2015 US-EU Workshop on 2D Layered Materials and Devices Two-Dimensional Carbides and Nitrides of Transition Metals the Largest Family of 2D Materials? Yury Gogotsi Director, A.J. Drexel Nanomaterials Institute Distinguished University and Trustee Chair Professor Department of Materials Science & Engineering Drexel University, Philadelphia, PA April 23, 2015 Background| MN+1AXN (MAX) Phases M: Early Transition Metal A: A Group A Element X: M X C and/or N C N Al Si P S Sc Ti V Cr Mn Ga Ge As Zr Nb Mo Cd In Sn Tl Pb Hf Ta 211 Ti2AlC Cr2GeC 312 Ti3SiC2 Ti3AlC2 413 Ti4AlN3 Nb4AlC3 IIIA IVA Ti2AlC V2AlC Cr2AlC Al Nb2AlC Ta2AlC Ti2AlN Ti3AlC2 V3AlC2 Ta3AlC2 Ti4AlN3 Nb4AlC3 V4AlC3 Ta4AlC3 Ti2GaC Ti2GaN V2GaC Cr2GaN Cr2GaC V2GaN Ga Nb2Ga Ti4GaC3 C Mo2Ga C Ta2GaC In Sc2InC Ti2InC Zr2InC Nb2InC Hf2InC Ti InN Tl 2 Ti2TlC Zr2TlC Hf2TlC Zr2TlN 211 M.W. Barsoum, in Nanomaterials Handbook (ed. Y. Gogotsi), CRC Press (2006) 312 VA VIA Ti2SC Ti SiC V PC Zr 2SC S Si 3 2 P 2 Ti4SiC3 Nb2PC Nb2SC Hf2SC Ge Ti2GeC V2GeC Cr2GeC Ti3GeC2 Ti4GeC3 Sn Ti2SnC Zr2SnC Nb2SnC Hf2SnC Hf2SnN Ti SnC2 Pb 3 Ti2PbC Zr2PbC Hf2PbC 413 As V2AsC Nb2As C From MN+1AXN (MAX) Phases to MXenes MN+1AXN + 3HF = MN+1XN + AF3 + 3/2 H2 M: Early Transition Metal A: A Group A Element X: M X C and/or N C N Al Si P S Sc Ti V Cr Mn Zr Nb Mo Ga Ge As Cd In Sn Tl Pb Hf Ta Sc Ti Zr Hf V Nb Ta Cr MXenes Ti2C V2C Nb2C (TiNb)2C Ti3C2 (VCr)3C2 Mo Ta4C3 Nb4C3 (TiV)3C2 Ti3(C.5N.5) Mn IIIA IVA Ti 2AlC V V2AlC Cr2AlC Cr Nb 2AlC Al Nb Ta Ta 2AlC Ti2AlN Ti3AlC2 V3AlC2 Ta3AlC2 Ti4AlN3 Nb4AlC3 V4AlC3 Ta4AlC3 Ti2GaC Ti2GaN Ti V 2GaC Cr2GaN V Cr2GaC V2GaN Ga Nb2Ga Nb Ti4GaC3 Mo C Mo2Ga Ta C Sc Ta Ti2GaC Sc2InC In Zr Nb Ti2InC Hf Zr2InC Nb2InC Hf2InC Ti Ti InN Zr Tl 2 Ti2TlC Hf Zr2TlC Hf2TlC Zr2TlN 211 312 M. Naguib, V. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Materials, 26, 992 (2014) M. Naguib, Y. Gogotsi, Acc. Chemical Research, 48, 128 (2015) VA VIA Ti Ti2SC Zr Ti V Si 3SiC2 P V2PC S Zr2SC Nb 2SC Nb 2PC Ti4SiC3 Nb Nb Hf 2SC Hf Ge Ti2GeC V 2GeC V Cr 2GeC Cr Ti3GeC2 As V2AsC Nb Nb2As C Ti4GeC3 Ti Zr Ti2SnC Sn Nb Zr2SnC Hf Nb2SnC Hf2SnC Hf Ti 2SnN Zr SnC2 Ti Pb 3 Hf Ti2PbC Zr2PbC Hf2PbC 413 B. Anasori Structure of MXenes 4 21: Ti2C, V2C, Nb2C, (Ti0.5,Nb0.5 )2C Few atom thick layered materials ü Transition metal oxide surface 32: Ti3C2, Ti3CN, ü Conductive carbide core (V0.5,Cr0.5)C2 43: Nb4C3, Ta4C3 M. Naguib, V. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Materials, 26, 992 (2014) M. Naguib, Y. Gogotsi, Acc. Chemical Research, 48, 128 (2015) MXenes: A Family of Layered Solids Ti3C2 MAX (Ti3AlC2) Ti2C 4 µm Ta4C3 MXenes 1 µm 2 µm 3 µm Thermally expanded graphite M. Naguib, et al. Adv. Mater. 23, 4248 (2011) M. Naguib, et al. ACS Nano 6, 1322 (2012) M. Naguib, et al. El. Comm. 16, 61 (2012) O. Mashtalir, et al. Nature Comm. 4, 1716 (2013) Ti3(C0.5N0.5 )2 1 µm M. Naguib, et al. J. Am. Chem. Soc. 135, 15966 (2013) M. Naguib, et al., Adv. Mater. 26, 992-1005 (2014) M.R. Lukatskaya, et al. Science 341, 1502 (2013) Sh. Jin, et al., J. Phys: Conf. Ser. 188, 012040 (2009) Single- and Multi-Layer MXene Ti3C2 Optically transparent ~1 nm flake thickness Ti3C2 TEM and SAED characterization M. Naguib, et al. Advanced Materials 23, 4248 (2011), J. Halim et al., Chem. Mater. 26, 2374 (2014), M. Naguib, et al., ACS Nano 6, 1322 (2012), M. Ghidiu et al., Nature 516, 78 (2014) 6 MXene Nanotubes and Nanoscrolls MXene nanoscrolls have been produced by sonication of MXene colloidal solutions MXene nanotubes have been predicted and studied computationally but have not been produced experimentally yet M. Naguib, et al., Adv. Mater. 23, 4248 (2011); A. N. Enyashin, et al. Comp. Theor. Chem. 989, 27 (2012) PDF Analysis of Ti3C2Tx Structure (a) as-produced Ti3C2Tx, (b) Na+, (c) K+ intercalated Ti3C2Tx C. Shi, et al. Phys. Rev. Letters, 112, 125501 (2014) 8 PDF Analysis of Nb4C3Tx Structure M. Ghidiu, et al. Chem. Comm. 50, 9517 (2014) Electronic Properties of MXenes Y. Xie, et al. Phys. Rev. B 87, 235441 (2013); M. Khazaei, et al. Adv. Funct. Mater. 23, 2185 (2013); I. R. Shein, et al. Comp. Mater. Sci. 65, 104 (2012) Effect of Surface Chemistry 11 M-atom X-atom X-atom M-atom • All bare MXenes monolayers are metallic OH, F or O surface group • OH, F and O terminated MXenes are semiconducting (band gap up to 2.0 eV) Some MXenes exhibit magnetic behavior: • • Bare Tin+1Xn (unlike functionalized), Tan+1Cn OH- and F-functionalized Cr2C and Cr2N (unlike other terminated MXenes). The Seebeck coefficients of semiconducting MXenes are predicted to be comparable to the reported giant Seebeck coefficient for SrTiO3 (850 µV/K around 90 K) M. Khazaei, et al., Adv. Funct. Mater. 23, 2185 (2013) Q. Tang, et al., J. Am. Chem. Soc. 134, 16909 (2012) Y. Xie, P. R. C. Kent, Physical Review B, 87, 235441 (2013) Resistivity and Magnetoresistance 20 nm films • The weak localization model fits the data to 2K, while the variable range hopping does not. • Weak localization is a common effect in metal films with nanoscale thickness J. Halim, et al. Chem. Mater. 26, 2374 (2014) 12 60 nm film MXene Synthesis Delaminated MXene Delamination Multilayered Mxene Ti3C2Tx HF Treatment MAX phase Ti3AlC2 13 DMSO intercalation water swelling SSA ≈ 23 m2/g O. Mashtalir, et al. Nature Communications, 2013, 4, 1716 SSA ≈ 98 m2/g Free-standing films made of Ti3C2Tx 14 … using aqueous solvent … using organic solvent Sonication in water Sonication in propylene carbonate 1-3 mg/ml 1 µm 1 µm • Free-standing films ~1-5 micron thickness • Strong enough for handling • Highly conductive (up to 4000 S/cm) • Hydrophilic (but can be switched to hydrophobic) M.R. Lukatskaya, et al., Science 341, 1502 (2013) O. Mashtalir, unpublished Tyndall effect PVA-Ti3C2Tx Composites 15 10 wt.% PVA gel added: • Intercalation between the layers • Electrically conductive ! Cross-sectional TEM image Z. Ling, et al., PNAS 111, 16676 (2104) 60 wt.% PVA gel added: • Uniform dispersion of single-layer flakes in the polymer • Insulator ! Composite MXene films (A) Ti3C2Tx, (B) Ti3C2Tx/PVA and, (C) Ti3C2Tx/PDDA films, and (D) rolled shiny Ti3C2Tx film on a glass rod (diameter of 10 mm). Z. Ling, et al., PNAS 111, 16676 (2104) MXene ‘clay’: LiF+HCl method Material behaves like a clay: can be easily rolled and shaped And at the same time is highly conductive M. Ghidiu, et al Nature, 2014, 516, 78-81 MXene ‘clay’| Easy electrode fabrication Step 1: add water Film is ready in >15 min Steps 2-3: roll and detach M. Ghidiu et al., Nature 516, 78 (2014) 18 Properties of MXene “clay” u Rolling into films of controllable thickness u Binder-free electrodes u Painting / Ink processing u Shaping into conductive solids u Reversible water swelling M. Ghidiu et al., Nature 516, 78 (2014) 19 Intercalation from aqueous electrolytes ü Layered open structure that can accommodate a range of differently sized ions: 1 µm Na+, K+, Mg2+, Al3+ ü Many cations spontaneously intercalate into the MXene structure ü Polar molecules (amines, DMSO, hydrazine) intercalate too M. Lukatskaya, et al. Science, 341, 1502 (2013) Mechanisms of Charge Storage Supercapacitors (ultracapacitors, double-‐layer capacitors, electrochemical capacitors) differ in their electrical and electrochemical characterisJcs from baKeries. P. Simon, Y. Gogotsi, B. Dunn, Science, 343, 1210 (2014) Electrochemical performance of Ti3C2Tx paper Scan rate: 20 mV/s, 1 M KOH J High volumetric capacitance, much higher than for porous carbons (60-200 F/cm3 for activated graphene) J Excellent cycling ability! M. R. Lukatskaya, et al. Science, 2013, 341, 1502 22 Electrochemical performance of MXene ‘clay’ 23 Clay (5 µm rolled film) 2X Capacitance, F/cm3 1000 5 µm 800 600 30 µm 75 µm 400 200 0 1 2 5 10 20 50 100 Scan rate, mV/s M. Ghidiu, et al. Nature, 2014, 516, 78 MXenes: 2D Transition Metals Carbides and Nitrides >15 synthesized in about 4 years Dozens predicted M2AX M3AX2 M4AX3 Etching “A” layer from Mn+1AXn + Sonication ð MXene M2 X M3X2 M4X3 M. Naguib, et al. Adv. Mater., 26, 992 (2014) ü Metallic conductors ü Narrow band-gap semiconductors ü Transparent in thin films ü Hydrophilic ü Can open band gap ü Paper, films, composites ü Polar molecules intercalated ü Cations intercalated: H+, NH4+, Li+, Na+, K+, Cs+, TMA+, Mg2+, Al3+ and other Promising Applications of MXenes Aqueous (asymmetric) electrochemical capacitors (M. Lukatskaya, Science 2013; Nature, 2014) Li-ion and Na-ion capacitors (J. Come, JES, 2013; X. Wang, Nature Comm., 2015) Li+, Na+, Mg2+ batteries (Y. Xie, JACS 2014, ACS Nano, 2014, ) Catalysis (X. Li, IJHE, 2014; X. Xie, Nanoscale 2014; Chem. Comm. 2014) Multifunctional composites (Z. Ling, PNAS, 2014) Flexible & wearable energy storage devices Structural components Radiofrequency shielding Transparent conducting coatings (J. Halim, Mater. Chem, 2014) Sensors (J. Chen, Chem. Comm, 2014) Sorbents (O. Mashtalir, JMC A, 2014) Water purification (sorption of Pb and Cr ions) (Q. Peng, JACS, 2014; Y. Ying, ACS Appl. Mater. Interf., 2015) Lubricant (X. Zhang, RSC Advances, 2015) Hydrogen storage (only modeling so far, Q. Hu, JPC A, 2013) Thermoelectrics (only modeling so far, A. Khazaei, AFM, 2013) Electronic devices, heterostructures (only modeling so far, L.-Y. Gan, PRB, 2013, and other) European Collaborators and Funding 26 u Prof. Patrice Simon, Paul Sabatier University, France – capacitive energy storage u Prof. Thierry Djenizian, Aix-Marseille University, France – electrochemical etching u Dr. Encarnación Raymundo-Pinero, CNRS – CEMHTI, Orleans, France thermal analysis + mass-spec u Prof. Lars Hultman, Dr. Jun Lu, Dr. Per Eklund, Linkoping University, Sweden – magnetron sputtering of MAX phase films, TEM (M. Barsoum) u Dr. Volker Presser, University of Saarland, Germany - synthesis u Prof. Clare Grey, Cambridge, UK, Nuclear Magnetic Resonance (NMR) u Dr. Susan Sandeman, Univ. Brighton, UK – biocompatibility and cytotoxicity Acknowledgments Current and former students and postdocs: Dr. Michael Naguib Dr. Vadym Mochalin, Dr. Meng-Qiang Zhao Dr. Babak Anasori Dr. Majid Beidaghi Maria Lukatskaya Olha Mashtalir Chang E. Ren Zheng Ling Yohan Dall’Agnese Joseph Halim (M.B.) Michael Ghidiu (M.B.) Prof. Michel W. Barsoum, MSE Department, Drexel University Prof. Steven May, Cole Smith, MSE Department, Drexel University Prof. Simon Billinge, C. Shi, Columbia Univ. Prof. M. Levi and Prof. D. Aurbach, Israel Dr. Paul Kent and Dr. Yu Xie, ORNL EERE BATT
© Copyright 2024