Exploring the assumptions of language acquisition models Christos Christodoulopoulos, Cynthia Fisher and Dan Roth Midwest Speech & Language Days 2015 Models of language acquisition “The girl chases the boy” 2 Models of language acquisition “The girl chases the boy” 2 Models of language acquisition “The girl chases the boy” 2 Models of language acquisition “The girl chases the boy” “The boy runs” 2 Semantic Role Labeling PropBank corpus [Palmer et al. 2005] Core arguments: A0 - Agent A1 - Patient A2 - Recipient … Modifiers: Locative Temporal Manner … 3 “The girl chases the boy” A0 pred A1 BabySRL [Connor et al. 2008; 2010] BabySRL corpus Adam, Eve, Sarah [Brown, 1973] “The girl chases the boy” A0 pred A1 4 BabySRL [Connor et al. 2008; 2010] BabySRL corpus Adam, Eve, Sarah [Brown, 1973] Adult utterances (cleaned up) “The girl chases the boy” A0 pred A1 4 BabySRL [Connor et al. 2008; 2010] BabySRL corpus Adam, Eve, Sarah [Brown, 1973] Adult utterances (cleaned up) Focus on verb predicates “The girl chases the boy” A0 pred A1 4 BabySRL [Connor et al. 2008; 2010] BabySRL corpus Adam, Eve, Sarah [Brown, 1973] Adult utterances (cleaned up) Focus on verb predicates 1 verb 2 args (24% of sent.) “The girl chases the boy” A0 pred A1 4 Experiment 1: Supervised learning Given perfect feedback, do simple, bottom-level features capture anything useful about semantic roles/verb preferences? 5 Experiment 1: Supervised learning • Supervised classifier (average perceptron) • 6 LBJava [Rizzolo and Roth, 2010] • Train on BabySRL corpus • Test on novel verb sentences Experiment 1: Supervised learning • Supervised classifier (average perceptron) • LBJava [Rizzolo and Roth, 2010] • Train on BabySRL corpus • Test on novel verb sentences Intransitive: “The bunny krads” Transitive: “The boy krads the girl” Ditransitive: “The girl krads the boy a bunny” 6 Experiment 1: Features • 7 Most frequent label A0 A1 The girl chases the boy Experiment 1: Features • • 7 Most frequent label Lexical features A0 A1 The girl chases the boy chase-girl chase-boy Experiment 1: Features • 7 Most frequent label • Lexical features • Noun Pattern A0 A1 The girl chases the boy chase-girl chase-boy 1st of 2 2nd of 2 Experiment 1: Features • 7 Most frequent label A0 A1 The girl chases the boy chase-girl chase-boy Noun Pattern 1st of 2 2nd of 2 Verb Position Before After • Lexical features • • Experiment 1: Results 100 A1A1 A0A0 A0A2 A0A1 75 50 25 0 Most Freq. 8 Lex +NPat +VPos +NPat & VPos Experiment 1: Results 100 A1A1 A0A0 A0A2 A0A1 75 50 25 0 Most Freq. 8 Lex +NPat +VPos +NPat & VPos Experiment 1: Results 100 A1A1 A0A0 A0A2 A0A1 75 50 25 0 Most Freq. 8 Lex +NPat +VPos +NPat & VPos Experiment 1: Results 100 A1A1 A0A0 A0A2 A0A1 75 50 25 0 Most Freq. 8 Lex +NPat +VPos +NPat & VPos Experiment 1: Results 100 A1A1 A0A0 A0A2 A0A1 75 50 25 0 Most Freq. 8 Lex +NPat +VPos +NPat & VPos Experiment 1: Results 100 A1A1 A0A0 A0A2 A0A1 75 Predicate knowledge 50 25 0 Most Freq. 8 Lex +NPat +VPos +NPat & VPos Multiple predicates “Remember how we play the surprise game?” A1 “Remember how we play the surprise game?” A0 9 A1 Multiple predicates “Remember how we play the surprise game?” A1 “Remember how we play the surprise game?” A0 9 # sent % 1 verb 10,356 69.86 2 verbs 3,614 24.38 A1 Effect of multiple predicates (Noun Pattern) 100 A2 A1 A0 75 50 25 0 all 10 first last Effect of multiple predicates (Noun Pattern) 100 A2 A1 A0 75 50 25 0 all 10 first last Effect of multiple predicates (Noun Pattern) 100 A2 A1 A0 75 50 25 0 all 10 first last Effect of multiple predicates (Noun Pattern) 100 A2 A1 A0 75 50 Syntactic surface the same e.g. NPat: 4th out of 5 25 0 all 10 first last Experiment 1: Supervised learning Given perfect feedback, do simple, bottom-level features capture anything useful about semantic roles/verb preferences? 11 Experiment 1: Supervised learning Given perfect feedback, do simple, bottom-level features capture anything useful about semantic roles/verb preferences? Yes, but predicate knowledge is crucial 11 Experiment 2: Unsupervised learning Can we predict arguments/predicates using distributional clusters and a few seed nouns? 12 Experiment 2: Unsupervised learning Can we predict arguments/predicates using distributional clusters and a few seed nouns? Syntactic Bootstrapping via Structure-Mapping [Gleitman, 1990; Fisher et al. 2010] 12 Experiment 2: Unsupervised learning • HMM over 2.2M tokens (CHILDES) • 80 induced clusters, list of function words • List of seed nouns [Dale and Fenson, 1996] • Noun identification “Cluster contains more than k seed nouns” 13 Experiment 2: Verb Identification She HMM 45 N Ident. N Funct. 14 krads 51 a 19 F red 60 truck 73 N Experiment 2: Verb Identification She HMM 45 N Ident. N Funct. 15 krads 51 a 19 F red 60 truck 73 N Experiment 2: Verb Identification She HMM 45 N Ident. N Funct. krads 51 a 19 red 60 F 60 0 args 1 arg 2 args 3 args 45 30 15 0 51 15 truck 73 N 60 Experiment 2: Verb Identification She HMM 45 N Ident. N Funct. krads 51 a 19 red 60 F 60 0 args 1 arg 2 args 3 args 45 30 15 0 51 15 truck 73 N 60 Experiment 2: Results 1 0.75 0.5 0.25 arg-F verb-F verbRand-F 0 1 16 25 49 73 Experiment 2: Results 1 0.75 0.5 0.25 arg-F verb-F verbRand-F 0 1 16 25 49 73 Experiment 2: Results 1 0.75 0.5 0.25 arg-F verb-F verbRand-F 0 1 16 25 49 73 Experiment 2: Parameters 17 • Random/frequent seed noun selection • Variants + plurals of seed nouns • Verb/predicate evaluation • Multiple predicates • Seed noun threshold k • Null predictions • Function words Experiment 2: Parameters • Random/frequent seed noun selection • Variants + plurals of seed nouns 1 • verb verb FREQ verbRand verbRand FREQ Verb/predicate evaluation 0.8 • Multiple predicates • Seed noun threshold k 0.4 • Null predictions 0.2 • 18 Function words 0.6 0 1 25 49 73 Experiment 2: Parameters • Random/frequent seed noun selection • Variants + plurals of seed nouns 1 • verb verb FREQ verbRand verbRand FREQ Verb/predicate evaluation 0.8 • Multiple predicates • Seed noun threshold k 0.4 • Null predictions 0.2 • 18 Function words 0.6 0 1 25 49 73 Experiment 2: Parameters • Random/frequent seed noun selection • Variants + plurals of seed nouns 1 • verb verbRand @24 seed nouns Verb/predicate evaluation 0.9 • 19 Multiple predicates 0.8 • Seed noun threshold k • Null predictions 0.6 • Function words 0.5 0.7 Freq Freq + Var Experiment 2: Parameters • Random/frequent seed noun selection • Variants + plurals of seed nouns 1 • verb verbRand @24 seed nouns Verb/predicate evaluation 0.9 • 19 Multiple predicates 0.8 • Seed noun threshold k • Null predictions 0.6 • Function words 0.5 0.7 Freq Freq + Var Experiment 2: Parameters • Random/frequent seed noun selection • Variants + plurals of seed nouns 1 • verb verbRand @24 seed nouns Verb/predicate evaluation 0.9 • 20 Multiple predicates 0.8 • Seed noun threshold k • Null predictions 0.6 • Function words 0.5 0.7 Relaxed Strict (all) Strict (first) Experiment 2: Parameters • Random/frequent seed noun selection • Variants + plurals of seed nouns 1 • verb verbRand @24 seed nouns Verb/predicate evaluation 0.9 • 20 Multiple predicates 0.8 • Seed noun threshold k • Null predictions 0.6 • Function words 0.5 0.7 Relaxed Strict (all) Strict (first) Experiment 2: Parameters • Random/frequent seed noun selection • Variants + plurals of seed nouns 1 • verb verbRand @24 seed nouns Verb/predicate evaluation 0.9 • 20 Multiple predicates 0.8 • Seed noun threshold k • Null predictions 0.6 • Function words 0.5 0.7 Relaxed Strict (all) Strict (first) Experiment 2: Unsupervised learning Can we predict arguments/predicates using distributional clusters and a few seed nouns? 21 Experiment 2: Unsupervised learning Can we predict arguments/predicates using distributional clusters and a few seed nouns? Yes, with as few as 24 seed nouns 21 Experiment 2: Unsupervised learning Can we predict arguments/predicates using distributional clusters and a few seed nouns? Yes, with as few as 24 seed nouns ne 21 s e t a c i d e r p e l p i t l u m r e d i s n o c ed to Conclusions • BabySRL model of language acquisition • • 22 Evidence for syntactic bootstrapping Exploration of assumptions • Data representation • Evaluation • Psycholinguistic validity Future Directions • BabySRL from scratch [Connor et al. 2012] • Beyond single predicates • 23 • Multiple verbs • Prepositions Relaxing perfect feedback (scene ambiguity) • Superset • Bootstrapped Animacy Future Directions • BabySRL from scratch [Connor et al. 2012] • Beyond single predicates • 23 • Multiple verbs • Prepositions Thanks Relaxing perfect feedback (scene ambiguity) • Superset • Bootstrapped Animacy
© Copyright 2024