Creep-resistant steels Edited by Fujio Abe, Torsten-Ulf Kern and R. Viswanathan Woodhead Publishing and Maney Publishing on behalf of The Institute of Materials, Minerals & Mining CRC Press Boca Raton Boston New York Washington, DC WOODHEAD PUBLISHING LIMITED Cambridge England Contents Contributor contact details xiii Preface xix Part I General 1 Introduction 3 F. ABE, National Institute for Materials Science (NIMS), Japan 1.1 1.2 1.3 1.4 1.5 1.6 Definition of creep Creep and creep rate curves Creep rupture data Deformation mechanism map Fracture mechanism map References 3 3 7 9 11 14 2 The development of creep-resistant steels 15 K.-H. MAYER, ALSTOM Energie GmbH, Germany and F. MASUYAMA, Kyushu Institute of Technology, Japan 2.1 2.2 2.3 2.4 2.5 15 18 19 42 2.6 2.7 Introduction Requirements for heat-resistant steels Historical development of ferritic steels Historical development of austenitic steels Historical development of steel melting and of the purity of heat-resistant steels . Summary References 3 Specifications for creep-resistant steels: furope 78 64 67 70 G. MERCKUNG, RTM BREDA Milano, Italy 3.1 Introduction 78 vi Contents 3.2 3.3 3.4 3.6 3.7 Specifications and standards The European Creep Collaborative Committee (ECCC) European Pressure Equipment Research Council (EPERC) The latest generation of CEN standards for creep-resistant steels Future trends References 95 150 151 4 Specifications for creep-resistant steels: Japan 155 3.5 81 85 92 F. MASUYAMA, Kyushu Institute of Technology, Japan 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Introduction Types of heat-resistant steels in Japan Specifications for high temperature tubing and piping steels Specifications for steam turbine steels Heat-resistant super alloys Summary References 155 155 158 169 169 169 173 5 Production of creep-resistant steels for turbines 174 Y. TANAKA, Japan Steel Works, Japan 5.1 5.2 5.3 5.4 5.5 Introduction Overview of production technology of rotor shaft forgings for high temperature steam turbines Production and properties of turbine rotor forgings for high temperature applications Future trends References " 174 175 192 207 212 Part II Behaviour of creep-resistant steels 6 Physical and elastic behaviour of creep-resistant steels 217 Y. YIN and R.G. FAULKNER, Loughborough University, UK 6.1 6.2 6.3 6.4 6.5 6.6 6.7 Introduction 217 Elastic behaviour 219 Thermal properties of creep-resistant steels 225 Electrical resistivity and conductivity of creep-resistant steels 234 Implications for industries using creep-resistant steels 238 Future trends 239 References ' 239 Contents 7 Diffusion behaviour of -creep-resistant steels vii 241 H. OIKAWA and Y. IIJIMA, Tohoku University, Japan 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 8 Introduction Diffusion and creep . Diffusion characteristics Roles of atom/vacancy movement in creep Influence of some factors on creep through their effects on diffusion Diffusion data in iron and in some iron-base alloys Concluding remarks References Fundamental aspects of creep deformation and deformation mechanism map 241 241 243 248 250 255 260 263 265 K. MARUYAMA, Tohoku University, Japan 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 Introduction Stress-strain response of materials Temperature and strain rate dependence of yield stress Deformation upon loading of creep test Creep behavior below and above athermal yield stress Change in creep behavior at athermal yield stress o a Deformation mechanism maps Concluding remarks References 265 265 267 269 270 271 275 278 278 9 Strengthening mechanisms in steel for creep and creep rupture 279 F. ABE, National Institute for Material Science (NIMS), Japan 9.1 9.2 9.3 9.4 9.5 9.6 10 Introduction Basic ways of strengthening steels at elevated temperature Strengthening mechanisms in modern creep-resistant steels Loss of strengthening mechanisms in 9-12Cr steels during long time periods Future trends References Precipitation during heat treatment and service: characterization, simulation and strength contribution 279 279 287 295 301 301 305 E. KOZESCHNIK and I. HOLZER, Graz University of Technology, Austria 10.1 Introduction 305 viii Contents 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 Microstructure analysis of the COST alloy CB8 Modelling precipitation in complex systems Computer simulation of the precipitate evolution in CB8 Microstructure-property relationships The back-stress concept Loss of precipitation strengthening during service of CB8 Summary and outlook References 306 312 315 320 322 324 325 326 11 -Grain boundaries in creep-resistant steels 329 R.G. FAULKNER, Loughborough University, UK 11.1 11.2 11.3 11.4 11.5 11.6 12 Introduction Ferritic steels Austenitic steels Grain boundary properties and constitutive creep design equations Future trends References Fracture mechanism map and fundamental aspects of creep fracture 329 330 341 345 346 347 350 K. MARUYAMA, Tohoku University, Japan 12.1 12.2 12.3 12.4 12.5 Introduction Fracture mechanisms and ductility of materials Stress and temperature dependence of rupture life Fracture mechanism maps Influence of fracture mechanism change on creep rupture strength 12.6 Influence of microstructural degradation on creep rupture strength 12.7 Change in creep rupture properties at athermal yield stress 12.8 Multi-region analysis of creep rupture data 12.9 Summary 12.10 References ' 350 351 352 355 13 365 Mechanisms of creep deformation in steel 356 358 359 361 362 364 W. BLUM, University of Erlangen-Nuernberg, Germany 13.1 13.2 13.3 13.4 Introduction Initial microstructure Creep at constant stress Transient response to stress changes 365 366 368 370 Contents Cyclic creep Microstructural interpretation of creep fate Dislocation models of creep In situ transition electron microscope observations of dislocation activity 13.9 Discussion and outlook 13.10 Acknowledgments 13.11 References 13.12 Appendix: Microstructural model Mikora 13.5 13.6 13.7 13.8 14 Constitutive equations for creep curves and predicting service life ix 374 375 385 389 393 395 395 401 403 S.R. HOLDSWORTH, EMPA - Materials Science & Technology, Switzerland 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 Introduction Constitutive equations Constitutive equation selection Predicting service life Future trends Concluding remarks Nomenclature References 403 405 405 412 416 416 416 417 15 Creep strain analysis for steel 421 B. WILSHIRE and H. BURT, University of Wales "Swansea, UK 15.1 15.2 15.3 15.4 15.5 15.6 Introduction Creep-induced strain Patterns of creep strain accumulation Practical implications of creep strain analysis Future data analysis options References 421 422 427 433 441 442 16 Creep fatigue behaviour and crack growth of steels 446 C. BERGER, A. SCHOLZ, F. MUELLER and M. SCHWIENHEER, Darmstadt University of Technology, Germany 16.1 16.2 16.3 16.4 16.5 16.6 Introduction Creep-fatigue experiments Stress-strain behaviour Creep-fatigue interaction, life estimation Multiaxial behaviour Creep and creep-fatigue crack behaviour 446 447 449 449 456 459 x Contents 16.7 16.8 16.9 Concluding remarks Acknowledgements References 468 469 469 17 Creep strength of welded joints of ferritic steels 472 H. CERJAK and P. MAYR, Graz University of Technology, Austria 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 18 Introduction Influence of weld thermal cycles on the microstructure of ferritic heat-resistant steels Weld metal development for creep-resistant steels Creep behaviour of welded joints Selected damage mechanism in creep-exposed welded joints Implications for industries using welded creep-resistant steels Future trends References Fracture mechanics: understanding in microdimensions 472 474 482 483 484 495 496 498 504 M. TABUCHI, National Institute for Materials Science (NIMS), Japan 18.1 18.2 18.3 18.4 18.5 18.6 Introduction Non-linear fracture mechanics Effect of mechanical constraint Effect of microscopic fracture mechanisms Type IV creep crack growth in welded joints References "504 504 507 509 513 "517 19 Mechanisms of oxidation and the influence of steam oxidation on service life of steam power plant components 519 P. J. ENNIS and W. J. QUADAKKERS, Forschungszentrum Juelich GmbH, Germany 19.1 19.2 19.3 19.4 19.5 19.6 Introduction Mechanisms of enhanced steam oxidation Steam oxidation rates Oxidation and service life Development of steam oxidation-resistant steels Outlook 519 520 525 530 532 533 Contents 19.7 19.8 Sources of further information References xi 534 534 Part III Applications 20 Alloy design philosophy of creep-resistant steels 539 M. IGARASHI, Sumitomo Metal Industries, Japan 20.1 20.2 20.3 20.4 Introduction Creep-resistant steels for particular components in power plants and the properties required Alloy design philosophies of creep-resistant steels References 539 539 341 570 21 Using creep-resistant steels in turbines 573 T.-U. KERN, Siemens AG Power Generation Group, Germany 21.1 21.2 21.3 573 '574 21.4 21.5 21.6 Introduction Implications for industries using creep-resistant steels Improving the performance and service life of steel components Next steps into the future Summary References 22 Using creep-resistant steels in nuclear reactors 597 583 591 593 393 S.K. ALBERT, Indira Gandhi Centre for Atomic Research, India and S. SUNDARESAN, Maharaja Sayajirao University, Baroda, India 22.1 Introduction 22.2 Radiation damage 22.3 Embrittlement caused by ageing 22.4 Use of heat-resistant steels in major reactor types 22.5 Fabrication and joining considerations 22.6 . Summary 22.7 References 23 Creep damage - industry needs and future research and development 597 598 611 613 629 331 632 -637 R. VISWANATHAN and R. TILLEY, Electric Power Research Institute, USA 23.1 23.2 Introduction Calculation^! methods 4br estimating damage 637 -638 xii Contents 23.3 23.4 23.5 23.6 23.7 Non-destructive evaluation methods Accelerated destructive tests High temperature crack growth Future trends References Index 1543 653 658 662 663 667
© Copyright 2024