Creep-resistant steels

Creep-resistant
steels
Edited by
Fujio Abe, Torsten-Ulf Kern and R. Viswanathan
Woodhead Publishing and Maney Publishing
on behalf of
The Institute of Materials, Minerals & Mining
CRC Press
Boca Raton Boston New York Washington, DC
WOODHEAD PUBLISHING LIMITED
Cambridge England
Contents
Contributor contact details
xiii
Preface
xix
Part I General
1
Introduction
3
F. ABE, National Institute for Materials Science (NIMS), Japan
1.1
1.2
1.3
1.4
1.5
1.6
Definition of creep
Creep and creep rate curves
Creep rupture data
Deformation mechanism map
Fracture mechanism map
References
3
3
7
9
11
14
2
The development of creep-resistant steels
15
K.-H. MAYER, ALSTOM Energie GmbH, Germany and F. MASUYAMA,
Kyushu Institute of Technology, Japan
2.1
2.2
2.3
2.4
2.5
15
18
19
42
2.6
2.7
Introduction
Requirements for heat-resistant steels
Historical development of ferritic steels
Historical development of austenitic steels
Historical development of steel melting and of the purity
of heat-resistant steels
.
Summary
References
3
Specifications for creep-resistant steels: furope
78
64
67
70
G. MERCKUNG, RTM BREDA Milano, Italy
3.1
Introduction
78
vi
Contents
3.2
3.3
3.4
3.6
3.7
Specifications and standards
The European Creep Collaborative Committee (ECCC)
European Pressure Equipment Research Council
(EPERC)
The latest generation of CEN standards for creep-resistant
steels
Future trends
References
95
150
151
4
Specifications for creep-resistant steels: Japan
155
3.5
81
85
92
F. MASUYAMA, Kyushu Institute of Technology, Japan
4.1
4.2
4.3
4.4
4.5
4.6
4.7
Introduction
Types of heat-resistant steels in Japan
Specifications for high temperature tubing and piping
steels
Specifications for steam turbine steels
Heat-resistant super alloys
Summary
References
155
155
158
169
169
169
173
5
Production of creep-resistant steels for turbines
174
Y. TANAKA, Japan Steel Works, Japan
5.1
5.2
5.3
5.4
5.5
Introduction
Overview of production technology of rotor shaft
forgings for high temperature steam turbines
Production and properties of turbine rotor forgings for
high temperature applications
Future trends
References
"
174
175
192
207
212
Part II Behaviour of creep-resistant steels
6
Physical and elastic behaviour of creep-resistant steels 217
Y. YIN and R.G. FAULKNER, Loughborough University, UK
6.1
6.2
6.3
6.4
6.5
6.6
6.7
Introduction
217
Elastic behaviour
219
Thermal properties of creep-resistant steels
225
Electrical resistivity and conductivity of creep-resistant steels 234
Implications for industries using creep-resistant steels
238
Future trends
239
References
'
239
Contents
7
Diffusion behaviour of -creep-resistant steels
vii
241
H. OIKAWA and Y. IIJIMA, Tohoku University, Japan
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
8
Introduction
Diffusion and creep
.
Diffusion characteristics
Roles of atom/vacancy movement in creep
Influence of some factors on creep through their effects
on diffusion
Diffusion data in iron and in some iron-base alloys
Concluding remarks
References
Fundamental aspects of creep deformation and
deformation mechanism map
241
241
243
248
250
255
260
263
265
K. MARUYAMA, Tohoku University, Japan
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
Introduction
Stress-strain response of materials
Temperature and strain rate dependence of yield stress
Deformation upon loading of creep test
Creep behavior below and above athermal yield stress
Change in creep behavior at athermal yield stress o a
Deformation mechanism maps
Concluding remarks
References
265
265
267
269
270
271
275
278
278
9
Strengthening mechanisms in steel for creep and
creep rupture
279
F. ABE, National Institute for Material Science (NIMS), Japan
9.1
9.2
9.3
9.4
9.5
9.6
10
Introduction
Basic ways of strengthening steels at elevated temperature
Strengthening mechanisms in modern creep-resistant steels
Loss of strengthening mechanisms in 9-12Cr steels
during long time periods
Future trends
References
Precipitation during heat treatment and service:
characterization, simulation and strength contribution
279
279
287
295
301
301
305
E. KOZESCHNIK and I. HOLZER, Graz University of Technology, Austria
10.1
Introduction
305
viii
Contents
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
Microstructure analysis of the COST alloy CB8
Modelling precipitation in complex systems
Computer simulation of the precipitate evolution in CB8
Microstructure-property relationships
The back-stress concept
Loss of precipitation strengthening during service of CB8
Summary and outlook
References
306
312
315
320
322
324
325
326
11
-Grain boundaries in creep-resistant steels
329
R.G. FAULKNER, Loughborough University, UK
11.1
11.2
11.3
11.4
11.5
11.6
12
Introduction
Ferritic steels
Austenitic steels
Grain boundary properties and constitutive creep design
equations
Future trends
References
Fracture mechanism map and fundamental aspects
of creep fracture
329
330
341
345
346
347
350
K. MARUYAMA, Tohoku University, Japan
12.1
12.2
12.3
12.4
12.5
Introduction
Fracture mechanisms and ductility of materials
Stress and temperature dependence of rupture life
Fracture mechanism maps
Influence of fracture mechanism change on creep rupture
strength
12.6 Influence of microstructural degradation on creep rupture
strength
12.7
Change in creep rupture properties at athermal yield stress
12.8 Multi-region analysis of creep rupture data
12.9
Summary
12.10 References
'
350
351
352
355
13
365
Mechanisms of creep deformation in steel
356
358
359
361
362
364
W. BLUM, University of Erlangen-Nuernberg, Germany
13.1
13.2
13.3
13.4
Introduction
Initial microstructure
Creep at constant stress
Transient response to stress changes
365
366
368
370
Contents
Cyclic creep
Microstructural interpretation of creep fate
Dislocation models of creep
In situ transition electron microscope observations of
dislocation activity
13.9
Discussion and outlook
13.10 Acknowledgments
13.11 References
13.12 Appendix: Microstructural model Mikora
13.5
13.6
13.7
13.8
14
Constitutive equations for creep curves and
predicting service life
ix
374
375
385
389
393
395
395
401
403
S.R. HOLDSWORTH, EMPA - Materials Science & Technology,
Switzerland
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
Introduction
Constitutive equations
Constitutive equation selection
Predicting service life
Future trends
Concluding remarks
Nomenclature
References
403
405
405
412
416
416
416
417
15
Creep strain analysis for steel
421
B. WILSHIRE and H. BURT, University of Wales "Swansea, UK
15.1
15.2
15.3
15.4
15.5
15.6
Introduction
Creep-induced strain
Patterns of creep strain accumulation
Practical implications of creep strain analysis
Future data analysis options
References
421
422
427
433
441
442
16
Creep fatigue behaviour and crack growth of steels
446
C. BERGER, A. SCHOLZ, F. MUELLER and M. SCHWIENHEER, Darmstadt
University of Technology, Germany
16.1
16.2
16.3
16.4
16.5
16.6
Introduction
Creep-fatigue experiments
Stress-strain behaviour
Creep-fatigue interaction, life estimation
Multiaxial behaviour
Creep and creep-fatigue crack behaviour
446
447
449
449
456
459
x
Contents
16.7
16.8
16.9
Concluding remarks
Acknowledgements
References
468
469
469
17
Creep strength of welded joints of ferritic steels
472
H. CERJAK and P. MAYR, Graz University of Technology, Austria
17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
18
Introduction
Influence of weld thermal cycles on the microstructure of
ferritic heat-resistant steels
Weld metal development for creep-resistant steels
Creep behaviour of welded joints
Selected damage mechanism in creep-exposed welded
joints
Implications for industries using welded creep-resistant
steels
Future trends
References
Fracture mechanics: understanding in
microdimensions
472
474
482
483
484
495
496
498
504
M. TABUCHI, National Institute for Materials Science (NIMS),
Japan
18.1
18.2
18.3
18.4
18.5
18.6
Introduction
Non-linear fracture mechanics
Effect of mechanical constraint
Effect of microscopic fracture mechanisms
Type IV creep crack growth in welded joints
References
"504
504
507
509
513
"517
19
Mechanisms of oxidation and the influence of
steam oxidation on service life of steam power
plant components
519
P. J. ENNIS and W. J. QUADAKKERS, Forschungszentrum Juelich GmbH,
Germany
19.1
19.2
19.3
19.4
19.5
19.6
Introduction
Mechanisms of enhanced steam oxidation
Steam oxidation rates
Oxidation and service life
Development of steam oxidation-resistant steels
Outlook
519
520
525
530
532
533
Contents
19.7
19.8
Sources of further information
References
xi
534
534
Part III Applications
20
Alloy design philosophy of creep-resistant steels
539
M. IGARASHI, Sumitomo Metal Industries, Japan
20.1
20.2
20.3
20.4
Introduction
Creep-resistant steels for particular components in power
plants and the properties required
Alloy design philosophies of creep-resistant steels
References
539
539
341
570
21
Using creep-resistant steels in turbines
573
T.-U. KERN, Siemens AG Power Generation Group, Germany
21.1
21.2
21.3
573
'574
21.4
21.5
21.6
Introduction
Implications for industries using creep-resistant steels
Improving the performance and service life of steel
components
Next steps into the future
Summary
References
22
Using creep-resistant steels in nuclear reactors
597
583
591
593
393
S.K. ALBERT, Indira Gandhi Centre for Atomic Research, India and
S. SUNDARESAN, Maharaja Sayajirao University, Baroda, India
22.1
Introduction
22.2
Radiation damage
22.3
Embrittlement caused by ageing
22.4
Use of heat-resistant steels in major reactor types
22.5
Fabrication and joining considerations
22.6 . Summary
22.7
References
23
Creep damage - industry needs and future research
and development
597
598
611
613
629
331
632
-637
R. VISWANATHAN and R. TILLEY, Electric Power Research
Institute, USA
23.1
23.2
Introduction
Calculation^! methods 4br estimating damage
637
-638
xii
Contents
23.3
23.4
23.5
23.6
23.7
Non-destructive evaluation methods
Accelerated destructive tests
High temperature crack growth
Future trends
References
Index
1543
653
658
662
663
667