1,0 ] 2 [ v ,0,0,0 ] 3 [ v ,0,1,0 ] 4 [ v ,0,2,0 ] 5 [ v ,1,0,0 ] 6 [ v ,1,1,0 ] 7 [ v ,1,2,0 ] We can influency this order by introducing a grouping bracket: 101 102 103 104 105 106 107 108 If we use more exoctic indices, we call this a powerIndex 124 " a ", ( e n t r y ("w", r e p e a t = 2), e n t r y (" v ", r e p e a t = [ 2,3 ] ) ), "b" ]) 128 129 130 Nesting, Values and PowerIndex print s t a t e s = s t r u c t _ s y m S X ( [ " x "," y ", e n t r y (" q ", s h a p e = 4) ] ) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] 132 133 i n i t [ "X",0,-1," y " ] = 12 135 print The corresponding numerical value has changed now: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] The entry that changed is in fact this one: 138 print 139 print print s h o o t i n g [ "X",0,0," x " ] X_0_0_x i n i t . f [ "X",0,-1," y " ] [ I M a t r i x (13) ] i n i t . c a t [ 13 ] 12 One can lookup the meaning of the 13th entry in the cat version as such: Note that the canonicalIndex does not contain negative numbers 143 print s h o o t i n g . g e t C a n o n i c a l I n d e x (13) ( ’X ’, 0, 2, ’ y ’, 0) 145 146 print s h o o t i n g . l a b e l s () [ 13 ] [ X,0,2, y ,0 ] Other datatypes shooting.size 94 The canonicalIndex is the combination of strings and numbers that uniquely defines the entries of a structure: i n i t .cat [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, shooting = struct_symSX([ e n t r y ("X", r e p e a t = [ 5,3 ] , s t r u c t = s t a t e s ), e n t r y ("U", r e p e a t = 4, s h a p e = 1), ]) print i n i t .cat [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Structures can be nested. For example consider a statespace of two cartesian coordinates and a quaternion 121 i n i t = s h o o t i n g (0) f o r i , s i n e n u m e r a t e ( s t a t e s . l a b e l s ()) : print i , s [ a ,0 ] [ w,0,0 ] [ v ,0,0,0 ] [ v ,0,1,0 ] [ v ,0,2,0 ] [ w,1,0 ] [ v ,1,0,0 ] [ v ,1,1,0 ] [ v ,1,2,0 ] [ b ,0 ] s h o o t i n g [ "X", : ,0," x " ] Having structured symbolics is one thing. The numeric structures can be derived: The following line allocates a DMatrix of correct size, initialised with zeros s t a t e s = struct_symSX([ 0 1 2 3 4 5 6 7 8 9 111 112 113 114 115 116 117 118 print [ SX( X_0_0_x ), SX( X_1_0_x ), SX( X_2_0_x ), SX( X_3_0_x ), SX( X_4_0_x ) ] Notice how the w and v variables are now interleaved: 105 106 2 A symbolic structure is immutable 155 156 157 158 159 try : s t a t e s [ " x " ] = s t a t e s [ " x " ] **2 e x c e p t E x c e p t i o n as e : p r i n t " Oops : ", e /home/travis/build/casadi/binaries/casadi/docs/tutorials/python/src/tools/temp.py June 30, 2015 ’ s s y m S t r u c t ’ o b j e c t does n o t s u p p o r t i t e m a s s i g n m e n t If you want to have a mutable variant, for example to contian the right hand side of an ode, use struct_SX: By default SX.sym structure constructor will create new SX.syms. To recycle one that is already available, use the ’sym’ argument: Oops : 158 159 160 161 162 163 164 rhs = struct_SX(states) r h s [ " x " ] = s t a t e s [ " x " ] **2 rhs [ "y" ] = states [ "y" ]*states [ "x" ] rhs [ "q" ] = -states [ "q" ] 197 198 199 The ’sym’ feature is not available for struct_MX, since it will construct one parent MX. print rhs.cat More powerIndex Alternatively, you can supply the expressions at defintion time: x , y , q = s t a t e s [ ... ] rhs = struct_SX([ e n t r y (" x ", e x p r = x **2), e n t r y (" y ", e x p r = x * y ), e n t r y (" q ", e x p r = - q ) ]) print One can also construct symbolic MX structures 210 211 212 print i n i t [ "X", : , : ," x " ] Callables/functions can be thrown in in the powerIndex at any location. They operate on subresults obtain from resolving the remainder of the powerIndex 217 218 print i n i t [ "X", : , h o r z c a t , : ," x " ] [ D M a t r i x ( [ [ 0, 1, 2 ] ] ), D M a t r i x ( [ [ 0, 1, 2 ] ] ), D M a t r i x ( [ [ 0, 1, 2 ] ] ), D M a t r i x ( [ [ 0, 1, 2 ] ] ), D M a t r i x ( [ [ 0, 1, 2 ] ] ) ] 218 print i n i t [ "X", v e r t c a t , : , h o r z c a t , : ," x " ] p r i n t V. c a t [ [ 0, [ 0, [ 0, [ 0, [ 0, p r i n t V. s h a p e (94, 1) 185 i n i t [ "X", : , : ," x " ] = r e p e a t e d ( r a n g e (3)) [ [ D M a t r i x (0), D M a t r i x (1), D M a t r i x (2) ] , [ D M a t r i x (0), D M a t r i x (1), D M a t r i x (2) ] , [ D M a t r i x (0), D M a t r i x (1), D M a t r i x (2) ] , [ D M a t r i x (0), D M a t r i x (1), D M a t r i x (2) ] , [ D M a t r i x (0), D M a t r i x (1), D M a t r i x (2) ] ] V 184 i n i t [ "X", : , : ," x " ] The repeated method duplicates its argument a number of times such that it matches the length that is needed at the lhs print V The catted version is one single MX from which all entries are derived: print [ [ D M a t r i x (0), D M a t r i x (0), D M a t r i x (0) ] , [ D M a t r i x (0), D M a t r i x (0), D M a t r i x (0) ] , [ D M a t r i x (0), D M a t r i x (0), D M a t r i x (0) ] , [ D M a t r i x (0), D M a t r i x (0), D M a t r i x (0) ] , [ D M a t r i x (0), D M a t r i x (0), D M a t r i x (0) ] ] V = struct_symMX( s h o o t i n g ) MX. sym w i t h f o l l o w i n g s t r u c t u r e : S t r u c t u r e w i t h t o t a l s i z e 94. Structure holding 2 entries. O r d e r : [ ’X ’, ’U ’ ] X = r e p e a t e d ( [ 5, 3 ] ) : { y : 1- by -1 ( d e n s e ), x : 1- by -1 ( d e n s e ), q : 4- by -1 ( d e n s e )} U = r e p e a t e d ( [ 4 ] ) : 1- by -1 ( d e n s e ) 183 As illustrated before, powerIndex allows slicing 207 rhs.cat [ sq ( x ), ( x * y ), (- q_0 ), (- q_1 ), (- q_2 ), (- q_3 ) ] 178 179 180 qsym = SX. sym (" q u a t e r n i o n ",4) s t a t e s = s t r u c t _ s y m S X ( [ " x "," y ", e n t r y (" q ", sym=qsym ) ] ) print states.cat [ x, y, q u a t e r n i o n _ 0 , q u a t e r n i o n _ 1 , q u a t e r n i o n _ 2 , q u a t e r n i o n _ 3 ] [ sq ( x ), ( y * x ), (- q_0 ), (- q_1 ), (- q_2 ), (- q_3 ) ] 167 168 169 170 171 172 173 174 3 p r i n t V [ "X",0,-1," y " ] 219 print 1, 1, 1, 1, 1, 2], 2], 2], 2], 2] ] i n i t [ "X", b l o c k c a t , : , : ," x " ] v e r t s p l i t ( v e r t s p l i t (V){2}){1} Similar to struct_SX, we have struct_MX: 193 194 195 196 197 198 [ [ 0, [ 0, [ 0, [ 0, [ 0, 1, 2 ] , 1, 2 ] , 1, 2 ] , 1, 2 ] , 1, 2 ] ] Set all quaternions to 1,0,0,0 V = struct_MX([ ( e n t r y ("X", e x p r = [ [ MX. sym (" x ",6)**2 f o r j i n r a n g e (3) ] f o r i i n r a n g e (5) ] ) , e n t r y ("U", e x p r = [ -MX. sym (" u ") f o r i i n r a n g e (4) ] ) ) ]) 222 i n i t [ "X", : , : ," q " ] = r e p e a t e d ( r e p e a t e d ( D M a t r i x ( [ 1,0,0,0 ] ))) {} can be used in the powerIndex to expand into a dictionary once /home/travis/build/casadi/binaries/casadi/docs/tutorials/python/src/tools/temp.py 225 226 227 June 30, 2015 [ 1, 1, 1 ] , [ 1, 1, 1 ] , [ 1, 1, 1 ] ] i n i t [ "X", : ,0,{} ] = r e p e a t e d ({" y " : 9}) print i n i t [ "X", : ,0,{} ] [ { ’ y ’ : D M a t r i x (9), ’ x ’ : D M a t r i x (0), ’ q ’ : D M a t r i x ( [ 1, D M a t r i x (9), ’ x ’ : D M a t r i x (0), ’ q ’ : D M a t r i x ( [ 1, 0, D M a t r i x (9), ’ x ’ : D M a t r i x (0), ’ q ’ : D M a t r i x ( [ 1, 0, D M a t r i x (9), ’ x ’ : D M a t r i x (0), ’ q ’ : D M a t r i x ( [ 1, 0, D M a t r i x (9), ’ x ’ : D M a t r i x (0), ’ q ’ : D M a t r i x ( [ 1, 0, 0, 0, 0, 0, 0, 0, 0 ] )}, { ’ y ’ : 0 ] )}, { ’ y ’ : 0 ] )}, { ’ y ’ : 0 ] )}, { ’ y ’ : 0 ] )} ] 245 246 print print [ [ 1, [ 1, [ 1, [ 1, [ 1, lists can be used in powerIndex in both list context or dict context: 230 4 s h o o t i n g [ "X", [ 0,1 ] , [ 0,1 ] ," x " ] i n i t [ "X", b l o c k c a t , : , : ," q ",0,0 ] 1, 1, 1, 1, 1, 1], 1], 1], 1], 1] ] [ [ SX( X_0_0_x ), SX( X_0_1_x ) ] , [ SX( X_1_0_x ), SX( X_1_1_x ) ] ] 231 print s h o o t i n g [ "X", [ 0,1 ] ,0, [ " x "," y " ] ] shapeStruct and delegated indexing [ [ SX( X_0_0_x ), SX( X_0_0_y ) ] , [ SX( X_1_0_x ), SX( X_1_0_y ) ] ] nesteddict can be used to expand into a dictionary recursively 234 print i n i t [ nesteddict ] { ’X ’ : [ [ { ’ y ’ : D M a t r i x (9), ’ x ’ : D M a t r i x (0), ’ q ’ : D M a t r i x ( [ 1, 0, 0, 0 ] )}, { ’ y ’ : D M a t r i x (0), ’ x ’ : D M a t r i x (1), ’ q ’ : D M a t r i x ( [ 1, 0, 0, 0 ] )}, { ’ y ’ : D M a t r i x (12), ’ x ’ : D M a t r i x (2), ’ q ’ : D M a t r i x ( [ 1, 0, 0, 0 ] )} ] , [ { ’ y ’ : D M a t r i x (9), ’ x ’ : D M a t r i x (0), ’ q ’ : D M a t r i x ( [ 1, 0, 0, 0 ] )}, { ’ y ’ : D M a t r i x (0), ’ x ’ : D M a t r i x (1), ’ q ’ : D M a t r i x ( [ 1, 0, 0, 0 ] )}, { ’ y ’ : D M a t r i x (0), ’ x ’ : D M a t r i x (2), ’ q ’ : D M a t r i x ( [ 1, 0, 0, 0 ] )} ] , [ { ’ y ’ : D M a t r i x (9), ’ x ’ : D M a t r i x (0), ’ q ’ : D M a t r i x ( [ 1, 0, 0, 0 ] )}, { ’ y ’ : D M a t r i x (0), ’ x ’ : D M a t r i x (1), ’ q ’ : D M a t r i x ( [ 1, 0, 0, 0 ] )}, { ’ y ’ : D M a t r i x (0), ’ x ’ : D M a t r i x (2), ’ q ’ : D M a t r i x ( [ 1, 0, 0, 0 ] )} ] , [ { ’ y ’ : D M a t r i x (9), ’ x ’ : D M a t r i x (0), ’ q ’ : D M a t r i x ( [ 1, 0, 0, 0 ] )}, { ’ y ’ : D M a t r i x (0), ’ x ’ : D M a t r i x (1), ’ q ’ : D M a t r i x ( [ 1, 0, 0, 0 ] )}, { ’ y ’ : D M a t r i x (0), ’ x ’ : D M a t r i x (2), ’ q ’ : D M a t r i x ( [ 1, 0, 0, 0 ] )} ] , [ { ’ y ’ : D M a t r i x (9), ’ x ’ : D M a t r i x (0), ’ q ’ : D M a t r i x ( [ 1, 0, 0, 0 ] )}, { ’ y ’ : D M a t r i x (0), ’ x ’ : D M a t r i x (1), ’ q ’ : D M a t r i x ( [ 1, 0, 0, 0 ] )}, { ’ y ’ : D M a t r i x (0), ’ x ’ : D M a t r i x (2), ’ q ’ : D M a t r i x ( [ 1, 0, 0, 0 ] )} ] ] , ’U ’ : [ D M a t r i x (0), D M a t r i x (0), D M a t r i x (0), D M a t r i x (0) ] } ... will expand entries as an ordered list 237 print If the powerIndex ends at the boundary of a structure, it’s catted version is returned: print s t a t e s = s t r u c t ( [ " x "," y ", e n t r y (" q ", r e p e a t = 2) ] ) V = struct_symSX([ e n t r y ("X", r e p e a t = 5, s t r u c t = s t a t e s ), e n t r y (" P ", r e p e a t = 5, s h a p e s t r u c t = ( s t a t e s , s t a t e s )) ]) 259 p r i n t V [ " P ",0 ] P has a 4x4 shape [ [ P_0_0 , [ P_0_1 , [ P_0_2 , [ P_0_3 , p r i n t V [ " P ",0, [ " x "," y " ] , [ " x "," y " ] ] There is a problem when we wich to use the full potential of powerIndex in these extraIndices: The following is in fact invalid python syntax: We resolve this by using delegater objects index/indexf: 269 270 p r i n t V [ " P ",0, i n d e x f [ " q ", : ] , i n d e x f [ " q ", : ] ] i n i t [ "X",0,0 ] [ [ P_0_10 , P_0_14 ] , [ P_0_11 , P_0_15 ] ] If the powerIndex is longer than what could be resolved as structure, the remainder, extraIndex, is passed onto the resulting Casadi-matrix-type print P_0_8 , P_0_12 ] , P_0_9 , P_0_13 ] , P_0_10 , P_0_14 ] , P_0_11 , P_0_15 ] ] [ [ P_0_0 , P_0_4 ] , [ P_0_1 , P_0_5 ] ] [ 0, 9, 1, 0, 0, 0 ] 243 P_0_4 , P_0_5 , P_0_6 , P_0_7 , Now we can use powerIndex-style in the extraIndex: 262 i n i t [ "X", : ,0,... ] [ [ D M a t r i x (0), D M a t r i x (9), D M a t r i x ( [ 1, 0, 0, 0 ] ) ] , [ D M a t r i x (0), D M a t r i x (9), D M a t r i x ( [ 1, 0, 0, 0 ] ) ] , [ D M a t r i x (0), D M a t r i x (9), D M a t r i x ( [ 1, 0, 0, 0 ] ) ] , [ D M a t r i x (0), D M a t r i x (9), D M a t r i x ( [ 1, 0, 0, 0 ] ) ] , [ D M a t r i x (0), D M a t r i x (9), D M a t r i x ( [ 1, 0, 0, 0 ] ) ] ] 240 When working with covariance matrices, both the rows and columns relate to states 252 253 254 255 256 257 i n i t [ "X", b l o c k c a t , : , : ," q ",0 ] [ [ 1, 1, 1 ] , [ 1, 1, 1 ] , Of course, in this basic example, also the following would be allowed 272 p r i n t V [ " P ",0," q "," q " ] [ [ P_0_10 , P_0_14 ] , [ P_0_11 , P_0_15 ] ] /home/travis/build/casadi/binaries/casadi/docs/tutorials/python/src/tools/temp.py June 30, 2015 Prefixing The prefix attribute allows you to create shorthands for long powerIndices 279 280 281 282 283 284 285 s t a t e s = s t r u c t ( [ " x "," y "," z " ] ) V = struct_symSX([ e n t r y ("X", r e p e a t = [ 4,5 ] , s t r u c t = s t a t e s ) ]) We can conveniently access it as follows: 330 331 332 333 334 337 initial You can access its concents with a call: [ [ 0, 2, 0 ] , [ 3, 0, 0 ] , [ 0, 0, 0 ] ] i n i t i a l [ "x" ] = 1 i n i t i a l [ "y" ] = 2 i n i t i a l [ "z" ] = 3 If you work with Simulator, ControlSimulator, you typically end up with wanting to index a DMatrix that is n x N with n the size of a statespace and N an arbitrary integer But often, it will behave like a DMatrix transparantly: 343 P0 . s e t (P) Next we represent the ’squared_repeated’ helper construct Imagine we somehow obtain a matrix that represents a horizontal concatenation of covariance 347 P0 = h o r z c a t ( [ D M a t r i x .zeros( s t a t e s . s i z e , s t a t e s . s i z e ), D M a t r i x .ones( s t a t e s . s i z e ,states.size)]) 350 351 352 353 354 P = s t a t e s . s q u a r e d _ r e p e a t e d ( P0 ) P [ 0," x "," y " ] = 2 P [ : ," y "," x " ] = 3 We can conveniently access it as follows: s t a t e s = s t r u c t ( [ " x "," y "," z " ] ) We artificially construct here a DMatrix that could be a Simulator output. 313 o u t p u t = D M a t r i x .zeros( s t a t e s . s i z e ,8) 316 outputs = states.repeated(output) 319 320 321 322 o u t p u t s [ -1 ] = D M a t r i x ( [ 1,2,3 ] ) o u t p u t s [ : ," x " ] = r a n g e (8) The helper construct is ’repeated’ here. Instead of “states(output)”, we have Now we have an object that supports powerIndexing: p r i n t P0 [ [ 0, 2, 0, 1, 1, 1 ] , [ 3, 0, 0, 3, 1, 1 ] , [ 0, 0, 0, 1, 1, 1 ] ] Finally, we present the ’product’ helper construct print output [ [ 0, 1, 2, 3, 4, 5, 6, 7 ] , [ 0, 0, 0, 0, 0, 0, 0, 2 ] , [ 0, 0, 0, 0, 0, 0, 0, 3 ] ] print o u t p u t s [ 5,{} ] { ’ y ’ : D M a t r i x (0), ’ x ’ : D M a t r i x (5), ’ z ’ : D M a t r i x (0)} Next we represent the ’squared’ helper construct Imagine we somehow obtain a matrix that represents covariance 327 p r i n t P() = num. p r e f i x [ "X",0,0 ] Helper constructors 323 print P p r e f i x ( ( ’ t ’,), M u t a b l e D M a t r i x ({ t : 3- by -3 ( d e n s e )})) 340 This is equivalent to the longer statements above 310 311 p r i n t P0 P itself is a rather queer object num [ "X",0,0," x " ] = 1 num [ "X",0,0," y " ] = 2 num [ "X",0,0," z " ] = 3 Note the common part [“X”,0,0]. We can pull this apart with prefix: 295 296 297 298 299 300 P = s t a t e s . s q u a r e d ( P0 ) P [ " x "," y " ] = 2 P [ " y "," x " ] = 3 [ [ 0, 2, 0 ] , [ 3, 0, 0 ] , [ 0, 0, 0 ] ] num = V() Consider the following statements: 288 289 290 291 5 P0 = D M a t r i x .zeros( s t a t e s . s i z e , s t a t e s . s i z e ) 357 358 359 360 361 362 363 364 365 366 c o n t r o l s = s t r u c t ( [ " u "," v " ] ) J0 = D M a t r i x .zeros( s t a t e s . s i z e , c o n t r o l s . s i z e ) J = s t a t e s . p r o d u c t ( c o n t r o l s , J0 ) J [ : ," u " ] = 3 J [ [ " x "," z " ] , : ] = 2 p r i n t J () /home/travis/build/casadi/binaries/casadi/docs/tutorials/python/src/tools/temp.py June 30, 2015 [ [ 2, 2 ] , [ 3, 0 ] , [ 2, 2 ] ] Saving and loading It is possible to save and load some types of structures. Supported types are pure structures (the ones created with ’struct’) and numeric structures. Saving: mystructure.save(“myfilename”) Loading: struct_load(“myfilename”) or pickle.load(file(’myfilename’,’r’)) 6
© Copyright 2025