Alaa Eldein Ali

Synthesis and spectroscopic characterization of gallic acid and some
of its azo complexes
Mamdouh S. Masoud a, Sawsan S. Hagagg a, Alaa E. Ali b, , Nessma M. Nasr c
a
Chemistry Department, Faculty of Science, Alexandria University,
Alexandria, Egypt
b
Chemistry Department, Faculty of Science, Damanhour University,
Damanhour, Egypt
c
Science Park for Pharmaceuticals, Faculty of Pharmacy, Alexandria
University, Alexandria, Egypt
abstract
A series of gallic acid and azo gallic acid complexes were prepared and characterized
by elemental analysis,IR, electronic spectra and magnetic susceptibility. The
complexes were of different geometries: Octahedral,Tetrahedral and Square Planar.
ESR was studied for copper complexes. All of the prepared complexes were of
isotropic nature. The thermal analyses of the complexes were studied by DTA and
DSC techniques. The thermodynamic parameters and the thermal transitions, such as
glass transitions, crystallization and melting temperatures for some ligands and their
complexes were evaluated and discussed.
The entropy change values, DS#, showed that the transition states are more ordered
than the reacting complexes. The biological activities of some ligands and their
complexes are tested against Gram positive and Gram negative bacteria. The results
showed that some complexes have a well considerable activity against different
organisms.
Keywords:
Gallic acid complexes
Azo derivatives
IR
UV spectroscopy
Biological activity
Thermal analysis
Published In: Elsevier B.V.
References
[1] D. Rajalakshmi, S. Narasimban, D.L. Madhavi, S.S. Deshpande, D.K. Salunkhe,
Food Antioxidants: Sources and Methods of Evaluation, Food Antioxidants,
Marcel Dekker, New York, 1996. pp. 65–157.
[2] M.A. Bianco, H. Savolainen, J. Sci. Total. Environ. 203 (1997) 79–82.
[3] J.M. Gil, M.C.R. Snchez, F.J.M. Gil, M.J. Yacamn, J. Chem. Educ. 83 (2006)
1476–
1478.
[4] G.M. Elvira, S. Chandra, R. M.M. Vinicio, W. Wenyi, Food Chem. Toxicol. 44
(2006) 191–1203.
[5] H.C. Lan, L.Y. Charn, Y.G. Chin, C.H. Yin, Food Chem. 103 (2007) 528–535.
[6] J. Kinjo, T. Nagao, T. Tanaka, G. Nonaka, M. Okawa, T. Nohara, H. Okabe, J.
Biol.
Pharm. Bull. 25 (2002) 1238–1240.
[7] K. Jittawan, Food Chem. 110 (2008) 881–890.
[8] R.F. Hurrell, M. Reddy, J. Nutr. 81 (1999) 289–295.
[9] J.D. Cook, M.B. Reddy, R.F. Hurrell Am, J. Clin. Nutr. 61 (1995) 800–804.
[10] N. Okabe, H. Kyoyama, M. Suzuki, J. Acta Cryst. Sect. E57 (2001) o764–o766.
[11] N. Fatima, Z.T. Maqsood, S.A. Kazmi, J. Chem. Soc. Pac. 24 (2002) 49–56; 20
(1998) 295–298.
[12] A.S. Li, B. Bandy, S.S. Tsang, A.J. Davison, J. Free Rad. Res. 33 (2000) 551–
566.
[13] R.B. Sorkaz, I. Mazol, J. Biosci. 49 (2000) 881–894.
[14] M.D. Agarwal, C.S. Bhandari, M.K. Dixit, N.C. Sogani, J. Inst. Chem. 49
(1977)
124–126.
[15] M.S. Masoud, A.F. El-Husseiny, M.M. Abd El-Ghany, H.H. Hammud Bull,
Fac.
Sci. Alex. Univ. 44 (2006) 41–54.
[16] E. Kissinger, Anal. Chem. 29 (1957) 1702–1706.
[17] M.S. Masoud, T.S. Kasem, M.A. Shaker, A.E. Ali, J. Therm. Anal. Calorimetr.
84
(2006) 549–555.
[18] M.S. Masoud, S.A. Abou El-Enein, H.A. Motoweh, A.E. Ali, J. Therm. Anal.
Calorimetr. 75 (2004) 51–61.
[19] M.L. Dhar, O. Singh, J. Therm. Anal. 37 (1991) 259–266.
[20] E. Koch, Thermochim. Acta 94 (1985) 43–46.
[21] A.J. Ivana, V.S. Zoran, S.D. Enis, M.N. Jovan, J. Nano Scale Res. Lett. 5 (2010)
81–
88.
[22] A. Kula, J. Therm. Anal. Calorimetr. 75 (2004) 79–86.
[23] M.S. Masoud, E.A. Khalil, A.M. Hindawy, A.M. Ramadan, Can. J. Anal. Sci.
Spectrosc. 50 (2005) 175–188.
[24] A.T.T. Hsieh, R.M. Sheahan, B.O. West, Aust. J. Chem. 28 (1975) 885–891.
[25] S.P.M. Glynn, J.K. Swith, J. Mol. Spectra 6 (1961) 164–172.
[26] L.H. Jones, Spectrochim. Acta 15A (1959) 409–411.
[27] M.B.H. Howlader, M.S. Islam, M.R. Karim, Indian J. Chem. 39A (2000) 407–
409.
[28] A. Sreekanth, M. Joseph, H.K. Fun, M.R.P. Kurup, Polyhedron 25 (2006) 1408–
1411.
[29] M.S. Masoud, E.A. Khalil, A.M. Ramadan, Y.M. Gohar, A. Sweyllam,
Spectrochim. Acta 67A (2007) 669–677.
[30] M.S. Masoud, H.A. Motaweh, A.E. Ali, Indian J. Chem. 40A (2001) 733–737.
[31] P.G. Prakash, J.L. Rao, J. Mater. Sci. 39 (2004) 193–200.
[32] U. El- Ayaan, M.M. Youssef, S. Al-Shihry, J. Mol. Struct. 936 (2009) 213–219.
[33] F. Billes, I.M. Ziegler, P. Bombicz, J. Vib. Spectrosc. 43 (2007) 193–202.
[34] I.M. Ziegler, F. Billes, J. Mol. Struct. 618 (2002) 259–265.
[35] D. Slawins Ka, K. Polewski, P. Role Wski, J. Slawin Ski, J. Int. Agrophys. 21
(2007) 199–208.
[36] M.S.E. Ali, E.M. Fawzy, Spectrochim Acta. 60A (2004) 2807–2817.
[37] M.S. Masoud, A.E. Ali, R.H. Mohamed, A.A. Mostafa, Spectrochim. Acta 62A
(2005) 114–2119.
[38] M.M. Aly, N.I. Al-Shatti, Trans. Met. Chem 23 (1998) 361–369.
[39] H.A. Dessouki, H.M. Killa, A. Zaghloul, Spectrochim. Acta 42A (1986) 631–
635.
[40] M.S. Masoud, G.B. Mohamed, Y.H. Abdul Razek, A.E. Ali, F.N. Khiry,
Spectrochim. Lett. 35 (2002) 377–413.
[41] M.S. Masoud, G.B. Mohamed, Y.H. Abdul-Razek, A.E. Ali, F.N. Khairy, J.
Kor.
Chem. Soc. 46 (2002) 99–116.
[42] M.S. Masoud, Chemistry 40 (2010) 1–4.
[43] M.S. Masoud, A.A. Soayed, A.E. Ali, Spectrochim. Acta 60A (2004) 1907–
1915.
[44] R. Iordanova, E. Lefterova, I. Uzunov, Y. Dimitriev, D. Klissurski, J. Therm.
Anal.
Calorimetr. 70 (2002) 393–404.
[45] M.S. Celej, S.A. Dassie, M. Gonzalez, M.L. Bianconi, G.D. Fidelio, J. Anal.
Biochem. 350 (2006) 277–284.
[46] H. Mcphillips, D.Q. Craig, P.G. Royall, V.L. Hille, Int. J. Pharm. 180 (1999)
83–90.
[47] B.G.S. Bodeis, R.D. Walker, D.G. White, S. Zhao, P.F. Mcdermott, J. Meng, J.
Antimicrob. Chemother. 50 (2002) 487–494.
[48] E. Canpolat, M. Kaya, S. Gur, Tur. J. Chem. 28 (2004) 235–242.
[49] B.G. Tweedy, Phytopathology 55 (1964) 910–914.
Solvatochromaticity and pH dependence of the electronic absorption spectra of
some purines and pyrimidines and their metal complexes
Mamdouh S. Masouda, Medhat A. Shakerb, Alaa E. Ali b, , Gehan S. Elasal b
a Chemistry Department, Faculty of Science, Alexandria University, Egypt
b Chemistry Department, Faculty of Science, Damanhour University, Egypt
abstract
The solvatochromic responses of uric acid (Ua), 6-amino-2-thiouracil (ATU) and a
series of their complexes dissolved in ten solvents of different polarity have been
measured. The solvent-dependent UV/Vis spectroscopic absorption maxima, _max,
are assigned to the corresponding electronic transitions and analyzed using SPSS
program, regression analysis and Kamlet and Taft methods.
The observed solvatochromism is discussed using various solute–solvent interaction
mechanisms. The electronic absorption spectra of ATU were investigated in aqueous
buffer solutions of varying pH and utilized for the determination of dissociation
constants. The ranges of pH, where individual ionic species are predominant have
been determined.
Keywords:
Uric
6-Amino-2-thiouracil
Complexes
Solvatochromic
Dissociation constants
pH-effect
References:
[1] F. Hueso, N.A. Illan, M.N. Moreno, J.M.Martinez, M.J. Ramirez, J. Inorg.
Biochem.
94 (2003) 326–334.
[2] M.S. Masoud, M.K. Awad, M.A. Shaker, M.M.T. El-Tahawy, Corros. Sci. 52
(2010)
2387–2396.
[3] M.S. Masoud, M.F. Amira, A.M. Ramadan, G.M. El-Ashry, Spectrochim. Acta
69A
(2008) 230–238.
[4] M.S. Masoud, E.A. Khalil, A.M. Ramadan, Y.M. Gohar, A. Sweyllam,
Spectrochim.
Acta 67A (2007) 669–677.
[5] M.S. Masoud, E.A. Khalil, A.M. Hindawy, A.E. Ali, E.F. Mohamed,
Spectrochim.
Acta 60A (2004) 2807–2817.
[6] M.S. Masoud, S.A. Abou El-Enein, O.F. Hafez, J. Therm. Anal. 38 (1992)
1365–1376.
[7] M.S. Masoud, S.S. Haggag, Z.M. Zaki, M. El-Shabasy, Spectrosc. Lett. 27
(1994)
775–786.
[8] M.S. Masoud, A.A. Hasanein, A.K. Ghonaim, E.A. Khalil, A.A. Mahmoud, Z.
Phys.
Chem. 209 (1999) 223–228.
[9] M.S. Masoud, S.A. Abou El-Enein, N.A. Obeid, Z. Phys. Chem. 215 (2001)
867–872.
[10] M.S. Masoud, S.A. Abou El-Enein, H.M. Kamel, Indian J. Chem. 41A (2002)
297–301.
[11] M.S. Masoud, A.Kh. Ghonaim, R.H. Ahmed, S.A. Abou El-Enein, A.A.
Mahmoud,
J. Coord. Chem. 55 (2002) 79–105.
[12] M.S. Masoud, S.A. Abou El-Enein, M.E. Ayad, A.S. Goher, Spectrochim. Acta
60A
(2004) 70–87.
[13] M.S. Masoud, E.A. Khalil, A.M. Hafez, A.F. El-Husseiny, Spectrochim. Acta
61A
(2004) 989–993.
[14] R.M. Izatt, J.H. Christensen, J.H. Rytting, Chem. Rev. 72 (1971) 439–481.
[15] D. Voet, J.G. Voet, Biochemistry, 3rd ed., Wiley, New York, 2004.
[16] C. Ronco, P. Inguaggiato, V. Bordoni, M. De Cal, M. Bonello, E. Andrikos, Y.
Assuman, R. Rattanarat, R. Bellomo, Contrib. Nephrol. 147 (2005) 115–123.
[17] B.D. Cheson, B.S. Dutcher, J. Support Oncol. 3 (2005) 127–128.
[18] A.M. Tsimberidou, M.J. Keating, Contrib. Nephrol. 147 (2005) 47–60.
[19] M.J. Kamlet, R.W. Taft, J. Am. Chem. Soc. 98 (1976) 377–383.
[20] M.J. Kamlet, J.L. Abboud, R.W. Taft, J. Am. Chem. Soc. 99 (1977) 6027–6038.
[21] M.J. Kamlet, J.L. Abboud, R.W. Taft, in: R.W. Taft (Ed.), Progress in Physical
Organic Chemistry, vol. 13, Interscience, New York, 1981, p. 445.
[22] I. Marques, G. Fonrodona, S. Butˇıı, J. Barbosa, Trends Anal. Chem. 18 (1999)
72–76.
[23] M.S. Masoud, A.E. Ali, M.A. Shaker, M. Abdul Ghani, Spectrochim. Acta 61A
(2005) 3102–3107.
[24] M.S. Masoud, A.E. Ali, M.A. Shaker, M. Abdul Ghani, Spectrochim. Acta 60A
(2004) 3155–3159.
[25] M.A. Khalifa, M.A. Shaker, Alex. J. Pharm. Sci. 9 (1995) 159–161.
[26] I. Marques, G. Fonrodona, A. Baro, J. Guiteras, J.L. Beltran, Anal. Chim. Acta
471
(2002) 145–158.
[27] J.G. Kirkwood, J. Chem. Phys. 2 (1934) 351–361.
[28] G. David, H.E. Hallam, Spectrochim. Acta 23A (1967) 593–603.
[29] E.G. McRae, J. Phys. Chem. 61 (1957) 562–572.
[30] L.J. Hilliard, D.S. Foulk, H.S. Gold, Anal. Chim. Acta 133 (1981) 319–327.
[31] H.H. Hammud, A.M. Ghannoum, F.A. Fares, L.K. Abramian, K.H. Bouhadir, J.
Mol.
Struct. 881 (2008) 11–20.
[32] N. Triˇsovi´ c, N. Banjac, N. Valenti´ c, J. Sol. Chem. 38 (2009) 199–208.
[33] M.J. Kamlet, J.L. Abbould, R.W. Taft, Phys. Org. Chem. 13 (1981) 485–630.
[34] M. Eto, O. Tajiri, H. Nakagawa, K. Harano, Tetrahedron 54 (1998) 8009–8014.
[35] V. Stamatovska, V. Dimova, K. Cˇolancˇeska-Rag˙ enovik, Bull. Chem.
Technol.
Maced. 25 (2006) 9–20.
[36] O.V. Kovalchukova, R.K. Gridasova, B.E. Zaitsev, Z. Neorg. Khim. 26 (1981)
985–989.
[37] K. Jфrgensen, Absorption Spectra and Chemical Bonding in Complexes,
Pergamon
Press, 1962.
[38] A.B.P. Lever, Inorganic Electronic Spectroscopy, 2nd ed., Elsevier, Amsterdam,
1984.
[39] T.S. Basu Baul, T.K. Chattopadhyay, B. Majee, Polyhedron 2 (1983) 635–640.
[40] M.J. Kamlet, J.L.M. Abboud, M.H. Abraham, R.W. Taft, J. Org. Chem. 48
(1983)
2877–2887.
[41] G.S. Uscmlic, J.B. Nikolic, V.V. Krstic, J. Serb. Chem. Soc. 67 (2002) 353–
359.
[42] E. Rusu, D.O. Dorohoi, A. Airinei, J. Mol. Struct. 887 (2008) 216–219.
[43] M. El-Sayed, H. Muller, G. Rheinwald, S. Spange, Chem. Mater. 15 (2003)
746–751.
[44] M.D. Cohen, E. Fisher, J. Chem. Soc. (1962) 3044–3052.
[45] A. Albert, G.B. Barlin, J. Chem. Soc. (1959) 2384–2396.
[46] E.S. Raper, R.E. Oughtred, I.W. Nowell, Acta Crystallogr. C 41 (1985) 758–
760.
[47] M.S. Masoud, H.H. Hammud, H. Beidas, Thermochim. Acta 381 (2002) 119–
131.
[48] R.M. Issa, J. Chem. UAR 14 (1971) 113–124.
[49] A.A. Muk, M.B. Pravica, Anal. Chim. Acta 45 (1969) 534–538.
[50] J.C. Colleter, Ann. Chim. 5 (1960) 415–419.
[51] M.M. Taquikham, C.R. Krishnamorthy, J. Inorg. Nucl. Chem. 36 (1974) 711–
716.
[52] A.A. Shoukry, M.M. Shoukry, Spectrochim. Acta 70A (2008) 686–691.
Synthesis, computational, spectroscopic, thermal and antimicrobial activity
studies on some metal–urate complexes
Mamdouh S. Masoud a, Medhat A. Shaker b, Alaa E. Ali b, , Gehan S. Elasal b
a
b
Chemistry Department, Faculty of Science, Alexandria University, Egypt
Chemistry Department, Faculty of Science, Damanhour University, Egypt
abstract
New sixteen uric acid metal complexes of different stoichiometry, stereo-chemistries
and modes of interactions were synthesized using different metals Cr, Mn, Fe, Co,
Ni, Cu, Cd, UO2, Na and K. The synthesized complexes were characterized by
elemental analysis, spectral (IR, UV–Vis and ESR) methods, thermal
analysis (TG, DTA and DSC) and magnetic susceptibility studies. Molecular
modeling calculations were used to characterize the ligation sites of the free ligand.
Furthermore, quantum chemical parameters of uric acid such as the energies of
highest occupied molecular orbital (EHOMO), energies of lowest unoccupied
molecular orbital (ELUMO), the separation energy (_E = ELUMO −
EHOMO), the absolute electronegativity, _, the chemical potential, Pi, the absolute
hardness, _ and the softness (_) were obtained for uric acid.
Eight different microbial categories were used to study the antimicrobial activity of
the free ligand and ten of its complexes. The results indicate that the ligand and its
metal complexes possess antimicrobial properties.
The stoichiometry of iron–uric acid complex was studied by using different
spectrophotometric methods.
Keywords:
Uric
Complexes
Synthesis
Spectroscopy
Thermal analysis
Computational
References
[1] M. Soriani, D. Pietraforte, M. Minetti, Antioxidant potential of anaerobic human
plasma: role of serum albumin and thiols as scavengers of carbon radicals, Arch.
Biochem. Biophys. 312 (1994) 180–188.
[2] M.G. Simic, S.V. Jonanovic, Antioxidation mechanisms of uric acid, J. Am.
Chem.
Soc. 111 (1989) 5778–5782.
[3] G. Wessman, G.A. Rita, Molecular basis of gouty inflammation: interaction of
monosodium urate crystals with lysosomes and liposomes, Nature New Biol.
240 (1972) 167–172.
[4] M.S. Masoud, A. El-Dissouky, E.E. Ghatwary, Synthesis and stereochemistry of
new cobalt azo-nitroso complexes, Inorg. Chim. Acta 141 (1988) 119–123.
[5] M.S. Masoud, S.A.A. Ali, G.Y. Ali, I.M. Abed, Thermodynamic parameters of
ionization
of 5-(2-substituted phenylazo) barbituric acids, Thermochim. Acta 122
(1987) 209–220.
[6] M.S. Masoud, A.K. Ghonaim, R.H. Ahmed, S.A. Abou El-Enein, A.A.
Mahmoud,
Ligating properties of 5-nitrobarbituric acid, J. Coord. Chem. 55 (2002) 79–105.
[7] M.S. Masoud, A.A. Soayed, A.E. Ali, O.K. Sharsherh, Synthesis and
characterization
of new azopyrimidine complexes, J. Coord. Chem. 56 (2003) 725–742.
[8] M.S. Masoud, A.E. Ali, M.A. Shaker, M. Abdul Ghani, Solvatochromic behavior
of
the electronic absorption spectra of some azo derivatives of amino pyridines,
Spectrochim. Acta 60A (2004) 3155–3159.
[9] M.S. Masoud, S.A. Abou El-Enein, M.E. Ayad, A.S. Goher, Spectral and
magnetic
properties of phenylazo-6-aminouracil complexes, Spectrochim. Acta
60A (2004) 77–87.
[10] M.S. Masoud, E.A. Khalil, A.M. Hindawey, A.E. Ali, E.F. Mohamed,
Spectroscopic
studies on some azo compounds and their cobalt, copper and nickel complexes,
Spectrochim. Acta 60A (2004) 2807–2817.
[11] M.S. Masoud, E.A. Khalil, A.M. Ramadan, Thermal properties of some CoII,
NiII
and CuII complexes of new substituted pyrimidine compounds, J. Anal. Appl.
Pyrolysis 78 (2007) 14–23.
[12] M.S. Masoud, A.A. Ibrahim, E.A. Khalil, A. El-Marghany, Spectral properties
of
some metal complexes derived from uracil-thiouracil and citrazinic acid compounds,
Spectrochim. Acta 67A (2007) 662–668.
[13] M.S. Masoud, E.A. Khalil, A.M. Ramadan, Y.M. Gohar, A. Sweyllam, Spectral,
electrical conductivity and biological activity properties of some new
azopyrimidine derivatives and their complexes, Spectrochim. Acta 67A (2007)
669–677.
[14] M.S Masoud, M.F. Amira, A.M. Ramadan, G.M. El-Ashry, Synthesis and
characterization
of some pyrimidine, purine, amino acid and mixed ligand complexes,
Spectrochim. Acta 69A (2008) 230–238.
[15] H.H. Hammud, K.T. Holman, M.S. Masoud, A. El-Faham, H. Beidas, 1Hydroxybenzotriazole
(HOBt) acidity, formation constant with different metals and
thermodynamic parameters: synthesis and characterization of some HOBt
metal complexes – crystal structures of two polymers: [Cu2(H2O)5(OBt)2(_OBt)2]·2H2O·EtOH (1A) and [Cu(_-OBt)(HOBt)(OBt) (EtOH)] (1B), Inorg. Chim.
Acta 362 (2009) 3526–3540.
[16] G. Schwarzenbach, Complexometric Titration, Methuen Co, London, 1957,
Translated by H. Irving.
[17] A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, Longman, London,
1978.
[18] R.H. Lee, E. Griswold, J. Kleinberg, Studies on the stepwise controlled
decomposition
of 2,2-bipyridine complexes of cobalt(II) and nickel(II) chlorides, Inorg.
Chem. 3 (1964) 1278–1283.
[19] B.N. Figgis, J. Lewis, Modern Coordination Chemistry, Interscience, New
York,
1967, p. 403.
[20] J.M. Hernando, O. Montero, C. Blanco, The correlation of the stability constants
of 1,3-dicarbonylic monochelates of Iron (III) with the acid dissociation constants
of the ligand, J. Solid Chem. 19 (1990) 1191–1197.
[21] A. Holme, F.J. Langmyhr, A modified and a new straight-line method for
determining
the composition of weak complexes of the form AmBn, Anal. Chim. Acta
36 (1966) 383–391.
[22] N. Mahadevan, R.M. Sathe, Ch. Venkateswarlu, Spectrophotometric study of
complexes of titanium with sulphosalicylic acid and EDTA using auxiliary
complexing
agents in the job’s method, J. Inorg. Nucl. Chem. 25 (1963) 1005–1010.
[23] K.C. Ingham, On the application of Job’s method of continuous variation to the
stoichiometry of protein–ligand complexes, Anal. Biochem. 68 (1975) 660–663.
[24] A.K. Majumdar, C.P. Savariar, Spectrophotometric determination of iron with
2-hydroxy-3-napthoic acid, Anal. Chim. Acta 21 (1959) 47–52.
[25] M. Atanasov, K. Petrov, E. Mirtcheva, C. Friebel, D. Reinen, Cation
distribution
and coordination chemistry of Cu(II) in Zn(II) hydroxide nitrate solid solutions:
a structural and spectroscopic study, J. Solid State Chem. 118 (1995) 303–312.
[26] T. Kennedy, R.S. Sinclair, T.J. Sinclair, The U.V. spectrum and photolysis of
phosphorus halides in hydrocarbon solvents – II phosphorus tribromide and
phosphorus pentabromide in cyclohexane, J. Inorg. Nucl. Chem. 33 (1971)
2369–2376.
[27] Y. Dong, H. Fujii, M.P. Hendrish, R.A. Leising, G. Pan, C.R. Randall, E.C.
Wilkinson,
Y. Zang, L. Que, B.G. Fox, K. Kauffmann, E. Munck, A High-valent nonheme iron
intermediate. Structure and properties of [Fe2(.mu.-O)2(5-Me-TPA)2](ClO4)3, J.
Am. Chem. Soc. 117 (1995) 2778–2792.
[28] D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to
Applications, Academic Press, San Diego, 1996, ISBN 0-12-267370-0.
[29] A.R. Leach, Molecular Modelling: Principles and Applications, Prentice Hall,
Englewood Cliffs, N.J., 2001, ISBN 0-582-38210-6.
[30] T.V. Timofeeva, V.N. Nesterov, M.Y. Antipin, R.D. Clark, M. Sanghodasa,
B.H.
Cardelino, C.E. Moore, D.O. Frazier, Molecular modeling and experimental
study of non-linear optical compounds: monosubstituted derivatives of
dicyanovinylbenzene, J. Mol. Struct. 519 (2000) 225–241.
[31] M.S. Masoud, A. El-Merghany, M.Y. Abd El-Kaway, Synthesis and
physicochemical
properties of biologically active purine complexes, Synth. React. Inorg.
Met. Org. Nano-Met. Chem. 39 (2009) 537–553.
[32] R.M. Issa, M.K. Awad, F.M. Atlam, Quantum chemical studies on the inhibition
of corrosion of copper surface by substituted uracils, Appl. Surf. Sci. 255 (2008)
2433–2441.
[33] S. Sagdinc, B. Koksoy, F. Kandemirli, S.H. Bayari, Theoretical and
spectroscopic
studies of 5-fluoro-isatin-3-(N-benzylthiosemicarbazone) and its zinc(II) complex,
J. Mol. Struct. 917 (2009) 63.
[34] K. Fukui, Theory of Orientation and Stereoselection, Springer-Verlag, New
York,
1975.
[35] Y. Gong, J. Liu, W. Tang, C. Hu, The intra-annular acylamide chelatecoordinated
compound: the keto-tautomer of metal (II)–milrinone complex, J. Mol. Struct.
875 (2008) 113–120.
[36] A.K. Chandra, T.Z. Huyskens, Theoretical study of the acidity and basicity of
uric acid and its interaction with water, J. Mol. Struct. Theochem. 811 (2007)
215–221.
[37] M.S. Masoud, O.H. Abd El-Hamid, Z.M. Zaki, 2-Thiouracil-based cobalt(II),
nickel(II) and copper(II) complexes, Trans. Met. Chem. 19 (1994) 21–24.
[38] M.M. Moawad, Complexation and thermal studies of uric acid with some
divalent
and trivalent metal ions of biological interest in the solid state, J. Coord.
Chem. 55 (2002) 61–78.
[39] V.V. Ramana, V.J. Thyagaraju, K.S. Sastry, Chromium complexes of uric acid
–
synthesis, structure, and properties, Inorg. Biochem. 48 (1992) 85–93.
[40] M.S. Masoud, A.M. Hindawy, A.A. Soayed, Structural chemistry of azo
complexes,
Trans. Met. Chem. 16 (1991) 372–376.
[41] R.N. Allen, P. Lipkowski, M.K. Shukla, J. Eszczynski, Vibrational analysis of
complexes
of urate with IA group metal cations (Li+, Na+ and K+), Spectrochim. Acta
68A (2007) 639–645.
[42] R.G. Pearson, Chemical hardness and bond dissociation energies, J. Am. Chem.
Soc. 110 (1988) 7684–7690.
[43] S.P. McGlynn, J.K. Smith, The electronic structure, spectra, and magnetic
properties
of actinyl ions: Part I. The uranyl ion, J. Mol. Spectrosc. 6 (1961) 164–187.
[44] L.H. Jones, Determination of U–O bond distance in uranyl complexes from their
infrared spectra, Spectrochim. Acta 15A (1959) 409–411.
[45] G. Karagonins, O. Peter, Z. Electrochem. Ber. Bunsenges. Phys. Chem. 63
(1959)
1170.
[46] C.H. Macgillavry, G.D. Rieckin, International tables for X- ray crystallography,
In: K. Lonsdale (Ed.), Physical and Chemical Tables, vol. 3, Acta Cryst., 16 (1963)
234–235.
[47] R.K. Parasher, R.C. Sharma, A. Kumar, G. Mohan, Stability studies in relation
to
IR data of some Schiff base complexes of transition metals and their biological
and pharmacological studies, Inorg. Chim. Acta 151 (1988) 201–208.
[48] A. El-Dissouky, M.M. Abou-Sekkina, M. El-Kersh, A.Z. El-Sonbati, Metal
chelates
of heterocyclic Nitrogen containing ketones. XV. Five-coordinate nickel(II) and
copper(II) complexes with a sulphur–nitrogen tridentate Schiff base, Trans.
Met. Chem. 9 (1984) 372–375.
[49] R.G. Bhattacharyya, S.P. Mukhopadhyay, D.C. Bera, Inorg. Nucl. Chem. Lett.
16
(1980) 571–574.
[50] A.K. El-Sawaf, D.X. West, R.M. El-Bahnasawy, F.A. El-Saied, Synthesis,
magnetic and spectral studies of iron(III) and cobalt(II,III) complexes of 4formylantipyrine N(4)-substituted thiosemicarbazones, Trans. Met. Chem. 23
(1998) 227–232.
[51] E.R. Price, J.R. Wasson, Complexes with sulfur and selenium donors-X
chromium(III) piperidyldithiocarbamates, J. Inorg. Nucl. Chem. 36 (1974)
67–71.
[52] A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier Publishing
Company,
Amsterdam, 1968.
[53] K. Jфrgensen, Absorption Spectra and Chemical Bonding in Complexes,
Pergamon
Press, 1962.
[54] B.T. Thaker, P.K. Bhattacharya, Studies in some new mixed Schiff base
complexes-I, J. Inorg. Nucl. Chem. 37 (1975) 615–618.
[55] U. El-Ayaan, M.M. Youssef, S. Al-Shihry, Mn(II), Co(II), Zn(II), Fe(III) and U
(VI) complexes of 2-acetylpyridine 4N-(2-pyridyl) thiosemicarbazone (HAPT);
structural, spectroscopic and biological, J. Mol. Struct. 936 (2009) 213–219.
[56] S.K. Srivastava, K.B. Pandeya, H.L. Nigam, On a trinuclear copper(II)–_mercaptopropionic acid complex, Inorg. Nucl. Chem. Lett. 11 (1975) 195–199.
[57] M.S. Masoud, M.M. El-Essawi, Electron spin resonance and mass spectra of
substituted azo cresol complexes, J. Chem. Eng. Data 29 (1984) 363–367.
[58] M.S. Masoud, E.A. Khalil, A.M. Hafez, A.F. El-Husseiny, Electron spin
resonance
and magnetic studies on some copper(II) azobarbituric and azothiobarbituric
acid complexes, Spectrochim. Acta 61A (2005) 989–993.
[59] A. Veeraray, P. Sami, N. Raman, Copper(II) complex of 3cinnamalideneacetylacetone: synthesis and characterization, Proc. Indian
Acad. Sci. (Chem. Sci.) 112 (2000) 515–521.
[60] P. Manikandan, R. Muthukumaran, K.R.J. Thomas, B. Varghese, G.V.R.
Chandramouli,
P.T. Manoharan, Inorg. Chem. 40 (2001) 2378–2423.
[61] Mathieu Soibinet, Isabelle Dechamps-Olivier, Aminou, X-ray crystal structure,
ESR and potentiometric studies of copper(II) complexes with (2pyridylmethyl, 3-pyridylmethyl) amine ligand, Inorg. Chem. Commun. 7 (2004)
405–409.
[62] H.A. Kuska, M.T. Rogers, R.E. Drullinger, Effect of substituents on the
anisotropic
electron spin resonance parameters in copper acetylacetones, J. Phys. Chem. 71
(1967) 109–114.
[63] D.R. Lorenz, J.R. Wasson, D.K. Johnson, D.A. Thorpe, J. Inorg. Nucl. Chem.
37
(1975) 2297.
[64] J. Lubczak, I. Cisek-Cicirko, B. My´sliwiec, React. Funct. Polym. 53 (2002)
113.
[65] M.S. Masoud, E.A. Khalil, E.E. El-Shereafy, S.A. Abou El-Enein, Thermal
and electrical behaviour of nickel(II) and copper(II) complexes of 4acetylamino-2-hydroxy-5-methylazobenzene, J. Thermal. Anal. 36 (1990)
1033–1338.
[66] E.S. Raper, A.M. Britton, W. Clegg, Synthesis, spectroscopy, and
electrochemistry
of heterocyclic thionato complexes of divalent nickel: crystal structure
of tetraethylammonium fac-[tris (benzothiazoline-2-thionato) nickelate (II)],
J. Chem. Soc. Dalton Trans. (1990) 3341–3345.
[67] B. Taqui Khan, K. Annapoorna, Mixed ligand complexes of ruthenium (III)
EDTA
with pyrimidines, Inorg. Chim. Acta 171 (1990) 157–163.
[68] N. Raman, A. Kulandaisamy, C. Thangaraja, P. Manisankar, S. Viswanathan, C.
Vedhi, Synthesis, structural characterisation and electrochemical and antibacterial
studies of Schiff base copper complexes, Trans. Met. Chem. 29 (2004)
129–135.
[69] E. Canpolat, M. Kaya, S. Gur, Synthesis, characterization of some Co(III)
complexes
with vic-dioxime ligands and their antimicrobial properties, Turk. J.
Chem. 28 (2004) 235–242.
[70] N. Nishat, Rahis-ud-din, M.M. Haq, Synthesis, characterization, spectroscopic
and antimicrobial activity studies of pyrimidine dithiocarbamate macrocyclic
complexes, Polish J. Chem. 78 (2004) 645–652.
[71] M.N. Patel, P.A. Parmar, D.S. Gandhi, V.R. Thakkar, Antimicrobial and
nuclease
activity of mixed polypyridyl ruthenium(II) complexes, Inorg. Chem. Commun.
13 (2010) 1480–1484.
[72] M. Ruiz, L. Perello, R. Ortiz, A. Castineiras, C. Maichlemossmer, E. Canton,
Synthesis, characterization, and crystal structure of [Cu(cinoxacinate)2] 2H2O
complex: a square-planar CuO4 chromophore antibacterial studies, J. Inorg.
Biochem 59 (1995) 801–810.
[73] G. Wu, G. Wang, X. Fu, L. Zhu, Synthesis, crystal structure, stacking effect and
antibacterial studies of a novel quaternary copper (II) complex with quinolone,
Molecules 8 (2003) 287–296.
Solvatochromic behavior of the electronic absorption spectra of gallic acid and
some of its azo derivatives
a,
Mamdouh S. Masoud
, Sawsan S. Hagagg a, Alaa E. Ali b, Nessma M. Nasr c
a
Chemistry Department, Faculty of Science, Alexandria University,
Alexandria, Egypt
b
Chemistry Department, Faculty of Science, Damanhour University,
Damanhour, Egypt
c
Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
abstract
The electronic absorption spectra of gallic acid and its azo derivatives have been
studied in various solvents of different polarities. Multiple regression techniques
were applied to calculate the regression and correlation coefficients based on an
equation that relates the wavenumbers of the absorption band maxima (_max
−) to the solvent parameters; refractive index (n), dielectric constant (D), empirical
Kamlet–Taft solvent parameters, _*(dipolarity/polarizability), ˛ (solvent hydrogenbond donor acidity) and ˇ (solvent hydrogen-bond acceptor basicity). The fitting
coefficient obtained from this analysis allows estimating the contribution of each
type of interactions relative to total spectral shifts in solution.
The dependence of _max − on the solvent parameters indicates that the obtained
bands are affected by specific and non-specific solute-solvent interactions.
Keywords:
Gallic acid
Solvent effect
Kamlet–Taft equation
Azo complexes
Refractive index
Dielectric constant
References
[1] V. Srivastava, H.O. Saxena, K. Shanker, J.K. Kumar, S. Luqman, M.M.
Gupta, S.P.S. Khanuja, S.N. Arvind, J. Bioorg. Med. Chem. Lett. 16 (2006)
4603.
[2] S. Siranoush, A. Kazumasa, W. Antje, K. Akio, B. Irmgard, J. Nutr. 131 (2001)
1207.
[3] M.A. Biancoa, H. Savolainenb, J. Sci. Total Environ. 203 (1997) 79.
[4] J. Singh, G.K. Rai, A.K. Upadhyay, R. Kumar, K.P. Singh, J. Agric. Sci. 74
(2004) 3.
[5] R.W. Owen, R. Haubner, W.E. Hull, G. Erben, B. Spiegelhalder, H. Bartsch, B.
Haber, J. Food Chem. Toxicol. 41 (2003) 1727.
[6] O. Doka, D. Bicanic, Anal. Chem. 74 (2002) 2157.
[7] Ng. Lay-Keow, P. Lafontaine, J. Harnois, J. Chromatogr. 873A (2000) 29.
[8] R. Gimenez, M. Villalon, H. Lopez, M. Navarro, C. Cabrera, M. Olalla, J.J.
Quesada,
M.C. Lopez, Cienc. Technol. Ailment 3 (2000) 13.
[9] M. LLpez-Velez, F. Martinez, C. Del Valle-Ribes, Crit. Rev. Food Sci. Nutr. 43
(2003)
233.
[10] S. Grant Newey, W. Betty, S. Faye, J. Agric. Food Chem. 15 (1967) 132.
[11] S. Shahrzad, K. Aoyagi, A. Winter, A. Koyama, I. Bitsch, J. Nutr. 131 (2001)
1207.
[12] S. Govindarajan, Y. Kannappan, M.D. Naresh, K. Enkataboopathy, B.
Lokanadum,
J. Mol. Liq. 107 (2003) 289.
[13] D.J. Yang, L.S. Hwang, J.T. Lin, Chromatography 1156A (2007) 312.
[14] X. Fazhi, L. Xucong, W. Xiaoping, X. Zenghong, Talanta 74 (2008) 836.
[15] A. Abdelwahed, I. Bouhlel, I. Skandrani, K. Valent, M. Kadri, P. Guiraud, R.
Steiman, A.M. Mariotte, K. Ghedira, F. Laporte, M.G.D. Franca, L.C. Ghedria, J.
Chem. Biol. Interact. 165 (2007) 155.
[16] J. Gonzalez, J.M. Cruz, H. Domıˇınguez, J.C. Gonzalez, J.M. Cruz, H.
Dominguez,
J.C. Parajo, J. Food Chem. 84 (2004) 243.
[17] H.M. Chen, Y.C. Wu, Y.C. Chi, Y.C. Hsieh, C.C. Chen, Cancer Lett. 286
(2009) 161.
[18] C. Locatelli, R. Rosso, M.S. Silva, C.A. Souza, M.A. Licinio, P. Leaf, M.L.
Bazzo, R.A.
Yunes, T.B.C. Pasa, J. Bioorg. Med. Chem. 16 (2008) 3791.
[19] M. Favrea, D. Landolta, K. Hoffmanb, M. Stratmann, Corros. Sci. 40 (1998)
793.
[20] M. Budnar, M. Ursic, J. Simcic, P. Pelicon, J. Kolar, V.S. Selih, M. Strlic, Nucl.
Instrum. Methods 243B (2006) 407.
[21] M.R. Yazdanbakhsh, A. Mohammadi, J. Mol. Liq. 148 (2009) 35.
[22] M.S. Masoud, A.E. Ali, R.H. Mohamed, M.A.E. Mostafa, Spectrochim. Acta
62A
(2005) 1114.
[23] V. Jancovicova, M. Ceppan, B. Havlinova, M. Rehakova, Z. Jakubikova, J.
Chem.
Pap. 61 (2007) 391.
[24] M.S. Masoud, E.A. Khalil, A.R. Youssef, Synth. React. Inorg. Met.-Org. Chem.
20
(1990) 793.
[25] A.A. Hasanein, M.S. Masoud, M. Heiba, J. Chem. Soc. Pak. 9 (1987) 199.
[26] M.S. Masoud, A.E. Ali, M.A. Shaker, M. Abdul Ghani, Spectrochim. Acta 61A
(2005) 3102.
[27] H.H. Hammud, A. Ghannoum, M.S. Masoud, Spectrochim. Acta 63A (2006)
255.
[28] H.H. Hammud, K.H. Bouhadir, M.S. Masoud, S.A. Assi, J. Solution Chem. 37
(2008)
895.
[29] E.G. McRae, J. Phys. Chem. 61 (1957) 562.
[30] G. Costinela-Laura, P.B. Ioan, B. Ioan, Dyes Pigm. 76 (2008) 455.
[31] M.S. Masoud, S.S. Haggag, H.M. El-Nahas, N. Abdelhi, Acta Chim. Hung. 130
(1993) 783.
[32] M.S. Masoud, H.H. Hammud, Spectrochim. Acta 57A (2001) 977.
[33] R.H. Abu-Eittah, M.K. Khedr, Spectrochim. Acta 71A (2009) 1688.
[34] K. Dwiecki, P. Gornas, M.N. Kalucka, K. Polewski, J. Acta Agrophys. 7 (2006)
48.
[35] Y.H. Ebead, M.A. Selim, S.A. Ibrahim, Spectrochim. Acta 75A (2010) 760.
[36] R.J. Sindreu, M.L. Moya, J. Solution Chem. 25 (1996) 289.
[37] M.J. Kamlet, J.L.M. Abboud, T.H. Hall, J. Bodkin, M.H. Abraham, R.W. Taft,
J. Org.
Chem. 48 (1993) 2877.
[38] Y. Marcus, J. Chem. Soc. Rev. 22 (1993) 409.
[39] M.M.M. Raposo, A.M.F.P. Ferreira, M. Belsley, J.C.V.P. Moura, Tetrahedron
64
(2008) 5878.
[40] C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd ed.,
WileyVCH, Weinheim, 2003, p. 421.
[41] N.D. Divjak, N.R. Banjac, N.V. Valentic, G.S. Uscumlic, J. Serb. Chem. Soc.
74
(2009) 1195.
[42] N. Trisovic, N. Banjac, N. Valentic, G.S. Uscumlic, J. Solution Chem. 38
(2009)
199.
Spectral, Coordination and Thermal Properties of
5-Arylidene Thiobarbituric Acids
Mamdouh S. Masoud a, Adel El-Marghany b, Adel Orabi c ,
Alaa E. Ali d
, Reham Sayed b.
a
Chemistry Department, Faculty of Science, Alexandria University, Egypt.
b
Chemistry Department, Faculty of Education, Suez Canal University, Egypt.
c
Chemistry Department, Faculty of Science, Suez Canal University, Egypt.
d
Chemistry Department, Faculty of Science, Damanhour University, Egypt.
Abstract
Synthesis of 5-arylidine thiobarbituric acids containing different functional groups
with variable electronic characters were described and their Co+2, Ni+2 and Cu+2
complexes. The stereochemistry and mode of bonding of 5-(substituted benzylidine)2- TBA complexes were achieved based on elemental analysis, spectral (UV-VIS,
IR, 1HNMR, MS), magnetic susceptibility and conductivity measurements. The
ligands were of bidentate and tridentate bonding through S, N and O of pyrimidine
nucleolus.
All complexes were of octahedral configuration. The thermal data of the complexes
pointed to their stability. The mechanism of the thermal decomposition is discussed.
The thermodynamic parameters of the dissociation steps were evaluated and
discussed.
Keywords: 5-arylidine thiobarbituric acids, complexes, NMR, Thermal analysis
REFERENCE:
[1] R.G. Sans, M.G. Chozas, Pharmazie, 43(12)(1988) 827; C.A. 110.
146971d (1989)
[2] W.C. Cutting, Book of Pharmacol., 3rd Ed. Meredith Publishing
Company, New York (1967).
[3] T. Wasankari, V. Kjala, O. Heinonen, J. Kapanen, Clin. Chim.
Acta 234 (12) (1995).
[4] M.S. Masoud, S.A. Abou El-Enein, H.A. Motoweh, A.E. Ali, J.
Therm. Anal. Cal.,75, 51 (2004).
[5] M.S. Masoud, E.A. Khalil, A.M. Hindawey, A.E. Ali, E.M.
Fawzy, Spectrochim. Acta, 60A, 2807(2004).
[6] M.S. Masoud, S.A. Abou El-Enein, M. Ayad, A.S. Goher,
Spectrochim. Acta A, 60, 1, 77 (2004).
[7] M.E. Mahmoud, M.S. Masoud, N.N. Maximous, Mikrochim. Acta
147(1-2)111(2004).
[8] M.S. Masoud, A.A. Soayed, A.E. Ali, Spectrochim. Acta, 60A,
1907 (2004).
[9] M.S. Masoud, E.A. Khalil, A.M. Hafez, A.F. El-Husseiny,
Spectrochim. Acta, A, 61, 989 (2005).
[10] M.S. Masoud, A.E. Ali, R.H. Mohamed, M.A. Mostafa,
Spectrochim. Acta, 62A, 1114 (2005).
[11] M.S. Masoud, E.A. Khalil, A.M. Hindawy, A.M. Ramadan, Canad.
J. Anal. Sci. and Spectroscopy 50 (4) 175 (2005).
[12] M.S. Masoud, M.F. Amira, S.A. El Moneim. G.M. Mohazy, A.A.
Abou Hagar, Gh.M. El Ashry, Egyptian Science Magazine 2 (4) 79
(2005).
[13] M.S. Masoud, T.S. Kasem, M.A. Shaker, A.E. Ali, J. Therm. Anal.
Cal., 84, 549 (2006) .
[14] M.J. Zaworotko, H.H. Hammud, I. Abbas, V.Ch. Kravstov, M.S.
Masoud, J. Coord. Chem., 59 (1) 65 (2006).
[15] M.S. Masoud, S.S. Hagag, E.A. Khalil, Nucleosides, Nucleotides
and Nucleic Acids 25 (1) 73 (2006) .
[16] M.S. Masoud, M.A. Shaker, A.E. Ali, Spectrochim. Acta 65A, 127
(2006).
[17] M.S. Masoud, E.A. Khalil, A.M. Ramadan, J. Anal. & Applied
Pyrolysis, 78 (1) 14 (2007).
[18] M.S. Masoud, E.A. Khalil, A.M. Ramadan, Y.M. Gohar, A.
Sweyllam, Spectrochim. Acta 67A, 669 (2007).
[19] M.S. Masoud, A.A. Ibrahim, E.A. Khalil, A. El-Marghany,
Spectrochim. Acta 67A, 662 (2007).
[20] M.S. Masoud, Y.H. Keshk, M.S. Tawfik, A.F. El Hossieny, Bull.
Fac. Sci. Alex. Univ.45 (1, 2) 32 (2007).
[21] M.S. Masoud, M.F. Amira, A.M. Ramadan, Gh.M. El Ashry,
Spectrochim. Acta 69A, 230 (2008).
[22] M.S. Masoud, S.A. Abou El-Enein, A.M. Ramadan, A.S. Goher, J.
Anal. $ Applied Pyrolysis, 81, 45 (2008).
[23] H.H. Hammud, M.S. Masoud, K. Travis Holman, A. El-Faham, H.
Beidas, Inorg. Chim. Acta, 362, 3526 (2009).
[24] H.H. Hammud, G.Mc-Manus, A.M. Ghannoum, A. Kabbani, M.S.
Masoud, J. Chem. Crystallography, 39, 853 (2009).
[25] M.S. Masoud, A. El-Merghany, M.Y. Abd El-Kaway, Thaker,
Synth. React. Inorg. Met-Org. Chem., 39 (9), 537 (2009).
[26] M.S. Masoud, A. El-Merghany, A. M. Ramadan, M.Y. Abd ElKaway, J. Therm. Anal. Cal. 101, 839–847 (2010).
[27] M.S. Masoud, M.A. Shaker, A.E. Ali, G.S. Elasala, Spectrochim.
Acta 79A, 538 (2011).
[28] M.S. Masoud, A.E. Ali, M.A. Shaker, G.S. Elasala, Spectrochim.
Acta 90A, 93 (2012)
[29] M. Masoud, S.S. Hagagg, A.E. Ali, N.M. Nasr, J. Mol. Struct.,
1014, 17 (2012).
[30] M.S. Masoud, S.S. Hagagg, A.E. Ali, N.M. Nasr, Spectrochim.
Acta 94A, 256 (2012).
[31] Schwarzenbach, “Complexometric titration”, Translated by H.
Irving, Methuen Co., London (1957).
[32] B. N. Figgis, J. Lewis, “Modern Coordination Chemistry”,
Interscience, New York, P. 403 (1967).; Progr. Inorg. Chem., 6, 37
(1964).
[33] A. S. Orabi, Monatshef. Für Chemie, 129, 1139 (1998).
[34] R. A. Krause, K. Krause, Inorg. Chem., 19, 2600 (1980); 21, 2714
(1982); 23, 2195 (1984).
[35] B. V. Patel, K. Desai, B. T. Thaker, Synth. React. Inorg. Met-Org.
Chem., 19 (4), 391 (1989).
[36] S. Fun Tan, K. Peng Ang. Trans. Met. Chem., 13, 64 (1988).
[37] K. J rgensen, “Absorption Spectra and Chemical Bonding in
Complexes’, Pergamon Press (1962).
[38] D.M. Vallarine, N. E. Hill, J. V. Quagiliano, Inorg. Chem., 4, 1598
(1965).
[39] M.C. Browning, J.R. Mellor, D. G. Morgan, J. Chem. Soc. 693
(1962).
[40] N. Saha, A.K. Adak, Indian J. Chem., 25, 964 (1988).
[41] A. Syamal, Trans. Met. Chem., 5, 220 (1980).
[42] S. Satyanarayana, K.V. Reddy, Indian J. Chem., 28A(2), 169
(1989).
[43] E. Kwiatkowski, M. Kwiatkowski. Inorg. Chim. Acta., 42, 202
(1980).
[44] T. Matsushit, T. Shono, Polyhedron., 5, 3, 735 (1986).
[45] J. H. Flynn, J. Therm. Anal, 27, 95 (1983); 34, 367 (1988); 37, 293
(1991).
[46] H. R. Oswald, E. Dubler, “Thermal Analysis”, Edited by H. G.
Wiedemann, volum 2, Switzerland (1972).
[47] J. P. Elder, J. Therm. Anal. 36, 1077 (1990).
[48] E. Morillo, J.L.P. Rodringuez, C. Real, P.J.S. Soto, J. Therm. Anal.
44, 313 (1995).
[49] M.L. Dhar, O. Singh, J. Therm. Anal. 27, 259 (1991).
[50] K. Rraore, J. Therm. Anal., 4, 135 (1972).
Solvatochromaticity and pH dependence of the electronic absorption spectra of
some purines and pyrimidines and their metal complexes
Mamdouh S. Masouda, Medhat A. Shakerb, Alaa E. Ali b,∗, Gehan S. Elasalb
a
b
Chemistry Department, Faculty of Science, Alexandria University, Egypt
Chemistry Department, Faculty of Science, Damanhour University, Egypt
abstract
The solvatochromic responses of uric acid (Ua), 6-amino-2-thiouracil (ATU) and a
series of their complexes dissolved in ten solvents of different polarity have been
measured. The solvent-dependent UV/Vis spectroscopic absorption maxima, _max,
are assigned to the corresponding electronic transitions and analyzed using SPSS
program, regression analysis and Kamlet and Taft methods.
The observed solvatochromism is discussed using various solute–solvent interaction
mechanisms. The electronic absorption spectra of ATU were investigated in aqueous
buffer solutions of varying pH and utilized for the determination of dissociation
constants. The ranges of pH, where individual ionic species are predominant have
been determined.
Keywords:
Uric
6-Amino-2-thiouracil
Complexes
Solvatochromic
Dissociation constants
pH-effect
published in
Spectrochimica Acta Part A 79 (2011) 538–547
References
[1] F. Hueso, N.A. Illan, M.N. Moreno, J.M.Martinez, M.J. Ramirez, J. Inorg.
Biochem.
94 (2003) 326–334.
[2] M.S. Masoud, M.K. Awad, M.A. Shaker, M.M.T. El-Tahawy, Corros. Sci. 52
(2010)
2387–2396.
[3] M.S. Masoud, M.F. Amira, A.M. Ramadan, G.M. El-Ashry, Spectrochim. Acta
69A
(2008) 230–238.
4] M.S. Masoud, E.A. Khalil, A.M. Ramadan, Y.M. Gohar, A. Sweyllam,
Spectrochim.
Acta 67A (2007) 669–677.
[5] M.S. Masoud, E.A. Khalil, A.M. Hindawy, A.E. Ali, E.F. Mohamed,
Spectrochim.
Acta 60A (2004) 2807–2817.
[6] M.S. Masoud, S.A. Abou El-Enein, O.F. Hafez, J. Therm. Anal. 38 (1992)
1365–1376.
[7] M.S. Masoud, S.S. Haggag, Z.M. Zaki, M. El-Shabasy, Spectrosc. Lett. 27
(1994)
775–786.
[8] M.S. Masoud, A.A. Hasanein, A.K. Ghonaim, E.A. Khalil, A.A. Mahmoud, Z.
Phys.
Chem. 209 (1999) 223–228.
[9] M.S. Masoud, S.A. Abou El-Enein, N.A. Obeid, Z. Phys. Chem. 215 (2001)
867–872.
[10] M.S. Masoud, S.A. Abou El-Enein, H.M. Kamel, Indian J. Chem. 41A (2002)
297–301.
[11] M.S. Masoud, A.Kh. Ghonaim, R.H. Ahmed, S.A. Abou El-Enein, A.A.
Mahmoud,
J. Coord. Chem. 55 (2002) 79–105.
[12] M.S. Masoud, S.A. Abou El-Enein, M.E. Ayad, A.S. Goher, Spectrochim. Acta
60A
(2004) 70–87.
[13] M.S. Masoud, E.A. Khalil, A.M. Hafez, A.F. El-Husseiny, Spectrochim. Acta
61A
(2004) 989–993.
[14] R.M. Izatt, J.H. Christensen, J.H. Rytting, Chem. Rev. 72 (1971) 439–481.
[15] D. Voet, J.G. Voet, Biochemistry, 3rd ed., Wiley, New York, 2004.
[16] C. Ronco, P. Inguaggiato, V. Bordoni, M. De Cal, M. Bonello, E. Andrikos, Y.
Assuman, R. Rattanarat, R. Bellomo, Contrib. Nephrol. 147 (2005) 115–123.
[17] B.D. Cheson, B.S. Dutcher, J. Support Oncol. 3 (2005) 127–128.
[18] A.M. Tsimberidou, M.J. Keating, Contrib. Nephrol. 147 (2005) 47–60.
[19] M.J. Kamlet, R.W. Taft, J. Am. Chem. Soc. 98 (1976) 377–383.
[20] M.J. Kamlet, J.L. Abboud, R.W. Taft, J. Am. Chem. Soc. 99 (1977) 6027–6038.
[21] M.J. Kamlet, J.L. Abboud, R.W. Taft, in: R.W. Taft (Ed.), Progress in Physical
Organic Chemistry, vol. 13, Interscience, New York, 1981, p. 445.
[22] I. Marques, G. Fonrodona, S. Butˇıı, J. Barbosa, Trends Anal. Chem. 18 (1999)
72–76.
[23] M.S. Masoud, A.E. Ali, M.A. Shaker, M. Abdul Ghani, Spectrochim. Acta 61A
(2005) 3102–3107.
[24] M.S. Masoud, A.E. Ali, M.A. Shaker, M. Abdul Ghani, Spectrochim. Acta 60A
(2004) 3155–3159.
[25] M.A. Khalifa, M.A. Shaker, Alex. J. Pharm. Sci. 9 (1995) 159–161.
[26] I. Marques, G. Fonrodona, A. Baro, J. Guiteras, J.L. Beltran, Anal. Chim. Acta
471
(2002) 145–158.
[27] J.G. Kirkwood, J. Chem. Phys. 2 (1934) 351–361.
[28] G. David, H.E. Hallam, Spectrochim. Acta 23A (1967) 593–603.
[29] E.G. McRae, J. Phys. Chem. 61 (1957) 562–572.
[30] L.J. Hilliard, D.S. Foulk, H.S. Gold, Anal. Chim. Acta 133 (1981) 319–327.
[31] H.H. Hammud, A.M. Ghannoum, F.A. Fares, L.K. Abramian, K.H. Bouhadir, J.
Mol.
Struct. 881 (2008) 11–20.
[32] N. Triˇsovi´ c, N. Banjac, N. Valenti´ c, J. Sol. Chem. 38 (2009) 199–208.
[33] M.J. Kamlet, J.L. Abbould, R.W. Taft, Phys. Org. Chem. 13 (1981) 485–630.
[34] M. Eto, O. Tajiri, H. Nakagawa, K. Harano, Tetrahedron 54 (1998) 8009–8014.
[35] V. Stamatovska, V. Dimova, K. Cˇolancˇeska-Rag˙ enovik, Bull. Chem.
Technol.
Maced. 25 (2006) 9–20.
[36] O.V. Kovalchukova, R.K. Gridasova, B.E. Zaitsev, Z. Neorg. Khim. 26 (1981)
985–989.
[37] K. Jфrgensen, Absorption Spectra and Chemical Bonding in Complexes,
Pergamon
Press, 1962.
[38] A.B.P. Lever, Inorganic Electronic Spectroscopy, 2nd ed., Elsevier, Amsterdam,
1984.
[39] T.S. Basu Baul, T.K. Chattopadhyay, B. Majee, Polyhedron 2 (1983) 635–640.
[40] M.J. Kamlet, J.L.M. Abboud, M.H. Abraham, R.W. Taft, J. Org. Chem. 48
(1983)
2877–2887.
[41] G.S. Uscmlic, J.B. Nikolic, V.V. Krstic, J. Serb. Chem. Soc. 67 (2002) 353–
359.
[42] E. Rusu, D.O. Dorohoi, A. Airinei, J. Mol. Struct. 887 (2008) 216–219.
[43] M. El-Sayed, H. Muller, G. Rheinwald, S. Spange, Chem. Mater. 15 (2003)
746–751.
[44] M.D. Cohen, E. Fisher, J. Chem. Soc. (1962) 3044–3052.
[45] A. Albert, G.B. Barlin, J. Chem. Soc. (1959) 2384–2396.
[46] E.S. Raper, R.E. Oughtred, I.W. Nowell, Acta Crystallogr. C 41 (1985) 758–
760.
[47] M.S. Masoud, H.H. Hammud, H. Beidas, Thermochim. Acta 381 (2002) 119–
131.
[48] R.M. Issa, J. Chem. UAR 14 (1971) 113–124.
[49] A.A. Muk, M.B. Pravica, Anal. Chim. Acta 45 (1969) 534–538.
[50] J.C. Colleter, Ann. Chim. 5 (1960) 415–419.
[51] M.M. Taquikham, C.R. Krishnamorthy, J. Inorg. Nucl. Chem. 36 (1974) 711–
716.
[52] A.A. Shoukry, M.M. Shoukry, Spectrochim. Acta 70A (2008) 686–691.