In-situ Micro-compression of Unidirectional Polymer Matrix Composites 9 April 2015 2d Lt Torin C. Quick1 Dr. Sirina Safiret1,2 Lt Col Chad Ryther1 Dr. David Mollenhauer1 Mr. Robert Wheeler1,3 1Air Integrity Service Excellence Force Research Laboratory 2University of Dayton Research Institute 3 MicroTesting Solutions LLC Distribution A: Approved for Public Release; Distribution Unlimited 1 Overview • Introduction – Objective – Previous work • Experimental – Approach – Test fixtures and Setup • Results • Conclusion & Future Work Distribution A: Approved for Public Release; Distribution Unlimited 2 Objective • Gain insight into local compressive deformation behavior of unidirectional(UD) polymer composites Distribution A: Approved for Public Release; Distribution Unlimited 3 Previous Work • Dr. Charles Lu pioneered a novel in-situ compression test of composites at the micro scale • Samples of IM7/BMI were prepared using ion sputtering and FIB milling • Compressed in a micro-mechanical test fixture in-situ within an SEM Lu, Y.C., et. al 2013. “In-Situ Micro-Compression Testing for Characterizing Failure of Unidirectional Fiber Composites”, Proc. Amer. Soc. Comp., 28th Technical Conference, State College, PA, 911 September. Distribution A: Approved for Public Release; Distribution Unlimited 4 Previous Work • Difficulty controlling the indenter displacement after the onset of failure led to catastrophic failure of specimens • Were able to obtain some material properties from tests Lu et al. 2013 Distribution A: Approved for Public Release; Distribution Unlimited 5 Previous Work Cont. • Load cell was more compliant than the test specimen • The stored energy was released when the specimen failed • Unable to obtain significant data on the onset or mode of failure Distribution A: Approved for Public Release; Distribution Unlimited 6 Approach • Create an external method for controlling indenter displacement after specimen failure • Test samples at different cross sectional areas in the micro-scale (i.e. 20 µm, 50 µm, 100 µm) • Use DIC and X-ray micro-Computed Tomography to gain insight into damage initiation and propagation Distribution A: Approved for Public Release; Distribution Unlimited 7 Sample Fabrication & Geometry No se puede mostrar la imagen. Puede que su equipo no tenga suficiente memoria para abrir la imagen o que ésta esté dañada. Reinicie el equipo y, a continuación, abra el archivo de nuevo. Si sigue apareciendo la x roja, puede que tenga que borrar la imagen e insertarla de nuevo. • Single ply cured and polished to starting thickness of 50µm 2.5 µm offset • Shoulders limit indenter displacement • FIB milled 100+ hours • Random & high contrast pattern applied to surface • Sputter coated w/ Cr & Pt • Load fixture capacity restricts size to 20x20 µm Distribution A: Approved for Public Release; Distribution Unlimited 8 Test Method • Micro test fixture – – – – – 100g strain gauge load cell Piezoelectric actuator 40 µm stroke* In-situ SEM testing 130 µm sapphire platen • Testing – Displacement Control (100nm/sec) – SEM image every .5µm displacement(~60 sec capture time) Distribution A: Approved for Public Release; Distribution Unlimited 9 Micro-testing Results First micro-pillar test – Indenter exceeded failure point by ~12 µm – Arresting shoulders succeeded in preventing total catastrophic failure – much of top portion destroyed Indenter Indenter Distribution A: Approved for Public Release; Distribution Unlimited 10 First Micro-pillar Image Series Distribution A: Approved for Public Release; Distribution Unlimited 11 DIC Analysis • 1st Specimen (image size (4096x1510) • Last two load steps before complete failure Subset: 39 Step:5 Distribution A: Approved for Public Release; Distribution Unlimited 12 Second Micro-pillar Test • Indenter exceeded failure point by only ~1.2 µm • Far less destruction of the pillar Indenter Indenter Distribution A: Approved for Public Release; Distribution Unlimited 13 Post Failure Partial fiber separated from matrix 4 Fibers fractured ~halfway down the pillar Splitting following fibers Distribution A: Approved for Public Release; Distribution Unlimited 14 Damaged Pillars 10 µm 1st Test 2nd Test Distribution A: Approved for Public Release; Distribution Unlimited 15 Micro-testing Results • 2 micro-pillars were tested • Displacement control limited damage after failure Stress (GPa) Modulus (GPa) Strain Force(N) Fiber Volume FP1 1.18 41.6 0.028 0.313 0.67 FP2 1.72 81.0 0.021 0.497 0.66 Average 1.45 61.3 0.025 0.406 0.67 Manufacture 1.69 150 • Differences may be attributed to fiber distribution and count – both whole and partial fibers Distribution A: Approved for Public Release; Distribution Unlimited 16 Challenges • SEM image acquisition requires 50-90 sec – Single scan images are noisy and appear to shift due to random changes in the rastering path • Compliant load cell which leads to stored energy in the fixture • Loading instability due to piezoelectric actuator heating Load vs Displacement 0,0319 Load (g) 0,0317 0,0315 0,0313 0,0311 0,0309 0,0307 0,0305 34 34,2 34,4 34,6 34,8 35 35,2 35,4 35,6 Displacement* (um) Distribution A: Approved for Public Release; Distribution Unlimited 17 Conclusions • Proven that we can limit the extent of damage on micro-scale compression tests • Observed several forms of failure within 1 specimen • Large difference between 2 results (stress & modulus) Distribution A: Approved for Public Release; Distribution Unlimited 18 Future Work • SEM image averaging for better DIC analysis • Scan the samples before and after sequential loadings with X-ray CT • Acquire test fixture with increased capability – Enables larger micro-specimens to be tested – Up to 50x50 µm • Arrest mechanical testing at damage inception • Characterize fiber count and distribution on micromechanical properties • Compliment experiments with a computational model Distribution A: Approved for Public Release; Distribution Unlimited 19 Future Work • Meso-scale testing – Compare material properties & failure across different length scales – 1.38 mm diameter cylinders – Acquire CT data sets before and after failure – In-situ X-Ray µCT compression – Preliminary tests have been promising Distribution A: Approved for Public Release; Distribution Unlimited 20 Thank You Distribution A: Approved for Public Release; Distribution Unlimited 21 Back-Up Slides Distribution A: Approved for Public Release; Distribution Unlimited 22 FIB Mill • LYRA User Manual, 2011 Distribution A: Approved for Public Release; Distribution Unlimited 23 Milling Process No se puede mostrar la imagen. Puede que su equipo no tenga suficiente memoria para abrir la imagen o que ésta esté dañada. Reinicie el equipo y, a continuación, abra el archivo de nuevo. Si sigue apareciendo la x roja, puede que tenga que borrar la imagen e insertarla de nuevo. Cut the Pattern FIB Milling Front and Back Cr followed by Pt Coating Distribution A: Approved for Public Release; Distribution Unlimited 24 Failure During SEM Image Capturing Distribution A: Approved for Public Release; Distribution Unlimited 25 Test Comparison Dimension Stress (GPa) Strain (%) Modulus (GPa) - - - - FP-1 20 x 13 x 50 µm 1.18 2.8 41.6 FP-2 19 x 15 x 65 µm 1.72 2.1 81.0 - 1.45 2.5 61.3 - - - - CD-1 1.37mm Ø, 8.19 mm long 1.10 2.9 54.6 CD-2 1.37mm Ø, 8.19 mm long 1.01 2.2 68.2 CD-3 1.40mm Ø, 8.19 mm long 1.17 2.6 74.3 CD-4 1.38mm Ø, 8.20 mm long 1.41 2.6 71.9 Micro-scale Average Meso-scale Average - 1.17 2.6 67.3 Results from Lu et al. - - - - Micro 18 x 15 x 53 µm 1.98 1.04 190 Macro 6.25 x3.17 x 108 mm 0.95 1.33 71 Distribution A: Approved for Public Release; Distribution Unlimited 26 Specimens from High Speed Machining Before machining Ø = 50µm Distribution A: Approved for Public Release; Distribution Unlimited Ø = 125µm 27
© Copyright 2024