Elasticity, Vibrations, and Corrosion Mechanisms at Nanoscale in Oxide Glasses Bernard Hehlen Laboratoire charles Coulomb, University Montpellier II and CNRS The Physics of Glass Group in few keywords Fracture, stress corrosion mechanisms (AFM) M. George, A-C.Genix Elasticity, plasticity, High pressure, vibrations (Brillouin scattering) B.Rufflé, M. Foret, R. Vacher, C. Weigel Vibrations and structure (Raman & Hyper-Raman scattering) B. Hehlen In close connection with The numerical simulation group (classical MD & ab-Initio) S. Ispas, W. Kob Vibrational Optical Spectroscopies from GHz to THz Brillouin, IR-absorption, Raman (tunable lasers), hyper-Raman Elasticity, Vibrations, and Corrosion Mechanisms at Nanoscale in Oxide Glasses Bernard Hehlen Laboratoire charles Coulomb, University Montpellier II and CNRS The Physics of Glass Group in few keywords Fracture, stress corrosion mechanisms (AFM) M. George, A-C.Genix Elasticity, plasticity, High pressure, vibrations (Brillouin scattering) B.Rufflé, M. Foret, R. Vacher, C. Weigel Vibrations and structure (Raman & Hyper-Raman scattering) B. Hehlen In close connection with The numerical simulation group (Classical MD & ab-initio) S. Ispas, W. Kob Vibrational Optical Spectroscopies from GHz to THz Brillouin, IR-absorption, Raman (tunable lasers), hyper-Raman Fracture and stress corrosion mechanisms : an Atomic Force Microscopy study Sample geometry σ DCDC Double Cleavage Drilled Compression Opening Mode 2a σ a KI = c 0.375 + 2 a c Dimensions : 4x4x40 mm3 Crack Propagation σ Polishing : Mechanical + CeO2 RMS : 0.25 nm (10x10 µm2 area) Slow crack propagation in glasses by AFM In situ observation of liquid condensate Signal de hauteur 100 nm Silice Suprasil 311 v = 0.1 nm/s RH = 45 ± 1 % AFM NS3 (AM AFM) Signal de Phase Glass-water interactions in corrosion Chemical bond-by-bond breaking at the crack tip Damage in volume due to the water diffusion Stress Water diffusion OH contents increases Wiederhorn and Bolz, JACS (1970) Michalske et Bunker, J. Appl. Phys. (1984) + Ion exchange leaching (e.g. Na+) Changes in mechanical properties (essentially weakening of the vitreous structure) Tomozawa, Ann Rev Mat Sci (1996) Profile of the condensate ? • Hypothesis A: Slow evaporation → constant volume Hc Hc L Stress KI • Hypothesis B: Fast evaporation → constant critical width Hc (thermodynamic equilibrium condition) H2O Hc Hc H2O L L Experimental answer A B Grimaldi et al, PRL(2008) Influence on crack propagation Crack velocity increases with humidity H2O H2O but H2O H2O Reduction of the “transport limited regime” Crack velocity ∼ 100% • Kinetic effect H2O Wiederhorn, JACS (1967) RH ∼ 0% Humidity Stress KI ∆P~-100 atm (<0 !) inside the condensate (Laplace) Closure effect Stress • Mechanical effect Silice Suprasil 311 RH = 40 ± 3 % T = 22 ± 0.5 °C Crack length (mm) Chemical effect : alkaline diffusion Sodalime glass, 45% RH, V ≈ 1 nm/s 30 nm 5 µm 1. Tensile stress 2. Sodium diffusion toward the crack tip 3. Water layer thickens 4. Accelerated corrosion Célarié et al., JNCS (2007) Corrosion + Ionic exchange H2O Change in ionic concentration H2O pH CO2 Wetting properties Na+ Perspectives Determination of stress-strain field around the crack tip. non-linear behaviour (simulations) Link between macroscopic and nanoscopic scales : • Simulations • Experiments ?? AFM, FEM, Near field opt. spectroscopies Non-linear elastic zone <∼10 nm in SiO2 Han et al. submitted to PRL 3D micro-Brillouin mapping of a Vickers indentation in a soda-lime silicate glass Mechanical behavior of glasses: brittle… but plastic at micro-scale and below • Indentation test, crack tip • Typical scales: nano to micrometers shear flow + permanent densification (a few % for a window glass, up to 20% for SiO2) Nanoscale hardly accessible by strandard spectroscopic tools →µm-indentation 20 µm Principles of Brillouin Scattering Light scattering from thermal agitation Scattered light has a different frequency νs, depends on: ± δν B = ν s − ν 0 = ± sound velocity v and optical index n elastic moduli and density From spectra analysis: sound attenuation α or internal friction Q −1 = λ>>a ⇒ continuous elastic medium 2nv λ0 sin 2παv δν B Mechanical properties High resolution µ-Brillouin spectrometer at the L2C-Montpellier Frequency resolution ∼25 MHz 4-pass PFP interferometer + + SFP interferometer Optical microscope Spatial resolution ∼ 1.2x1.2x6 µm3 θ 2 Brillouin spectra of indented soda-lime silicate glasses pristine 2 kg Vickers indentation 300 Counts (a) νB = 34.60 GHz SGG Planilux® Float Glass (b) 200 5 µm beneath the surface 100 20 µm 0 33 34 35 Frequency shift (GHz) Brillouin spectra of indented soda-lime silicate glasses pristine 2 kg Vickers indentation 300 Counts (a) SGG Planilux® Float Glass νB = 34.60 GHz (b) 200 5 µm beneath the surface 100 20 µm 0 33 34 35 Frequency shift (GHz) Counts 600 νB = 35.25 GHz 400 200 (c) 0 33 34 35 Frequency Shift (GHz) Brillouin spectra of indented soda-lime silicate glasses pristine 2 kg Vickers indentation 300 Counts (a) SGG Planilux® Float Glass νB = 34.60 GHz (b) 200 5 µm beneath the surface 100 20 µm 0 33 34 35 Frequency shift (GHz) 600 400 νB = 35.53 GHz 200 0 Counts Counts 600 (d) νB = 35.25 GHz 400 200 (c) 0 33 34 35 33 Frequency shift (GHz) Zone νB (GHz) Pristine Center 34.60 35.53 34 35 Frequency Shift (GHz) • • [Tran et al., APL 2012] νB change: ~0.93 GHz Maximum at the center • νs→ρ Calibration : Brillouin scattering in densified samples (from T. Rouxel-Renne) • Simple approach : Densification of 6.3% → linear increase of 0.93 GHz (density gauge) [Tran et al., APL 2012] Float Glass Top view Measured indented area 20 µm Vickers indentation 2D Isotropic density gradient in agreement with - luminescence micro-spectroscopy [Perriot et al., Phil. Mag. 2010] [Deschamps et al., J. Phys. -Condens. Matter 2011] - and Raman micro-spectroscopy Microscopic origin of the densification ??? Raman Scattering in permanently densified silicas, d-SiO2 • v-SiO2 has an open network structure… O ρs= 5.73 g/cm3 f v − SiO2 V ρ SiO = 1− ≅ 0.62 ρS 2 Si … as compared to v-GeO2 SiO2 is filled of voids f VGeO ≅ 0.54 2 4-fold • Permanent densification : O Si θ Si Reduction of the Si-O-Si angle θ In the network and in the small rings (?) 3-fold SiO4 tetrahedra remain unchanged (Y.Inamura, M. Arai, et al. JNCS 2001) θ → Puckering of the ring network + bond redistribution → modification of the Raman spectra Is it possible to get quantitative structural information on the local structure through the Raman spectra ? Normalized Raman intensities IN (ω ) (rel. units) ρ=2.63 g/cm3 RS ) I( ω N ρ=2.43 “ n R ρ=2.20 “ D1 D2 RS ) ( I ω ) = I( ω ) + 1] ρ ω s3([n ω RS N 1 ω Glass density Coupling-to-light coefficient of the mode σ RS ) ) I( ω ∝ Cσ ⋅( gσ ω N [Shuker & Gammon 1970] Density of state of the mode σ For bending modes (σ = R, D1, D2) : Cσ ∝ ω2 [B. Hehlen JPCM2010] Density of states of O-bending modes Density of states ω 2 After normalization by CB(ω ω) : ρ = 2.43 g/cm3 Si O θ Si cos θ ∝ ω 2 D2 2 R 0 200 Angular-frequency relation ρ = 2.21 g/cm3 4 g R (ω ) ⋅ dω ≅ C te for the 3 glasses ∫ ρ = 2.63 g/cm3 6 gB(ω) (r.u.) ( ) = gB ω RS ) I( ω N D1 400 600 -1 Frequency (cm ) For the R-band and also in the small rings !! Si-O-Si angle θ in d-SiO2 Small rings : θ θ [B. Hehlen, J.Phys.: Cond Matter 2010] n=3 n=4 Network angle : θ n n ≅ 6 Max. of the distribution R-band n > 6 Average angle Si-O-Si angle θ in d-SiO2 Small rings : θ θ [B. Hehlen, J.Phys.: Cond Matter 2010] n=3 n=4 Network angle : θ n n ≅ 6 Max. of the distribution R-band RMN (Devine et al. 1987) n > 6 Average angle Si-O-Si angle θ in d-SiO2 Small rings : θ θ [B. Hehlen, J.Phys.: Cond Matter 2010] n=3 n=4 Network angle : θ n n ≅ 6 Max. of the distribution R-band RMN (Devine et al. 1987) n > 6 Average angle Simulations (Rahmani, Benoit, PRB,2003) Si-O-Si angle θ in d-SiO2 Small rings : θ θ [B. Hehlen, J.Phys.: Cond Matter 2010] n=3 n=4 Network angle : θ n n ≅ 6 Max. of the distribution R-band RMN (Devine et al. 1987) n > 6 Average angle Simulations (Matsubara , Ispas, Kob, 2009) Simulations (Rahmani, Benoit, PRB,2003) Si-O-Si angle in sodo-silicates SiO2 4SiO2:Na2O (NS4) P(θ ) θSi-O-SiIntensity P(θ θ) 0.40 Distribution of Si-O-Si angles NS4 NS2(computer simulations) 0.20 0 0.06 Frequency → Angle gB(ω ω) → P(θ θ) NS2 0.04 (Truflandier, Ispas,Charpentier) NS4 (Ispas et al PRB 2001) SiO2 0.02 0 100 From Raman spectra Boson peak SiO2 120 2SiO2:Na20 (NS2) 140 160 180 Angle (°) Comparison with the Raman Spectra : Frequency → Angle gB(ω ω) → P(θ θ) Si-O-Si angle in sodo-silicates SiO2 20Na2O:80SiO2 (NS4) 0.40 NS4 NS2 P(θ θ) Intensity P(θ θ) From Raman spectra Boson peak SiO2 0.20 33Na20:67SiO2 (NS2) Frequency → Angle gB(ω ω) → P(θ θ) 0 0.06 From computer simulations 0.04 0.02 0 100 120 140 160 180 Angle (°) Not perfect, but in qualitative agreement Angle at maximum of the distribution ? (Truflandier, Ispas,Charpentier) (Ispas et al PRB 2001) Si-O-Si angle in sodo-silicates Most probable angle (max. of the distribution) 150 experimental simulation Angle (°) 145 SiO 2 140 NS4 NS3 135 NS2 NS1.5 130 Same trend !! 125 120 0 10 20 30 % mol. Na2O 40 D1 Relative density of small rings D2 RS ) ) I( ω ∝ Cσ ⋅( gσ ω N Rigid structures weak θ-dependence with ρ Cσ(ρ ρ) ≅ incoherent scatterers And Cte ω max ∫ω min gσ (ω ) ⋅ dω ∝ Nσ Number of rings ωmax RS Aσ = ∫ ωmin I (ω)⋅dω ∝ Nσ N The Area of IRS (D1, D2) ∝ Number of ring N Raman Raman + Time-domain Raman scattering (ISRS) ISRS Density of small rings in d-SiO2 Comparison Raman / ISRS (J. Burgin et al. PRB 2008) Relative ring density (Pasquarello et al. PRL 2003) 2.20 g/cm3 2.63 g/cm3 D1 : 1 Ring / 555 SiO2 D2 : 1 Ring / 670 SiO2 D1 : 1 Ring / 380 SiO2 D2 : 1 Ring / 150 SiO2 Concentration of rings is very small 5 RS 4 ISRS Increase of the threefold rings (denser structures) (3-fold) D2 3 D1 (4-fold) 2 Concentration of fourfold rings ≈ Cte 1 2.2 2.3 2.4 2.5 3 Density ρ (g/cm ) 2.6 2.7 Possible scenario upon densification : large rings (n ≥ 5) → 4-fold rings (D1) 4-fold rings (D1) → 3-fold rings (D2) Summary Elasticity, plasticity, and structure of glasses : Spatial resolution • Observation of mechanical damages (AFM) - Crack propagation - Stress corrosion mechanisms - Plastic deformations (polymers) nanometer • Continous elastic medium properties (Brillouin Scat.) - Densification - Elastic constants - Sound attenuation (or internal friction) - Shear strain micrometer • Atomic structure (Raman, Hyper-Raman) - Si-O-Si angles - Density of small rings -… Mid-term project : Tip-Enhanced Raman Scattering (TERS) micrometer sub µm to nm
© Copyright 2025