Synthesis and spectroscopic characterization of gallic acid and some of its azo complexes Mamdouh S. Masoud a, Sawsan S. Hagagg a, Alaa E. Ali b, , Nessma M. Nasr c a Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt b Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt c Science Park for Pharmaceuticals, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt abstract A series of gallic acid and azo gallic acid complexes were prepared and characterized by elemental analysis,IR, electronic spectra and magnetic susceptibility. The complexes were of different geometries: Octahedral,Tetrahedral and Square Planar. ESR was studied for copper complexes. All of the prepared complexes were of isotropic nature. The thermal analyses of the complexes were studied by DTA and DSC techniques. The thermodynamic parameters and the thermal transitions, such as glass transitions, crystallization and melting temperatures for some ligands and their complexes were evaluated and discussed. The entropy change values, DS#, showed that the transition states are more ordered than the reacting complexes. The biological activities of some ligands and their complexes are tested against Gram positive and Gram negative bacteria. The results showed that some complexes have a well considerable activity against different organisms. Keywords: Gallic acid complexes Azo derivatives IR UV spectroscopy Biological activity Thermal analysis Published In: Elsevier B.V. References [1] D. Rajalakshmi, S. Narasimban, D.L. Madhavi, S.S. Deshpande, D.K. Salunkhe, Food Antioxidants: Sources and Methods of Evaluation, Food Antioxidants, Marcel Dekker, New York, 1996. pp. 65–157. [2] M.A. Bianco, H. Savolainen, J. Sci. Total. Environ. 203 (1997) 79–82. [3] J.M. Gil, M.C.R. Snchez, F.J.M. Gil, M.J. Yacamn, J. Chem. Educ. 83 (2006) 1476– 1478. [4] G.M. Elvira, S. Chandra, R. M.M. Vinicio, W. Wenyi, Food Chem. Toxicol. 44 (2006) 191–1203. [5] H.C. Lan, L.Y. Charn, Y.G. Chin, C.H. Yin, Food Chem. 103 (2007) 528–535. [6] J. Kinjo, T. Nagao, T. Tanaka, G. Nonaka, M. Okawa, T. Nohara, H. Okabe, J. Biol. Pharm. Bull. 25 (2002) 1238–1240. [7] K. Jittawan, Food Chem. 110 (2008) 881–890. [8] R.F. Hurrell, M. Reddy, J. Nutr. 81 (1999) 289–295. [9] J.D. Cook, M.B. Reddy, R.F. Hurrell Am, J. Clin. Nutr. 61 (1995) 800–804. [10] N. Okabe, H. Kyoyama, M. Suzuki, J. Acta Cryst. Sect. E57 (2001) o764–o766. [11] N. Fatima, Z.T. Maqsood, S.A. Kazmi, J. Chem. Soc. Pac. 24 (2002) 49–56; 20 (1998) 295–298. [12] A.S. Li, B. Bandy, S.S. Tsang, A.J. Davison, J. Free Rad. Res. 33 (2000) 551– 566. [13] R.B. Sorkaz, I. Mazol, J. Biosci. 49 (2000) 881–894. [14] M.D. Agarwal, C.S. Bhandari, M.K. Dixit, N.C. Sogani, J. Inst. Chem. 49 (1977) 124–126. [15] M.S. Masoud, A.F. El-Husseiny, M.M. Abd El-Ghany, H.H. Hammud Bull, Fac. Sci. Alex. Univ. 44 (2006) 41–54. [16] E. Kissinger, Anal. Chem. 29 (1957) 1702–1706. [17] M.S. Masoud, T.S. Kasem, M.A. Shaker, A.E. Ali, J. Therm. Anal. Calorimetr. 84 (2006) 549–555. [18] M.S. Masoud, S.A. Abou El-Enein, H.A. Motoweh, A.E. Ali, J. Therm. Anal. Calorimetr. 75 (2004) 51–61. [19] M.L. Dhar, O. Singh, J. Therm. Anal. 37 (1991) 259–266. [20] E. Koch, Thermochim. Acta 94 (1985) 43–46. [21] A.J. Ivana, V.S. Zoran, S.D. Enis, M.N. Jovan, J. Nano Scale Res. Lett. 5 (2010) 81– 88. [22] A. Kula, J. Therm. Anal. Calorimetr. 75 (2004) 79–86. [23] M.S. Masoud, E.A. Khalil, A.M. Hindawy, A.M. Ramadan, Can. J. Anal. Sci. Spectrosc. 50 (2005) 175–188. [24] A.T.T. Hsieh, R.M. Sheahan, B.O. West, Aust. J. Chem. 28 (1975) 885–891. [25] S.P.M. Glynn, J.K. Swith, J. Mol. Spectra 6 (1961) 164–172. [26] L.H. Jones, Spectrochim. Acta 15A (1959) 409–411. [27] M.B.H. Howlader, M.S. Islam, M.R. Karim, Indian J. Chem. 39A (2000) 407– 409. [28] A. Sreekanth, M. Joseph, H.K. Fun, M.R.P. Kurup, Polyhedron 25 (2006) 1408– 1411. [29] M.S. Masoud, E.A. Khalil, A.M. Ramadan, Y.M. Gohar, A. Sweyllam, Spectrochim. Acta 67A (2007) 669–677. [30] M.S. Masoud, H.A. Motaweh, A.E. Ali, Indian J. Chem. 40A (2001) 733–737. [31] P.G. Prakash, J.L. Rao, J. Mater. Sci. 39 (2004) 193–200. [32] U. El- Ayaan, M.M. Youssef, S. Al-Shihry, J. Mol. Struct. 936 (2009) 213–219. [33] F. Billes, I.M. Ziegler, P. Bombicz, J. Vib. Spectrosc. 43 (2007) 193–202. [34] I.M. Ziegler, F. Billes, J. Mol. Struct. 618 (2002) 259–265. [35] D. Slawins Ka, K. Polewski, P. Role Wski, J. Slawin Ski, J. Int. Agrophys. 21 (2007) 199–208. [36] M.S.E. Ali, E.M. Fawzy, Spectrochim Acta. 60A (2004) 2807–2817. [37] M.S. Masoud, A.E. Ali, R.H. Mohamed, A.A. Mostafa, Spectrochim. Acta 62A (2005) 114–2119. [38] M.M. Aly, N.I. Al-Shatti, Trans. Met. Chem 23 (1998) 361–369. [39] H.A. Dessouki, H.M. Killa, A. Zaghloul, Spectrochim. Acta 42A (1986) 631– 635. [40] M.S. Masoud, G.B. Mohamed, Y.H. Abdul Razek, A.E. Ali, F.N. Khiry, Spectrochim. Lett. 35 (2002) 377–413. [41] M.S. Masoud, G.B. Mohamed, Y.H. Abdul-Razek, A.E. Ali, F.N. Khairy, J. Kor. Chem. Soc. 46 (2002) 99–116. [42] M.S. Masoud, Chemistry 40 (2010) 1–4. [43] M.S. Masoud, A.A. Soayed, A.E. Ali, Spectrochim. Acta 60A (2004) 1907– 1915. [44] R. Iordanova, E. Lefterova, I. Uzunov, Y. Dimitriev, D. Klissurski, J. Therm. Anal. Calorimetr. 70 (2002) 393–404. [45] M.S. Celej, S.A. Dassie, M. Gonzalez, M.L. Bianconi, G.D. Fidelio, J. Anal. Biochem. 350 (2006) 277–284. [46] H. Mcphillips, D.Q. Craig, P.G. Royall, V.L. Hille, Int. J. Pharm. 180 (1999) 83–90. [47] B.G.S. Bodeis, R.D. Walker, D.G. White, S. Zhao, P.F. Mcdermott, J. Meng, J. Antimicrob. Chemother. 50 (2002) 487–494. [48] E. Canpolat, M. Kaya, S. Gur, Tur. J. Chem. 28 (2004) 235–242. [49] B.G. Tweedy, Phytopathology 55 (1964) 910–914. Solvatochromaticity and pH dependence of the electronic absorption spectra of some purines and pyrimidines and their metal complexes Mamdouh S. Masouda, Medhat A. Shakerb, Alaa E. Ali b, , Gehan S. Elasal b a Chemistry Department, Faculty of Science, Alexandria University, Egypt b Chemistry Department, Faculty of Science, Damanhour University, Egypt abstract The solvatochromic responses of uric acid (Ua), 6-amino-2-thiouracil (ATU) and a series of their complexes dissolved in ten solvents of different polarity have been measured. The solvent-dependent UV/Vis spectroscopic absorption maxima, _max, are assigned to the corresponding electronic transitions and analyzed using SPSS program, regression analysis and Kamlet and Taft methods. The observed solvatochromism is discussed using various solute–solvent interaction mechanisms. The electronic absorption spectra of ATU were investigated in aqueous buffer solutions of varying pH and utilized for the determination of dissociation constants. The ranges of pH, where individual ionic species are predominant have been determined. Keywords: Uric 6-Amino-2-thiouracil Complexes Solvatochromic Dissociation constants pH-effect References: [1] F. Hueso, N.A. Illan, M.N. Moreno, J.M.Martinez, M.J. Ramirez, J. Inorg. Biochem. 94 (2003) 326–334. [2] M.S. Masoud, M.K. Awad, M.A. Shaker, M.M.T. El-Tahawy, Corros. Sci. 52 (2010) 2387–2396. [3] M.S. Masoud, M.F. Amira, A.M. Ramadan, G.M. El-Ashry, Spectrochim. Acta 69A (2008) 230–238. [4] M.S. Masoud, E.A. Khalil, A.M. Ramadan, Y.M. Gohar, A. Sweyllam, Spectrochim. Acta 67A (2007) 669–677. [5] M.S. Masoud, E.A. Khalil, A.M. Hindawy, A.E. Ali, E.F. Mohamed, Spectrochim. Acta 60A (2004) 2807–2817. [6] M.S. Masoud, S.A. Abou El-Enein, O.F. Hafez, J. Therm. Anal. 38 (1992) 1365–1376. [7] M.S. Masoud, S.S. Haggag, Z.M. Zaki, M. El-Shabasy, Spectrosc. Lett. 27 (1994) 775–786. [8] M.S. Masoud, A.A. Hasanein, A.K. Ghonaim, E.A. Khalil, A.A. Mahmoud, Z. Phys. Chem. 209 (1999) 223–228. [9] M.S. Masoud, S.A. Abou El-Enein, N.A. Obeid, Z. Phys. Chem. 215 (2001) 867–872. [10] M.S. Masoud, S.A. Abou El-Enein, H.M. Kamel, Indian J. Chem. 41A (2002) 297–301. [11] M.S. Masoud, A.Kh. Ghonaim, R.H. Ahmed, S.A. Abou El-Enein, A.A. Mahmoud, J. Coord. Chem. 55 (2002) 79–105. [12] M.S. Masoud, S.A. Abou El-Enein, M.E. Ayad, A.S. Goher, Spectrochim. Acta 60A (2004) 70–87. [13] M.S. Masoud, E.A. Khalil, A.M. Hafez, A.F. El-Husseiny, Spectrochim. Acta 61A (2004) 989–993. [14] R.M. Izatt, J.H. Christensen, J.H. Rytting, Chem. Rev. 72 (1971) 439–481. [15] D. Voet, J.G. Voet, Biochemistry, 3rd ed., Wiley, New York, 2004. [16] C. Ronco, P. Inguaggiato, V. Bordoni, M. De Cal, M. Bonello, E. Andrikos, Y. Assuman, R. Rattanarat, R. Bellomo, Contrib. Nephrol. 147 (2005) 115–123. [17] B.D. Cheson, B.S. Dutcher, J. Support Oncol. 3 (2005) 127–128. [18] A.M. Tsimberidou, M.J. Keating, Contrib. Nephrol. 147 (2005) 47–60. [19] M.J. Kamlet, R.W. Taft, J. Am. Chem. Soc. 98 (1976) 377–383. [20] M.J. Kamlet, J.L. Abboud, R.W. Taft, J. Am. Chem. Soc. 99 (1977) 6027–6038. [21] M.J. Kamlet, J.L. Abboud, R.W. Taft, in: R.W. Taft (Ed.), Progress in Physical Organic Chemistry, vol. 13, Interscience, New York, 1981, p. 445. [22] I. Marques, G. Fonrodona, S. Butˇıı, J. Barbosa, Trends Anal. Chem. 18 (1999) 72–76. [23] M.S. Masoud, A.E. Ali, M.A. Shaker, M. Abdul Ghani, Spectrochim. Acta 61A (2005) 3102–3107. [24] M.S. Masoud, A.E. Ali, M.A. Shaker, M. Abdul Ghani, Spectrochim. Acta 60A (2004) 3155–3159. [25] M.A. Khalifa, M.A. Shaker, Alex. J. Pharm. Sci. 9 (1995) 159–161. [26] I. Marques, G. Fonrodona, A. Baro, J. Guiteras, J.L. Beltran, Anal. Chim. Acta 471 (2002) 145–158. [27] J.G. Kirkwood, J. Chem. Phys. 2 (1934) 351–361. [28] G. David, H.E. Hallam, Spectrochim. Acta 23A (1967) 593–603. [29] E.G. McRae, J. Phys. Chem. 61 (1957) 562–572. [30] L.J. Hilliard, D.S. Foulk, H.S. Gold, Anal. Chim. Acta 133 (1981) 319–327. [31] H.H. Hammud, A.M. Ghannoum, F.A. Fares, L.K. Abramian, K.H. Bouhadir, J. Mol. Struct. 881 (2008) 11–20. [32] N. Triˇsovi´ c, N. Banjac, N. Valenti´ c, J. Sol. Chem. 38 (2009) 199–208. [33] M.J. Kamlet, J.L. Abbould, R.W. Taft, Phys. Org. Chem. 13 (1981) 485–630. [34] M. Eto, O. Tajiri, H. Nakagawa, K. Harano, Tetrahedron 54 (1998) 8009–8014. [35] V. Stamatovska, V. Dimova, K. Cˇolancˇeska-Rag˙ enovik, Bull. Chem. Technol. Maced. 25 (2006) 9–20. [36] O.V. Kovalchukova, R.K. Gridasova, B.E. Zaitsev, Z. Neorg. Khim. 26 (1981) 985–989. [37] K. Jфrgensen, Absorption Spectra and Chemical Bonding in Complexes, Pergamon Press, 1962. [38] A.B.P. Lever, Inorganic Electronic Spectroscopy, 2nd ed., Elsevier, Amsterdam, 1984. [39] T.S. Basu Baul, T.K. Chattopadhyay, B. Majee, Polyhedron 2 (1983) 635–640. [40] M.J. Kamlet, J.L.M. Abboud, M.H. Abraham, R.W. Taft, J. Org. Chem. 48 (1983) 2877–2887. [41] G.S. Uscmlic, J.B. Nikolic, V.V. Krstic, J. Serb. Chem. Soc. 67 (2002) 353– 359. [42] E. Rusu, D.O. Dorohoi, A. Airinei, J. Mol. Struct. 887 (2008) 216–219. [43] M. El-Sayed, H. Muller, G. Rheinwald, S. Spange, Chem. Mater. 15 (2003) 746–751. [44] M.D. Cohen, E. Fisher, J. Chem. Soc. (1962) 3044–3052. [45] A. Albert, G.B. Barlin, J. Chem. Soc. (1959) 2384–2396. [46] E.S. Raper, R.E. Oughtred, I.W. Nowell, Acta Crystallogr. C 41 (1985) 758– 760. [47] M.S. Masoud, H.H. Hammud, H. Beidas, Thermochim. Acta 381 (2002) 119– 131. [48] R.M. Issa, J. Chem. UAR 14 (1971) 113–124. [49] A.A. Muk, M.B. Pravica, Anal. Chim. Acta 45 (1969) 534–538. [50] J.C. Colleter, Ann. Chim. 5 (1960) 415–419. [51] M.M. Taquikham, C.R. Krishnamorthy, J. Inorg. Nucl. Chem. 36 (1974) 711– 716. [52] A.A. Shoukry, M.M. Shoukry, Spectrochim. Acta 70A (2008) 686–691. Synthesis, computational, spectroscopic, thermal and antimicrobial activity studies on some metal–urate complexes Mamdouh S. Masoud a, Medhat A. Shaker b, Alaa E. Ali b, , Gehan S. Elasal b a b Chemistry Department, Faculty of Science, Alexandria University, Egypt Chemistry Department, Faculty of Science, Damanhour University, Egypt abstract New sixteen uric acid metal complexes of different stoichiometry, stereo-chemistries and modes of interactions were synthesized using different metals Cr, Mn, Fe, Co, Ni, Cu, Cd, UO2, Na and K. The synthesized complexes were characterized by elemental analysis, spectral (IR, UV–Vis and ESR) methods, thermal analysis (TG, DTA and DSC) and magnetic susceptibility studies. Molecular modeling calculations were used to characterize the ligation sites of the free ligand. Furthermore, quantum chemical parameters of uric acid such as the energies of highest occupied molecular orbital (EHOMO), energies of lowest unoccupied molecular orbital (ELUMO), the separation energy (_E = ELUMO − EHOMO), the absolute electronegativity, _, the chemical potential, Pi, the absolute hardness, _ and the softness (_) were obtained for uric acid. Eight different microbial categories were used to study the antimicrobial activity of the free ligand and ten of its complexes. The results indicate that the ligand and its metal complexes possess antimicrobial properties. The stoichiometry of iron–uric acid complex was studied by using different spectrophotometric methods. Keywords: Uric Complexes Synthesis Spectroscopy Thermal analysis Computational References [1] M. Soriani, D. Pietraforte, M. Minetti, Antioxidant potential of anaerobic human plasma: role of serum albumin and thiols as scavengers of carbon radicals, Arch. Biochem. Biophys. 312 (1994) 180–188. [2] M.G. Simic, S.V. Jonanovic, Antioxidation mechanisms of uric acid, J. Am. Chem. Soc. 111 (1989) 5778–5782. [3] G. Wessman, G.A. Rita, Molecular basis of gouty inflammation: interaction of monosodium urate crystals with lysosomes and liposomes, Nature New Biol. 240 (1972) 167–172. [4] M.S. Masoud, A. El-Dissouky, E.E. Ghatwary, Synthesis and stereochemistry of new cobalt azo-nitroso complexes, Inorg. Chim. Acta 141 (1988) 119–123. [5] M.S. Masoud, S.A.A. Ali, G.Y. Ali, I.M. Abed, Thermodynamic parameters of ionization of 5-(2-substituted phenylazo) barbituric acids, Thermochim. Acta 122 (1987) 209–220. [6] M.S. Masoud, A.K. Ghonaim, R.H. Ahmed, S.A. Abou El-Enein, A.A. Mahmoud, Ligating properties of 5-nitrobarbituric acid, J. Coord. Chem. 55 (2002) 79–105. [7] M.S. Masoud, A.A. Soayed, A.E. Ali, O.K. Sharsherh, Synthesis and characterization of new azopyrimidine complexes, J. Coord. Chem. 56 (2003) 725–742. [8] M.S. Masoud, A.E. Ali, M.A. Shaker, M. Abdul Ghani, Solvatochromic behavior of the electronic absorption spectra of some azo derivatives of amino pyridines, Spectrochim. Acta 60A (2004) 3155–3159. [9] M.S. Masoud, S.A. Abou El-Enein, M.E. Ayad, A.S. Goher, Spectral and magnetic properties of phenylazo-6-aminouracil complexes, Spectrochim. Acta 60A (2004) 77–87. [10] M.S. Masoud, E.A. Khalil, A.M. Hindawey, A.E. Ali, E.F. Mohamed, Spectroscopic studies on some azo compounds and their cobalt, copper and nickel complexes, Spectrochim. Acta 60A (2004) 2807–2817. [11] M.S. Masoud, E.A. Khalil, A.M. Ramadan, Thermal properties of some CoII, NiII and CuII complexes of new substituted pyrimidine compounds, J. Anal. Appl. Pyrolysis 78 (2007) 14–23. [12] M.S. Masoud, A.A. Ibrahim, E.A. Khalil, A. El-Marghany, Spectral properties of some metal complexes derived from uracil-thiouracil and citrazinic acid compounds, Spectrochim. Acta 67A (2007) 662–668. [13] M.S. Masoud, E.A. Khalil, A.M. Ramadan, Y.M. Gohar, A. Sweyllam, Spectral, electrical conductivity and biological activity properties of some new azopyrimidine derivatives and their complexes, Spectrochim. Acta 67A (2007) 669–677. [14] M.S Masoud, M.F. Amira, A.M. Ramadan, G.M. El-Ashry, Synthesis and characterization of some pyrimidine, purine, amino acid and mixed ligand complexes, Spectrochim. Acta 69A (2008) 230–238. [15] H.H. Hammud, K.T. Holman, M.S. Masoud, A. El-Faham, H. Beidas, 1Hydroxybenzotriazole (HOBt) acidity, formation constant with different metals and thermodynamic parameters: synthesis and characterization of some HOBt metal complexes – crystal structures of two polymers: [Cu2(H2O)5(OBt)2(_OBt)2]·2H2O·EtOH (1A) and [Cu(_-OBt)(HOBt)(OBt) (EtOH)] (1B), Inorg. Chim. Acta 362 (2009) 3526–3540. [16] G. Schwarzenbach, Complexometric Titration, Methuen Co, London, 1957, Translated by H. Irving. [17] A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, Longman, London, 1978. [18] R.H. Lee, E. Griswold, J. Kleinberg, Studies on the stepwise controlled decomposition of 2,2-bipyridine complexes of cobalt(II) and nickel(II) chlorides, Inorg. Chem. 3 (1964) 1278–1283. [19] B.N. Figgis, J. Lewis, Modern Coordination Chemistry, Interscience, New York, 1967, p. 403. [20] J.M. Hernando, O. Montero, C. Blanco, The correlation of the stability constants of 1,3-dicarbonylic monochelates of Iron (III) with the acid dissociation constants of the ligand, J. Solid Chem. 19 (1990) 1191–1197. [21] A. Holme, F.J. Langmyhr, A modified and a new straight-line method for determining the composition of weak complexes of the form AmBn, Anal. Chim. Acta 36 (1966) 383–391. [22] N. Mahadevan, R.M. Sathe, Ch. Venkateswarlu, Spectrophotometric study of complexes of titanium with sulphosalicylic acid and EDTA using auxiliary complexing agents in the job’s method, J. Inorg. Nucl. Chem. 25 (1963) 1005–1010. [23] K.C. Ingham, On the application of Job’s method of continuous variation to the stoichiometry of protein–ligand complexes, Anal. Biochem. 68 (1975) 660–663. [24] A.K. Majumdar, C.P. Savariar, Spectrophotometric determination of iron with 2-hydroxy-3-napthoic acid, Anal. Chim. Acta 21 (1959) 47–52. [25] M. Atanasov, K. Petrov, E. Mirtcheva, C. Friebel, D. Reinen, Cation distribution and coordination chemistry of Cu(II) in Zn(II) hydroxide nitrate solid solutions: a structural and spectroscopic study, J. Solid State Chem. 118 (1995) 303–312. [26] T. Kennedy, R.S. Sinclair, T.J. Sinclair, The U.V. spectrum and photolysis of phosphorus halides in hydrocarbon solvents – II phosphorus tribromide and phosphorus pentabromide in cyclohexane, J. Inorg. Nucl. Chem. 33 (1971) 2369–2376. [27] Y. Dong, H. Fujii, M.P. Hendrish, R.A. Leising, G. Pan, C.R. Randall, E.C. Wilkinson, Y. Zang, L. Que, B.G. Fox, K. Kauffmann, E. Munck, A High-valent nonheme iron intermediate. Structure and properties of [Fe2(.mu.-O)2(5-Me-TPA)2](ClO4)3, J. Am. Chem. Soc. 117 (1995) 2778–2792. [28] D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, San Diego, 1996, ISBN 0-12-267370-0. [29] A.R. Leach, Molecular Modelling: Principles and Applications, Prentice Hall, Englewood Cliffs, N.J., 2001, ISBN 0-582-38210-6. [30] T.V. Timofeeva, V.N. Nesterov, M.Y. Antipin, R.D. Clark, M. Sanghodasa, B.H. Cardelino, C.E. Moore, D.O. Frazier, Molecular modeling and experimental study of non-linear optical compounds: monosubstituted derivatives of dicyanovinylbenzene, J. Mol. Struct. 519 (2000) 225–241. [31] M.S. Masoud, A. El-Merghany, M.Y. Abd El-Kaway, Synthesis and physicochemical properties of biologically active purine complexes, Synth. React. Inorg. Met. Org. Nano-Met. Chem. 39 (2009) 537–553. [32] R.M. Issa, M.K. Awad, F.M. Atlam, Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils, Appl. Surf. Sci. 255 (2008) 2433–2441. [33] S. Sagdinc, B. Koksoy, F. Kandemirli, S.H. Bayari, Theoretical and spectroscopic studies of 5-fluoro-isatin-3-(N-benzylthiosemicarbazone) and its zinc(II) complex, J. Mol. Struct. 917 (2009) 63. [34] K. Fukui, Theory of Orientation and Stereoselection, Springer-Verlag, New York, 1975. [35] Y. Gong, J. Liu, W. Tang, C. Hu, The intra-annular acylamide chelatecoordinated compound: the keto-tautomer of metal (II)–milrinone complex, J. Mol. Struct. 875 (2008) 113–120. [36] A.K. Chandra, T.Z. Huyskens, Theoretical study of the acidity and basicity of uric acid and its interaction with water, J. Mol. Struct. Theochem. 811 (2007) 215–221. [37] M.S. Masoud, O.H. Abd El-Hamid, Z.M. Zaki, 2-Thiouracil-based cobalt(II), nickel(II) and copper(II) complexes, Trans. Met. Chem. 19 (1994) 21–24. [38] M.M. Moawad, Complexation and thermal studies of uric acid with some divalent and trivalent metal ions of biological interest in the solid state, J. Coord. Chem. 55 (2002) 61–78. [39] V.V. Ramana, V.J. Thyagaraju, K.S. Sastry, Chromium complexes of uric acid – synthesis, structure, and properties, Inorg. Biochem. 48 (1992) 85–93. [40] M.S. Masoud, A.M. Hindawy, A.A. Soayed, Structural chemistry of azo complexes, Trans. Met. Chem. 16 (1991) 372–376. [41] R.N. Allen, P. Lipkowski, M.K. Shukla, J. Eszczynski, Vibrational analysis of complexes of urate with IA group metal cations (Li+, Na+ and K+), Spectrochim. Acta 68A (2007) 639–645. [42] R.G. Pearson, Chemical hardness and bond dissociation energies, J. Am. Chem. Soc. 110 (1988) 7684–7690. [43] S.P. McGlynn, J.K. Smith, The electronic structure, spectra, and magnetic properties of actinyl ions: Part I. The uranyl ion, J. Mol. Spectrosc. 6 (1961) 164–187. [44] L.H. Jones, Determination of U–O bond distance in uranyl complexes from their infrared spectra, Spectrochim. Acta 15A (1959) 409–411. [45] G. Karagonins, O. Peter, Z. Electrochem. Ber. Bunsenges. Phys. Chem. 63 (1959) 1170. [46] C.H. Macgillavry, G.D. Rieckin, International tables for X- ray crystallography, In: K. Lonsdale (Ed.), Physical and Chemical Tables, vol. 3, Acta Cryst., 16 (1963) 234–235. [47] R.K. Parasher, R.C. Sharma, A. Kumar, G. Mohan, Stability studies in relation to IR data of some Schiff base complexes of transition metals and their biological and pharmacological studies, Inorg. Chim. Acta 151 (1988) 201–208. [48] A. El-Dissouky, M.M. Abou-Sekkina, M. El-Kersh, A.Z. El-Sonbati, Metal chelates of heterocyclic Nitrogen containing ketones. XV. Five-coordinate nickel(II) and copper(II) complexes with a sulphur–nitrogen tridentate Schiff base, Trans. Met. Chem. 9 (1984) 372–375. [49] R.G. Bhattacharyya, S.P. Mukhopadhyay, D.C. Bera, Inorg. Nucl. Chem. Lett. 16 (1980) 571–574. [50] A.K. El-Sawaf, D.X. West, R.M. El-Bahnasawy, F.A. El-Saied, Synthesis, magnetic and spectral studies of iron(III) and cobalt(II,III) complexes of 4formylantipyrine N(4)-substituted thiosemicarbazones, Trans. Met. Chem. 23 (1998) 227–232. [51] E.R. Price, J.R. Wasson, Complexes with sulfur and selenium donors-X chromium(III) piperidyldithiocarbamates, J. Inorg. Nucl. Chem. 36 (1974) 67–71. [52] A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier Publishing Company, Amsterdam, 1968. [53] K. Jфrgensen, Absorption Spectra and Chemical Bonding in Complexes, Pergamon Press, 1962. [54] B.T. Thaker, P.K. Bhattacharya, Studies in some new mixed Schiff base complexes-I, J. Inorg. Nucl. Chem. 37 (1975) 615–618. [55] U. El-Ayaan, M.M. Youssef, S. Al-Shihry, Mn(II), Co(II), Zn(II), Fe(III) and U (VI) complexes of 2-acetylpyridine 4N-(2-pyridyl) thiosemicarbazone (HAPT); structural, spectroscopic and biological, J. Mol. Struct. 936 (2009) 213–219. [56] S.K. Srivastava, K.B. Pandeya, H.L. Nigam, On a trinuclear copper(II)–_mercaptopropionic acid complex, Inorg. Nucl. Chem. Lett. 11 (1975) 195–199. [57] M.S. Masoud, M.M. El-Essawi, Electron spin resonance and mass spectra of substituted azo cresol complexes, J. Chem. Eng. Data 29 (1984) 363–367. [58] M.S. Masoud, E.A. Khalil, A.M. Hafez, A.F. El-Husseiny, Electron spin resonance and magnetic studies on some copper(II) azobarbituric and azothiobarbituric acid complexes, Spectrochim. Acta 61A (2005) 989–993. [59] A. Veeraray, P. Sami, N. Raman, Copper(II) complex of 3cinnamalideneacetylacetone: synthesis and characterization, Proc. Indian Acad. Sci. (Chem. Sci.) 112 (2000) 515–521. [60] P. Manikandan, R. Muthukumaran, K.R.J. Thomas, B. Varghese, G.V.R. Chandramouli, P.T. Manoharan, Inorg. Chem. 40 (2001) 2378–2423. [61] Mathieu Soibinet, Isabelle Dechamps-Olivier, Aminou, X-ray crystal structure, ESR and potentiometric studies of copper(II) complexes with (2pyridylmethyl, 3-pyridylmethyl) amine ligand, Inorg. Chem. Commun. 7 (2004) 405–409. [62] H.A. Kuska, M.T. Rogers, R.E. Drullinger, Effect of substituents on the anisotropic electron spin resonance parameters in copper acetylacetones, J. Phys. Chem. 71 (1967) 109–114. [63] D.R. Lorenz, J.R. Wasson, D.K. Johnson, D.A. Thorpe, J. Inorg. Nucl. Chem. 37 (1975) 2297. [64] J. Lubczak, I. Cisek-Cicirko, B. My´sliwiec, React. Funct. Polym. 53 (2002) 113. [65] M.S. Masoud, E.A. Khalil, E.E. El-Shereafy, S.A. Abou El-Enein, Thermal and electrical behaviour of nickel(II) and copper(II) complexes of 4acetylamino-2-hydroxy-5-methylazobenzene, J. Thermal. Anal. 36 (1990) 1033–1338. [66] E.S. Raper, A.M. Britton, W. Clegg, Synthesis, spectroscopy, and electrochemistry of heterocyclic thionato complexes of divalent nickel: crystal structure of tetraethylammonium fac-[tris (benzothiazoline-2-thionato) nickelate (II)], J. Chem. Soc. Dalton Trans. (1990) 3341–3345. [67] B. Taqui Khan, K. Annapoorna, Mixed ligand complexes of ruthenium (III) EDTA with pyrimidines, Inorg. Chim. Acta 171 (1990) 157–163. [68] N. Raman, A. Kulandaisamy, C. Thangaraja, P. Manisankar, S. Viswanathan, C. Vedhi, Synthesis, structural characterisation and electrochemical and antibacterial studies of Schiff base copper complexes, Trans. Met. Chem. 29 (2004) 129–135. [69] E. Canpolat, M. Kaya, S. Gur, Synthesis, characterization of some Co(III) complexes with vic-dioxime ligands and their antimicrobial properties, Turk. J. Chem. 28 (2004) 235–242. [70] N. Nishat, Rahis-ud-din, M.M. Haq, Synthesis, characterization, spectroscopic and antimicrobial activity studies of pyrimidine dithiocarbamate macrocyclic complexes, Polish J. Chem. 78 (2004) 645–652. [71] M.N. Patel, P.A. Parmar, D.S. Gandhi, V.R. Thakkar, Antimicrobial and nuclease activity of mixed polypyridyl ruthenium(II) complexes, Inorg. Chem. Commun. 13 (2010) 1480–1484. [72] M. Ruiz, L. Perello, R. Ortiz, A. Castineiras, C. Maichlemossmer, E. Canton, Synthesis, characterization, and crystal structure of [Cu(cinoxacinate)2] 2H2O complex: a square-planar CuO4 chromophore antibacterial studies, J. Inorg. Biochem 59 (1995) 801–810. [73] G. Wu, G. Wang, X. Fu, L. Zhu, Synthesis, crystal structure, stacking effect and antibacterial studies of a novel quaternary copper (II) complex with quinolone, Molecules 8 (2003) 287–296. Solvatochromic behavior of the electronic absorption spectra of gallic acid and some of its azo derivatives a, Mamdouh S. Masoud , Sawsan S. Hagagg a, Alaa E. Ali b, Nessma M. Nasr c a Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt b Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt c Faculty of Pharmacy, Alexandria University, Alexandria, Egypt abstract The electronic absorption spectra of gallic acid and its azo derivatives have been studied in various solvents of different polarities. Multiple regression techniques were applied to calculate the regression and correlation coefficients based on an equation that relates the wavenumbers of the absorption band maxima (_max −) to the solvent parameters; refractive index (n), dielectric constant (D), empirical Kamlet–Taft solvent parameters, _*(dipolarity/polarizability), ˛ (solvent hydrogenbond donor acidity) and ˇ (solvent hydrogen-bond acceptor basicity). The fitting coefficient obtained from this analysis allows estimating the contribution of each type of interactions relative to total spectral shifts in solution. The dependence of _max − on the solvent parameters indicates that the obtained bands are affected by specific and non-specific solute-solvent interactions. Keywords: Gallic acid Solvent effect Kamlet–Taft equation Azo complexes Refractive index Dielectric constant References [1] V. Srivastava, H.O. Saxena, K. Shanker, J.K. Kumar, S. Luqman, M.M. Gupta, S.P.S. Khanuja, S.N. Arvind, J. Bioorg. Med. Chem. Lett. 16 (2006) 4603. [2] S. Siranoush, A. Kazumasa, W. Antje, K. Akio, B. Irmgard, J. Nutr. 131 (2001) 1207. [3] M.A. Biancoa, H. Savolainenb, J. Sci. Total Environ. 203 (1997) 79. [4] J. Singh, G.K. Rai, A.K. Upadhyay, R. Kumar, K.P. Singh, J. Agric. Sci. 74 (2004) 3. [5] R.W. Owen, R. Haubner, W.E. Hull, G. Erben, B. Spiegelhalder, H. Bartsch, B. Haber, J. Food Chem. Toxicol. 41 (2003) 1727. [6] O. Doka, D. Bicanic, Anal. Chem. 74 (2002) 2157. [7] Ng. Lay-Keow, P. Lafontaine, J. Harnois, J. Chromatogr. 873A (2000) 29. [8] R. Gimenez, M. Villalon, H. Lopez, M. Navarro, C. Cabrera, M. Olalla, J.J. Quesada, M.C. Lopez, Cienc. Technol. Ailment 3 (2000) 13. [9] M. LLpez-Velez, F. Martinez, C. Del Valle-Ribes, Crit. Rev. Food Sci. Nutr. 43 (2003) 233. [10] S. Grant Newey, W. Betty, S. Faye, J. Agric. Food Chem. 15 (1967) 132. [11] S. Shahrzad, K. Aoyagi, A. Winter, A. Koyama, I. Bitsch, J. Nutr. 131 (2001) 1207. [12] S. Govindarajan, Y. Kannappan, M.D. Naresh, K. Enkataboopathy, B. Lokanadum, J. Mol. Liq. 107 (2003) 289. [13] D.J. Yang, L.S. Hwang, J.T. Lin, Chromatography 1156A (2007) 312. [14] X. Fazhi, L. Xucong, W. Xiaoping, X. Zenghong, Talanta 74 (2008) 836. [15] A. Abdelwahed, I. Bouhlel, I. Skandrani, K. Valent, M. Kadri, P. Guiraud, R. Steiman, A.M. Mariotte, K. Ghedira, F. Laporte, M.G.D. Franca, L.C. Ghedria, J. Chem. Biol. Interact. 165 (2007) 155. [16] J. Gonzalez, J.M. Cruz, H. Domıˇınguez, J.C. Gonzalez, J.M. Cruz, H. Dominguez, J.C. Parajo, J. Food Chem. 84 (2004) 243. [17] H.M. Chen, Y.C. Wu, Y.C. Chi, Y.C. Hsieh, C.C. Chen, Cancer Lett. 286 (2009) 161. [18] C. Locatelli, R. Rosso, M.S. Silva, C.A. Souza, M.A. Licinio, P. Leaf, M.L. Bazzo, R.A. Yunes, T.B.C. Pasa, J. Bioorg. Med. Chem. 16 (2008) 3791. [19] M. Favrea, D. Landolta, K. Hoffmanb, M. Stratmann, Corros. Sci. 40 (1998) 793. [20] M. Budnar, M. Ursic, J. Simcic, P. Pelicon, J. Kolar, V.S. Selih, M. Strlic, Nucl. Instrum. Methods 243B (2006) 407. [21] M.R. Yazdanbakhsh, A. Mohammadi, J. Mol. Liq. 148 (2009) 35. [22] M.S. Masoud, A.E. Ali, R.H. Mohamed, M.A.E. Mostafa, Spectrochim. Acta 62A (2005) 1114. [23] V. Jancovicova, M. Ceppan, B. Havlinova, M. Rehakova, Z. Jakubikova, J. Chem. Pap. 61 (2007) 391. [24] M.S. Masoud, E.A. Khalil, A.R. Youssef, Synth. React. Inorg. Met.-Org. Chem. 20 (1990) 793. [25] A.A. Hasanein, M.S. Masoud, M. Heiba, J. Chem. Soc. Pak. 9 (1987) 199. [26] M.S. Masoud, A.E. Ali, M.A. Shaker, M. Abdul Ghani, Spectrochim. Acta 61A (2005) 3102. [27] H.H. Hammud, A. Ghannoum, M.S. Masoud, Spectrochim. Acta 63A (2006) 255. [28] H.H. Hammud, K.H. Bouhadir, M.S. Masoud, S.A. Assi, J. Solution Chem. 37 (2008) 895. [29] E.G. McRae, J. Phys. Chem. 61 (1957) 562. [30] G. Costinela-Laura, P.B. Ioan, B. Ioan, Dyes Pigm. 76 (2008) 455. [31] M.S. Masoud, S.S. Haggag, H.M. El-Nahas, N. Abdelhi, Acta Chim. Hung. 130 (1993) 783. [32] M.S. Masoud, H.H. Hammud, Spectrochim. Acta 57A (2001) 977. [33] R.H. Abu-Eittah, M.K. Khedr, Spectrochim. Acta 71A (2009) 1688. [34] K. Dwiecki, P. Gornas, M.N. Kalucka, K. Polewski, J. Acta Agrophys. 7 (2006) 48. [35] Y.H. Ebead, M.A. Selim, S.A. Ibrahim, Spectrochim. Acta 75A (2010) 760. [36] R.J. Sindreu, M.L. Moya, J. Solution Chem. 25 (1996) 289. [37] M.J. Kamlet, J.L.M. Abboud, T.H. Hall, J. Bodkin, M.H. Abraham, R.W. Taft, J. Org. Chem. 48 (1993) 2877. [38] Y. Marcus, J. Chem. Soc. Rev. 22 (1993) 409. [39] M.M.M. Raposo, A.M.F.P. Ferreira, M. Belsley, J.C.V.P. Moura, Tetrahedron 64 (2008) 5878. [40] C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd ed., WileyVCH, Weinheim, 2003, p. 421. [41] N.D. Divjak, N.R. Banjac, N.V. Valentic, G.S. Uscumlic, J. Serb. Chem. Soc. 74 (2009) 1195. [42] N. Trisovic, N. Banjac, N. Valentic, G.S. Uscumlic, J. Solution Chem. 38 (2009) 199. Spectral, Coordination and Thermal Properties of 5-Arylidene Thiobarbituric Acids Mamdouh S. Masoud a, Adel El-Marghany b, Adel Orabi c , Alaa E. Ali d , Reham Sayed b. a Chemistry Department, Faculty of Science, Alexandria University, Egypt. b Chemistry Department, Faculty of Education, Suez Canal University, Egypt. c Chemistry Department, Faculty of Science, Suez Canal University, Egypt. d Chemistry Department, Faculty of Science, Damanhour University, Egypt. Abstract Synthesis of 5-arylidine thiobarbituric acids containing different functional groups with variable electronic characters were described and their Co+2, Ni+2 and Cu+2 complexes. The stereochemistry and mode of bonding of 5-(substituted benzylidine)2- TBA complexes were achieved based on elemental analysis, spectral (UV-VIS, IR, 1HNMR, MS), magnetic susceptibility and conductivity measurements. The ligands were of bidentate and tridentate bonding through S, N and O of pyrimidine nucleolus. All complexes were of octahedral configuration. The thermal data of the complexes pointed to their stability. The mechanism of the thermal decomposition is discussed. The thermodynamic parameters of the dissociation steps were evaluated and discussed. Keywords: 5-arylidine thiobarbituric acids, complexes, NMR, Thermal analysis REFERENCE: [1] R.G. Sans, M.G. Chozas, Pharmazie, 43(12)(1988) 827; C.A. 110. 146971d (1989) [2] W.C. Cutting, Book of Pharmacol., 3rd Ed. Meredith Publishing Company, New York (1967). [3] T. Wasankari, V. Kjala, O. Heinonen, J. Kapanen, Clin. Chim. Acta 234 (12) (1995). [4] M.S. Masoud, S.A. Abou El-Enein, H.A. Motoweh, A.E. Ali, J. Therm. Anal. Cal.,75, 51 (2004). [5] M.S. Masoud, E.A. Khalil, A.M. Hindawey, A.E. Ali, E.M. Fawzy, Spectrochim. Acta, 60A, 2807(2004). [6] M.S. Masoud, S.A. Abou El-Enein, M. Ayad, A.S. Goher, Spectrochim. Acta A, 60, 1, 77 (2004). [7] M.E. Mahmoud, M.S. Masoud, N.N. Maximous, Mikrochim. Acta 147(1-2)111(2004). [8] M.S. Masoud, A.A. Soayed, A.E. Ali, Spectrochim. Acta, 60A, 1907 (2004). [9] M.S. Masoud, E.A. Khalil, A.M. Hafez, A.F. El-Husseiny, Spectrochim. Acta, A, 61, 989 (2005). [10] M.S. Masoud, A.E. Ali, R.H. Mohamed, M.A. Mostafa, Spectrochim. Acta, 62A, 1114 (2005). [11] M.S. Masoud, E.A. Khalil, A.M. Hindawy, A.M. Ramadan, Canad. J. Anal. Sci. and Spectroscopy 50 (4) 175 (2005). [12] M.S. Masoud, M.F. Amira, S.A. El Moneim. G.M. Mohazy, A.A. Abou Hagar, Gh.M. El Ashry, Egyptian Science Magazine 2 (4) 79 (2005). [13] M.S. Masoud, T.S. Kasem, M.A. Shaker, A.E. Ali, J. Therm. Anal. Cal., 84, 549 (2006) . [14] M.J. Zaworotko, H.H. Hammud, I. Abbas, V.Ch. Kravstov, M.S. Masoud, J. Coord. Chem., 59 (1) 65 (2006). [15] M.S. Masoud, S.S. Hagag, E.A. Khalil, Nucleosides, Nucleotides and Nucleic Acids 25 (1) 73 (2006) . [16] M.S. Masoud, M.A. Shaker, A.E. Ali, Spectrochim. Acta 65A, 127 (2006). [17] M.S. Masoud, E.A. Khalil, A.M. Ramadan, J. Anal. & Applied Pyrolysis, 78 (1) 14 (2007). [18] M.S. Masoud, E.A. Khalil, A.M. Ramadan, Y.M. Gohar, A. Sweyllam, Spectrochim. Acta 67A, 669 (2007). [19] M.S. Masoud, A.A. Ibrahim, E.A. Khalil, A. El-Marghany, Spectrochim. Acta 67A, 662 (2007). [20] M.S. Masoud, Y.H. Keshk, M.S. Tawfik, A.F. El Hossieny, Bull. Fac. Sci. Alex. Univ.45 (1, 2) 32 (2007). [21] M.S. Masoud, M.F. Amira, A.M. Ramadan, Gh.M. El Ashry, Spectrochim. Acta 69A, 230 (2008). [22] M.S. Masoud, S.A. Abou El-Enein, A.M. Ramadan, A.S. Goher, J. Anal. $ Applied Pyrolysis, 81, 45 (2008). [23] H.H. Hammud, M.S. Masoud, K. Travis Holman, A. El-Faham, H. Beidas, Inorg. Chim. Acta, 362, 3526 (2009). [24] H.H. Hammud, G.Mc-Manus, A.M. Ghannoum, A. Kabbani, M.S. Masoud, J. Chem. Crystallography, 39, 853 (2009). [25] M.S. Masoud, A. El-Merghany, M.Y. Abd El-Kaway, Thaker, Synth. React. Inorg. Met-Org. Chem., 39 (9), 537 (2009). [26] M.S. Masoud, A. El-Merghany, A. M. Ramadan, M.Y. Abd ElKaway, J. Therm. Anal. Cal. 101, 839–847 (2010). [27] M.S. Masoud, M.A. Shaker, A.E. Ali, G.S. Elasala, Spectrochim. Acta 79A, 538 (2011). [28] M.S. Masoud, A.E. Ali, M.A. Shaker, G.S. Elasala, Spectrochim. Acta 90A, 93 (2012) [29] M. Masoud, S.S. Hagagg, A.E. Ali, N.M. Nasr, J. Mol. Struct., 1014, 17 (2012). [30] M.S. Masoud, S.S. Hagagg, A.E. Ali, N.M. Nasr, Spectrochim. Acta 94A, 256 (2012). [31] Schwarzenbach, “Complexometric titration”, Translated by H. Irving, Methuen Co., London (1957). [32] B. N. Figgis, J. Lewis, “Modern Coordination Chemistry”, Interscience, New York, P. 403 (1967).; Progr. Inorg. Chem., 6, 37 (1964). [33] A. S. Orabi, Monatshef. Für Chemie, 129, 1139 (1998). [34] R. A. Krause, K. Krause, Inorg. Chem., 19, 2600 (1980); 21, 2714 (1982); 23, 2195 (1984). [35] B. V. Patel, K. Desai, B. T. Thaker, Synth. React. Inorg. Met-Org. Chem., 19 (4), 391 (1989). [36] S. Fun Tan, K. Peng Ang. Trans. Met. Chem., 13, 64 (1988). [37] K. J rgensen, “Absorption Spectra and Chemical Bonding in Complexes’, Pergamon Press (1962). [38] D.M. Vallarine, N. E. Hill, J. V. Quagiliano, Inorg. Chem., 4, 1598 (1965). [39] M.C. Browning, J.R. Mellor, D. G. Morgan, J. Chem. Soc. 693 (1962). [40] N. Saha, A.K. Adak, Indian J. Chem., 25, 964 (1988). [41] A. Syamal, Trans. Met. Chem., 5, 220 (1980). [42] S. Satyanarayana, K.V. Reddy, Indian J. Chem., 28A(2), 169 (1989). [43] E. Kwiatkowski, M. Kwiatkowski. Inorg. Chim. Acta., 42, 202 (1980). [44] T. Matsushit, T. Shono, Polyhedron., 5, 3, 735 (1986). [45] J. H. Flynn, J. Therm. Anal, 27, 95 (1983); 34, 367 (1988); 37, 293 (1991). [46] H. R. Oswald, E. Dubler, “Thermal Analysis”, Edited by H. G. Wiedemann, volum 2, Switzerland (1972). [47] J. P. Elder, J. Therm. Anal. 36, 1077 (1990). [48] E. Morillo, J.L.P. Rodringuez, C. Real, P.J.S. Soto, J. Therm. Anal. 44, 313 (1995). [49] M.L. Dhar, O. Singh, J. Therm. Anal. 27, 259 (1991). [50] K. Rraore, J. Therm. Anal., 4, 135 (1972). Solvatochromaticity and pH dependence of the electronic absorption spectra of some purines and pyrimidines and their metal complexes Mamdouh S. Masouda, Medhat A. Shakerb, Alaa E. Ali b,∗, Gehan S. Elasalb a b Chemistry Department, Faculty of Science, Alexandria University, Egypt Chemistry Department, Faculty of Science, Damanhour University, Egypt abstract The solvatochromic responses of uric acid (Ua), 6-amino-2-thiouracil (ATU) and a series of their complexes dissolved in ten solvents of different polarity have been measured. The solvent-dependent UV/Vis spectroscopic absorption maxima, _max, are assigned to the corresponding electronic transitions and analyzed using SPSS program, regression analysis and Kamlet and Taft methods. The observed solvatochromism is discussed using various solute–solvent interaction mechanisms. The electronic absorption spectra of ATU were investigated in aqueous buffer solutions of varying pH and utilized for the determination of dissociation constants. The ranges of pH, where individual ionic species are predominant have been determined. Keywords: Uric 6-Amino-2-thiouracil Complexes Solvatochromic Dissociation constants pH-effect published in Spectrochimica Acta Part A 79 (2011) 538–547 References [1] F. Hueso, N.A. Illan, M.N. Moreno, J.M.Martinez, M.J. Ramirez, J. Inorg. Biochem. 94 (2003) 326–334. [2] M.S. Masoud, M.K. Awad, M.A. Shaker, M.M.T. El-Tahawy, Corros. Sci. 52 (2010) 2387–2396. [3] M.S. Masoud, M.F. Amira, A.M. Ramadan, G.M. El-Ashry, Spectrochim. Acta 69A (2008) 230–238. 4] M.S. Masoud, E.A. Khalil, A.M. Ramadan, Y.M. Gohar, A. Sweyllam, Spectrochim. Acta 67A (2007) 669–677. [5] M.S. Masoud, E.A. Khalil, A.M. Hindawy, A.E. Ali, E.F. Mohamed, Spectrochim. Acta 60A (2004) 2807–2817. [6] M.S. Masoud, S.A. Abou El-Enein, O.F. Hafez, J. Therm. Anal. 38 (1992) 1365–1376. [7] M.S. Masoud, S.S. Haggag, Z.M. Zaki, M. El-Shabasy, Spectrosc. Lett. 27 (1994) 775–786. [8] M.S. Masoud, A.A. Hasanein, A.K. Ghonaim, E.A. Khalil, A.A. Mahmoud, Z. Phys. Chem. 209 (1999) 223–228. [9] M.S. Masoud, S.A. Abou El-Enein, N.A. Obeid, Z. Phys. Chem. 215 (2001) 867–872. [10] M.S. Masoud, S.A. Abou El-Enein, H.M. Kamel, Indian J. Chem. 41A (2002) 297–301. [11] M.S. Masoud, A.Kh. Ghonaim, R.H. Ahmed, S.A. Abou El-Enein, A.A. Mahmoud, J. Coord. Chem. 55 (2002) 79–105. [12] M.S. Masoud, S.A. Abou El-Enein, M.E. Ayad, A.S. Goher, Spectrochim. Acta 60A (2004) 70–87. [13] M.S. Masoud, E.A. Khalil, A.M. Hafez, A.F. El-Husseiny, Spectrochim. Acta 61A (2004) 989–993. [14] R.M. Izatt, J.H. Christensen, J.H. Rytting, Chem. Rev. 72 (1971) 439–481. [15] D. Voet, J.G. Voet, Biochemistry, 3rd ed., Wiley, New York, 2004. [16] C. Ronco, P. Inguaggiato, V. Bordoni, M. De Cal, M. Bonello, E. Andrikos, Y. Assuman, R. Rattanarat, R. Bellomo, Contrib. Nephrol. 147 (2005) 115–123. [17] B.D. Cheson, B.S. Dutcher, J. Support Oncol. 3 (2005) 127–128. [18] A.M. Tsimberidou, M.J. Keating, Contrib. Nephrol. 147 (2005) 47–60. [19] M.J. Kamlet, R.W. Taft, J. Am. Chem. Soc. 98 (1976) 377–383. [20] M.J. Kamlet, J.L. Abboud, R.W. Taft, J. Am. Chem. Soc. 99 (1977) 6027–6038. [21] M.J. Kamlet, J.L. Abboud, R.W. Taft, in: R.W. Taft (Ed.), Progress in Physical Organic Chemistry, vol. 13, Interscience, New York, 1981, p. 445. [22] I. Marques, G. Fonrodona, S. Butˇıı, J. Barbosa, Trends Anal. Chem. 18 (1999) 72–76. [23] M.S. Masoud, A.E. Ali, M.A. Shaker, M. Abdul Ghani, Spectrochim. Acta 61A (2005) 3102–3107. [24] M.S. Masoud, A.E. Ali, M.A. Shaker, M. Abdul Ghani, Spectrochim. Acta 60A (2004) 3155–3159. [25] M.A. Khalifa, M.A. Shaker, Alex. J. Pharm. Sci. 9 (1995) 159–161. [26] I. Marques, G. Fonrodona, A. Baro, J. Guiteras, J.L. Beltran, Anal. Chim. Acta 471 (2002) 145–158. [27] J.G. Kirkwood, J. Chem. Phys. 2 (1934) 351–361. [28] G. David, H.E. Hallam, Spectrochim. Acta 23A (1967) 593–603. [29] E.G. McRae, J. Phys. Chem. 61 (1957) 562–572. [30] L.J. Hilliard, D.S. Foulk, H.S. Gold, Anal. Chim. Acta 133 (1981) 319–327. [31] H.H. Hammud, A.M. Ghannoum, F.A. Fares, L.K. Abramian, K.H. Bouhadir, J. Mol. Struct. 881 (2008) 11–20. [32] N. Triˇsovi´ c, N. Banjac, N. Valenti´ c, J. Sol. Chem. 38 (2009) 199–208. [33] M.J. Kamlet, J.L. Abbould, R.W. Taft, Phys. Org. Chem. 13 (1981) 485–630. [34] M. Eto, O. Tajiri, H. Nakagawa, K. Harano, Tetrahedron 54 (1998) 8009–8014. [35] V. Stamatovska, V. Dimova, K. Cˇolancˇeska-Rag˙ enovik, Bull. Chem. Technol. Maced. 25 (2006) 9–20. [36] O.V. Kovalchukova, R.K. Gridasova, B.E. Zaitsev, Z. Neorg. Khim. 26 (1981) 985–989. [37] K. Jфrgensen, Absorption Spectra and Chemical Bonding in Complexes, Pergamon Press, 1962. [38] A.B.P. Lever, Inorganic Electronic Spectroscopy, 2nd ed., Elsevier, Amsterdam, 1984. [39] T.S. Basu Baul, T.K. Chattopadhyay, B. Majee, Polyhedron 2 (1983) 635–640. [40] M.J. Kamlet, J.L.M. Abboud, M.H. Abraham, R.W. Taft, J. Org. Chem. 48 (1983) 2877–2887. [41] G.S. Uscmlic, J.B. Nikolic, V.V. Krstic, J. Serb. Chem. Soc. 67 (2002) 353– 359. [42] E. Rusu, D.O. Dorohoi, A. Airinei, J. Mol. Struct. 887 (2008) 216–219. [43] M. El-Sayed, H. Muller, G. Rheinwald, S. Spange, Chem. Mater. 15 (2003) 746–751. [44] M.D. Cohen, E. Fisher, J. Chem. Soc. (1962) 3044–3052. [45] A. Albert, G.B. Barlin, J. Chem. Soc. (1959) 2384–2396. [46] E.S. Raper, R.E. Oughtred, I.W. Nowell, Acta Crystallogr. C 41 (1985) 758– 760. [47] M.S. Masoud, H.H. Hammud, H. Beidas, Thermochim. Acta 381 (2002) 119– 131. [48] R.M. Issa, J. Chem. UAR 14 (1971) 113–124. [49] A.A. Muk, M.B. Pravica, Anal. Chim. Acta 45 (1969) 534–538. [50] J.C. Colleter, Ann. Chim. 5 (1960) 415–419. [51] M.M. Taquikham, C.R. Krishnamorthy, J. Inorg. Nucl. Chem. 36 (1974) 711– 716. [52] A.A. Shoukry, M.M. Shoukry, Spectrochim. Acta 70A (2008) 686–691.
© Copyright 2024