Name Date Class Practice A LESSON 5-8 Applying Special Right Triangles " 1. The sum of the angle measures in a triangle is 180°. Find the missing angle measure. Then use the Pythagorean Theorem to find the length of the hypotenuse. ! X 45°; 2 # In a 45°-45°-90° triangle, the legs have equal length and the hypotenuse is the length of one of the legs multiplied by 2 . Find the value of x. 2. 3. 2 X 45° 2 45° 45° X 4. X 10 45° 45° 10qi 2 4qi 2 2 2 45° X 4 10 5. Find the missing angle measure. Then use the Pythagorean Theorem to find the length of the hypotenuse. 60°; 3 In a 30°-60°-90° triangle, the hypotenuse is the length of the shorter leg multiplied by 2, and the longer leg is the length of the shorter leg multiplied by 3 . Find the values of x and y. 60° 8 7qi 3 30° X X 30° 60° Y 6. x 4 y 4 3 7. x X 10 Y 60° 7 14 y 8. x 30° Y 10 3 y 20 For Exercises 9 and 10, use a calculator to find each answer. 9. Andre is building a structure out of playing cards. Each card is 6.3 centimeters long. He tries leaning the cards against each other so that the angle at the top is 90°. Find the distance between the edges of the cards to the nearest tenth. 10. Andre tries leaning the cards against each other so the angle at the top is 60°. Find the height x of the tops of the cards. 6.3 cm 90° 6.3 cm 90° 8.9 cm CM X CM CM 5.5 cm 11. Tell whether Andre can lay another card across the peaks of the structures he built in Exercises 9 and 10. Possible answer: Andre cannot lay a card across the top of the structure in Exercise 9 because 6.3 cm 8.9 cm. He can probably not lay a card across the top of the structure in Exercise 10 because 6.3 cm is the distance between two consecutive peaks, and there should be some overlap for the card to stay. Copyright © by Holt, Rinehart and Winston. All rights reserved. 59 Holt Geometry Name Date Class Name Practice A LESSON 5-8 5-8 � 1. The sum of the angle measures in a triangle is 180°. Find the missing angle measure. Then use the Pythagorean Theorem to find the length ��� of the hypotenuse. � � � 45°; �2 � 3. � 45° 2 45° � 4. � 45° 10�� 2 4�� 2 2� 2 16 � 45° 60°; �3 30° � � 4 6. x � y� � 4� 3 7. x � � 10 � 60° 60° 7 14 y� 8. x � 30° � � 10� 3 20 y� 9. Andre is building a structure out of playing cards. Each card is 6.3 centimeters long. He tries leaning the cards against each other so that the angle at the top is 90°. Find the distance between the edges of the cards to the nearest tenth. 10. Andre tries leaning the cards against each other so the angle at the top is 60°. Find the height x of the tops of the cards. 90° 6.3 cm 90° � ��� 5.5 cm triangle whose hypotenuse is the length of one of the legs of the larger � 57�2 inches or about 10 inches, so triangle. The height of the alcove is _____ 8 He can probably not lay a card across the top of the structure in Exercise 10 because 6.3 cm is the distance between two consecutive the statues could have been placed in the alcoves. peaks, and there should be some overlap for the card to stay. Name LESSON 5-8 Date Holt Geometry Class Name LESSON 5-8 Applying Special Right Triangles Multiply and simplify. Assume a and b are nonnegative. a�b 2 � 30° � 4. 5. 60° Theorem � ��4 Example 45°-45°-90° Triangle Theorem In a 45°-45°-90° triangle, both legs are congruent and the length of the hypotenuse � is � 2 times the length of a leg. ��4 �° 2�° � Holt Geometry Class Applying Special Right Triangles 2 Find the value of x in each figure. Give your answers in simplest radical form. 3. Date Reteach a �b � 2. (a � �b)(a � � b) � 60 Copyright © by Holt, Rinehart and Winston. All rights reserved. Practice C a � b)(�� a � b) � 1. (�� 3 y� perpendicular to the hypotenuse. This makes another smaller 45°-45°-90° Andre cannot lay a card across the top of the structure in Exercise 9 because 6.3 cm � 8.9 cm. 59 � �3 6. x � Possible answer: To find the height of a 45°-45°-90° triangle, draw a 11. Tell whether Andre can lay another card across the peaks of the structures he built in Exercises 9 and 10. Possible answer: Copyright © by Holt, Rinehart and Winston. All rights reserved. � 8� 3 y� inches 16 tall. She wonders whether the statues might have been placed in the alcoves. Tell whether this is possible. Explain your answer. ������ ����� ��� �� � 4�3 8. Lucia also finds several statues around the building. The statues measure 9 8.9 cm ��� ������ 5. x � Possible answer: Lucia’s hypothesis cannot be correct. The base of the � 57�2 inches or just over 20 inches long, so a 22 _1_-inch tablet alcove is _____ 4 8 could not fit. 7 ___ For Exercises 9 and 10, use a calculator to find each answer. 6.3 cm � 20� 3 7. Around the perimeter of the building, Lucia finds small alcoves at regular intervals carved into the stone. The alcoves are triangular in shape with a horizontal base and two sloped equal-length sides that meet at a right angle. Each of the sloped sides measures 14 _1_ 4 inches. Lucia has also found several stone tablets inscribed with characters. The stone tablets measure 22 _1_ inches long. Lucia hypothesizes that the alcoves once held the stone 8 tablets. Tell whether Lucia’s hypothesis may be correct. Explain your answer. 7�� 3 � y� 2� ° 2�� 3 Lucia is an archaeologist trekking through the jungle of the Yucatan Peninsula. She stumbles upon a stone structure covered with creeper vines and ferns. She immediately begins taking measurements of her discovery. (Hint: Drawing some figures may help.) � 8 30 4. x � � � �° 60° � In a 30°-60°-90° triangle, the hypotenuse is the length of the shorter leg multiplied by 2, and the longer leg is the length of the shorter leg � multiplied by �3. Find the values of x and y. 30° � � � 30° ��� � 2 12 10�� 3 10 � � 7� 2 ____ 2 Find the values of x and y. Give your answers in simplest radical form. 4 5. Find the missing angle measure. Then use the Pythagorean Theorem to find the length of the hypotenuse. 60° � � � 45° � 10 45° 45° 2�� 2 7 � 45° � In a 45°-45°-90° triangle, the legs have equal length and the hypotenuse � is the length of one of the legs multiplied by �2. Find the value of x. 2 Applying Special Right Triangles Find the value of x in each figure. Give your answer in simplest radical form. 2. 3. 1. 8��2 �� � Class Practice B LESSON Applying Special Right Triangles 2. Date ��� ��� � � ��� �� �� ��� ��� � ����� ��4 � 4 6. � 2�3 � 2 7. � � 8�3 � 12 8. 30° 4�2 � 4 1 1 � �2 ��� _1_ � Use the 45°-45°-90° Triangle Theorem to find the value of x in �EFG. 2 Every isosceles right triangle is a 45°-45°-90° triangle. Triangle EFG is a 45°-45°-90° triangle with a hypotenuse of length 10. Greg is a modeling enthusiast. He is working on modeling some geometric shapes, but he finds he doesn’t have a ruler to take measurements. In Greg’s desk drawer, he finds a protractor, a straightedge, and a pencil. For Exercises 9 and 10, use 30°-60°-90° and/or 45°-45°-90° triangles to accomplish each task. � � � Rationalize the denominator. 2. �� � ��� �� ��� � ��� � � x � 17 �2 ��� �� � � � � �� � 3. x � 22 � 2 4. � � � � 30°-60°-90° triangle. The shorter leg of this second triangle then has length _1_x. Use that leg as the longer leg of a third 30°-60°-90° triangle. 3 This smallest triangle has sides that are exactly one-third the length of the original. Copyright © by Holt, Rinehart and Winston. All rights reserved. � � � Divide both sides by �2. 1. ��� Possible answer: Name the length of the longer leg in � � �3 x. ��� a 30°-60°-90° triangle x. The shorter leg has length ___ 3 Use the shorter leg of the original triangle as the longer leg of another 61 Hypotenuse is �2 times the length of a leg. Find the value of x. Give your answers in simplest radical form. Possible answer: Use one of the legs of the original 45°-45°-90° triangle as the shorter leg of a 30°-60°-90° triangle. The hypotenuse of the 30°-60°-90° triangle will then have twice the length of one of the legs of the 45°-45°-90° triangle. Then draw a 45°-45°-90° triangle with a leg as the hypotenuse of the 30°-60°-90° triangle. This larger 45°-45°-90° triangle has legs with exactly twice the length of the original 45°-45°-90° triangle. 10. Describe how Greg can draw an exact 1 : 3 replica of a 30°-60°-90° triangle. Sketch an example. �� � � 10 � x � 2 � x� 2 10 � ____ ___ � � �2 �2 � 5� 2 � x 9. Describe how Greg can draw an exact 2 : 1 replica of a 45°-45°-90° triangle. That is, he will draw a triangle that has double the length of each side in the original triangle. (Hint: Look back at Exercise 8.) Copyright © by Holt, Rinehart and Winston. All rights reserved. � ��� � 45° 60° � ��� � 45° � ��4 In a 45°-45°-90° triangle, if a leg length is x, then the hypotenuse � length is x �2. � x � 4 �2 Holt Geometry Copyright © by Holt, Rinehart and Winston. All rights reserved. 81 ����� ��� x � 25 62 Holt Geometry Holt Geometry
© Copyright 2024