GEO 243.1 | FS 2015! Introduction to spatial analysis with GIS | Lecture 10 Applications of GIS II: Cartographic generalisation and pattern recognition" Martin Tomko1" Geographisches Institut! [email protected]! ! ! 1 Inputs from R Weibel! V10 | App GIS II: Generalisation 2 | Intro! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Last week(s)" • We have seen an example of GIS-based modeling — modeling snowdrift — and we have deconstructed this example from perspectives of ! – Representation of reality in a GIS analytical process (GIS thinking process)! – Choice of appropriate data models and data structures! – Choice of appropriate operations to operationalise these models! • You have participated ina GITTA tutorial on Suitability Analysis and Multicriteria analysis.! Today" • Second application example with focus on appllication of the already familiar operations in a complex GIS analysis" 1 V10 | App GIS II: Generalisation 3 | Outlook! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Remaining weeks…" • 04.05.2015: GITTA Tutorat „Accessibility“! • 11.05.2015: Lecture „GIS in Switzerland“ à A quick look at the GIS field in CH – industry, activities, governmental organisations, data. Guest lecture from Dr. Ralph Straumann! • 18.05.2014: Repetitorium – email me questions you want to cover. If no questions, no repetitorium!!! • 22.05.2015 – handout of the last assignment (note different date – error in the overview from start of semester.) ! • 25.05.2015: No lecture! V10 | App GIS II: Generalisation 4 | Intro! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Outline: Deconstruction of an Application of GIS" • In this lecture we are again looking at some examples of GIScience methods in geographical research • The examples are supposed to: – Show you some of the areas of research in GIScience; – Explain the context/positioning of GIScience with respect to physical and human geography;! – Make you think about reality, conceptual models, data structures and operations in the context of this research; – The examples are independent of software – they are about dealing with information with some geographic component…; – The examples should reinforce the material I have already given you (review the material!). 2 V10 | App GIS II: Generalisation 5 | Intro! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Learning objectives" Using the example of cartographic generalisation and pattern recognition, you will:! ü Learn that complex processes can be solved by decomposition into simple partial operations (components);! ü You will be able to name and briefly describe the main generalisation procedures;! ✓ You will be able to explain how pattern recognition can help to uderstand and identify fundamental processes/objects;! ✓ You will be able to identify and apply the known operations on fields to problems in pattern analysis and generalisation;! ✓ You will be able to explain the principles of simple line generalisation algorithms ( Douglas-Peucker, smoothing with moving window average).! ! V10 | App GIS II: Generalisation 6 | 1. Cartographic generalisation! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Contents" 1. Cartographic generalisation (Recap from GEO 113)" 2. Breakdown of the overall process: Generalisation operations! 3. GIS Operations for cartographic generalisation! – – Operations on Fields / Rasters! Operation on Entities / Vectors! 4. Cartographic pattern recognition! – – What is a pattern! GIS operations for pattern recognition! 3 V10 | App GIS II: Generalisation 7 | 1. Cartographic generalisation! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Cartographic generalisation = Abstraction" • When transiting from reality to a conceptual model, we abstract the reality — we choose elements, that are important (relevant) for us – for our use.! • Furthermore, when reducing the scale of a map, the available space (paper, screen) is also reduced; map symbols cover more space than the objects in reality." IGN 1:25,000 IGN 1:100,000 V10 | App GIS II: Generalisation 8 | 1. Cartographic generalisation! IGN 1:250,000 GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Cartographic symbolisation = Generalisation" • As spatial databases are a-priori unsymbolised, we need to plan how we represent spatial data (symbolisation, choice of cartographic key). These symbols need space à we need to generalise! Spatial DB Map Symbolisation" Generalisation" 4 V10 | App GIS II: Generalisation 9 | 1. Cartographic generalisation! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Cartographic generalisation: Definition" • Intl. Cartogr. Association (1973): “the selection and simplified representation of detail appropriate to the scale and/or the purpose of a map”! • Schweiz. Ges. für Kartographie (2002: 41): “Die Generalisierung ist die massstabsgerechte inhaltliche und grafische Vereinfachung der komplexen Wirklichkeit auf der Grundlage digitaler Landschaftsmodelle oder Karten grösseren Massstabes. Sie besteht hauptsächlich aus der zweckentsprechenden Auswahl und Zusammenfassung der Objekte sowie der möglichst lagegenauen, charakteristischen, richtigen und eindeutigen grafischen Darstellung.”! • Conscise (Weibel): Reduction of the content of a geodatabase retaining the objects, forms and structures essential for the target scale and purpose of the map.! • Shortest: “Remove unnecessary, keep relevant.“! Ü ICA (International Cartographic Association) (1973): Multilingual dictionary of technical terms in cartography. Wiesbaden, Franz Steiner Verlag! Ü SGK (Schweiz. Gesellschaft für Kartographie) (2002): Topografische Karten – Kartengrafik und Generalisierung. Kartografische Publikationsreihe, Nr. 16 (erhältlich bei http://www.kartographie.ch/publikationen/index.html)! V10 | App GIS II: Generalisation 10 | 1. Cartographic generalisation! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Ü SGK (Schweiz. Gesellschaft für Kartographie) (2002): Topografische Karten – Kartengrafik und Generalisierung. Kartografische Publikationsreihe, Nr. 16 (erhältlich bei http://www.kartographie.ch/publikationen/index.html)! Cartographic generalisation: partial components" 5 V10 | App GIS II: Generalisation 11 | 1. Cartographic generalisation! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Ü SGK (Schweiz. Gesellschaft für Kartographie) (2002): Topografische Karten – Kartengrafik und Generalisierung. Kartografische Publikationsreihe, Nr. 16 (erhältlich bei http://www.kartographie.ch/publikationen/index.html)! Cartographic generalisation: partial components" V10 | App GIS II: Generalisation 12 | 1. Cartographic generalisation! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Contents" 1. Cartographic generalisation (Recap from GEO 113)! 2. Breakdown of the overall process: Generalisation operations" 3. GIS Operations for cartographic generalisation! – – Operations on Fields / Rasters! Operation on Entities / Vectors! 4. Cartographic pattern recognition! – – What is a pattern! GIS operations for pattern recognition! 6 V10 | App GIS II: Generalisation 13 | 2. Generalisation operations! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Reduction of complexity: components" • Manual generalisation by a cartographer – a holistic process.! • This is too complex to be formalised and automated in a single step! • Scientific approach to reduce complexity: division into smaller, tractable components. ! • For generalisation: generalization operators! à Somewhat identifiable in the previous slide! à Gen.operations allow for the deconstruction of the holistic process of generalisation into tractable parts (sub-processes).! Figure: http://www.memini.it/dividi-e-impera/ Ü Harrie, L. & Weibel, R. (2007): Modelling the Overall Process of Generalisation. In: Mackaness, W.A., Ruas, A. & Sarjakoski, L.T. (eds.): Generalisation of Geographic Information: Cartographic Modelling and Applications. Elsevier Science, 67-87.! V10 | App GIS II: Generalisation 14 | 2. Generalisation operations! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Possible generalisation operations" Ü Hake, G., Grünreich, D. & Meng, L. (2002): Kartographie. Berlin: de Gruyter! Ü Shea, K.S. & McMaster, R.B. (1989): Cartographic generalization in a digital environment: When and how to generalize. Proceedings Auto-Carto 9, pp. 56-67.! 7 V10 | App GIS II: Generalisation 15 | 2. Generalisation operations! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Challenges" • The division into individual operations simplifies the complexity of the generalisation problem – but we need to find concrete solutions for each generalisation operation.! ! ! ! !HOW to …?! • A Generalisation operator (e.g., line simplification) can be operationalised by implementing different generalisation algorithms.! • These algorithms can be distinguished with respect to the applicable object class, target scale, etc…! “A line is not always a line” (What do these examples represent?) V10 | App GIS II: Generalisation 16 | 2. Generalisation operations! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Example: Generalisation of streets" Toolbox of algorithms for the simplification of streets (Lecordix ‘98) Min Break! Max Break! Accordeon! Plaster! Gaussian! Sec. 3 Douglas! Ü Lecordix, F., Plazanet, C. & Lagrange, J.-P. (1997): A Platform for Research in Generalization: Application to Caricature. GeoInformatica, 1(2): 161-182.! 8 V10 | App GIS II: Generalisation 17 | 2. Generalisation operations! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Example: Generalisation of streets" Example of a context-sensitive operation: Feature Displacement using Elastic Beams.! Before! After! Ü Bader, M. (2001): Energy Minimizing Methods for Feature Displacement in Map Generalization. Dissertation, Geogr. Inst. UZH.! Ü Bader, M., Barrault, M. & Weibel, R. (2005): Building Displacement by Means of a Ductile Truss. Int. Journal of Geographical Information Science, 19(8/9): 915-936.! V10 | App GIS II: Generalisation 18 | 2. Generalisation operations! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich What does this mean for GEO 243?" • These algorihtms:! – Apply mathematical methods and geometric algorithms that will be covered in Master studies;! – These are not available in generic GIS (GeoMedia und ArcGIS), but they are implemented in specialist software (1Spatial products)! • “Normal” GIS also expose several cartographic generalisation operations! • By being creative and combining and parametrising these operations, one can achieve a lot.! • Example of automatic generalisation using ArcGIS for Dutch maps: Stoter et al. (2014)! Ü Stoter, J., Post, M., van Altena, V., Nijhuis, R. & Bruns, B. (2014): Fully automated generalization of a 1:50k map from 1:10k data. Cartography and Geographic Information Science, 41(1).! 9 V10 | App GIS II: Generalisation 19 | 1. Cartographic generalisation! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Contents" 1. Cartographic generalisation (Recap from GEO 113)! 2. Breakdown of the overall process: Generalisation operations! 3. GIS Operations for cartographic generalisation" – – Operations on Fields / Rasters" Operation on Entities / Vectors! 4. Cartographic pattern recognition! – – What is a pattern! GIS operations for pattern recognition! V10 | App GIS II: Generalisation 20 | 3. GIS Operations for generalisations (fields/rasters)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Generalisation Operators on Fields/Rasters" • Cartographic data are mostly vectors. They allow:! – rich attributes! – flexible symbolisation! – Target resolution is well tuneable – not bound to a fixed raster cell size! • Generalisation is however possible also on fields/rasters:! – Needed for raster GIS data (results of models, e.g., suitability analysis).! – Raster operations are computationally simpler.! – Rasters are better at representing uncertainty (e.g., gradual transitions in the case of uncertain boundaries).! 10 V10 | App GIS II: Generalisation 21 | 3. GIS Operations for generalisations (fields/rasters)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Examples of Field/Raster Operations" • We cover three operations on fields/rasters:! – Smoothing filter! – Majority filter! – Mathematical Morphology! • All are available in Geomedia" V10 | App GIS II: Generalisation 22 | 3. GIS Operations for generalisations (fields/rasters)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Smoothing filter" Original 3x3 Window 7x7 15x15 11 V10 | App GIS II: Generalisation 23 | 3. GIS Operations for generalisations (fields/rasters)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Majority filter " SlopeHangneigung ≤ 30 (black) V10 | App GIS II: Generalisation 24 | 3. GIS Operations for generalisations (fields/rasters)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Majority filter " Original 3x3 Window 7x7 Window 12 V10 | App GIS II: Generalisation 25 | 3. GIS Operations for generalisations (fields/rasters)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Majority filter " Original, zoomed in 3x3 Window 7x7 Window V10 | App GIS II: Generalisation 26 | 3. GIS Operations for generalisations (fields/rasters)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Examples of Field/Raster Operations" • What algorithms can one use to realise these operations?! – You already have the basics.! • What commands would you use in GeoMedia Grid?! 13 V10 | App GIS II: Generalisation 27 | 3. GIS Operations for generalisations (fields/rasters)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Smoothing and majority filter" • Realisation using focal operations:! – Smoothing filter: Average or Median within a moving window à known from GZGI (GEO 123.2)! – Majority filter: Majority – value of the most frequent class within the moving window substituted for current value! • In GeoMedia Grid: Grid > Statistical > Local Scan! – (“Local” is confusing, as this is not a local operation)! • Larger windows, more bandwidth ==> more smoothing! • Possible with/without weighting! Focal Majority of 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 = V10 | App GIS II: Generalisation 28 | 3. GIS Operations for generalisations (fields/rasters)! 1 1 Changed value “Undecideable” (border effect) GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Mathematical Morphology" • Mathematical Morphology: operations of image processing based on set theory and topology.! • A “Structuring Element” B is applied on the image.! • Most important operations (for us):! – – – – Erosion: reduction by k cells (where k = (WidthB) / 2 +1)! Dilation: expansion by k cells! Opening: Erosion, followed by Dilation! Closing: Dilation, followed by Erosion! Structuring Element B Erosion Dilatation Opening Closing Ü http://en.wikipedia.org/wiki/Mathematical_morphology ! 14 V10 | App GIS II: Generalisation 29 | 3. GIS Operations for generalisations (fields/rasters)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Mathematical Morphology" • GeoMedia - no operations for Mathematical Morphology.! • Fantasy!: you can simulate Erosion, Dilation, Opening und Closing:! – Use Grid > Zone > Buffer" – “Structuring Element” - width of the buffer (= k cells)! • Following examples show “Closing” (Dilation, followed by Erosion) with k = 5, where:! – black: “foreground” (Slope ≤ 30 Grad)! – yellow: “background” (Slope > 30 Grad)! V10 | App GIS II: Generalisation 30 | 3. GIS Operations for generalisations (fields/rasters)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Mathematical Morphology" Original, enlarged Dilation with k = 5; Grey indicates distance Binary Rendering of dilation 15 V10 | App GIS II: Generalisation 31 | 3. GIS Operations for generalisations (fields/rasters)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Mathematical Morphology" Original Erosion with k = 5; Grey indicates distance Binary dilation Binary erosion = Final result of Closing V10 | App GIS II: Generalisation 32 | 1. Cartographic generalisation! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Contents" 1. Cartographic generalisation (Recap from GEO 113)! 2. Breakdown of the overall process: Generalisation operations! 3. GIS Operations for cartographic generalisation! – – Operations on Fields / Rasters! Operation on Entities / Vectors" 4. Cartographic pattern recognition! – – What is a pattern! GIS operations for pattern recognition! 16 V10 | App GIS II: Generalisation 33 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Generalisation operations on Entities / Vectors" • The majority of cartographic data are vectords (e.g. VECTOR25) which have advantages when it comes to symbolisation etc! • BUT: Generalisation algorithms for vector data are more complex than the equivalent algorithms for rasters! • Despite that, all commerical GIS contain at least rudimentary functions for vector generalisation! • In GeoMedia:" – Analysis > Aggregate: not only for Spatial Join (see Üb. 3), but also for aggregation of neighbouring polygons or lines sharing an attribute value! – Tools > Simplify: Douglas-Peucker Algorithm! – Tools > Smooth: Line smoothing using moving average! V10 | App GIS II: Generalisation 34 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Simplification vs. Smoothing (McMaster & Shea 1992)" • Simplification of shape through elimination of vertices! • Output line contains a subset of the original vertices.! • Smoothing through Approximation (e.g., average of coordinates)! • Output line typically contains the same amount or more vertices than the input! Ü McMaster, R.B. & Shea, K.S. (1992): Generalization in Digital Cartography. Association of American Geographers.! 17 V10 | App GIS II: Generalisation 35 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Line Simplification" • Task: “Simplify the shape of a cartographic line by removal of ‘unnecessary’ vertices”. (nach McMaster and Shea, 1992)! • Suited for lines with sharp edges (e.g., boundaries)[mostly man made boundaries].! • Problem:" – How to define “unnecessary” or “irrelevant”?! – What geometric or semantic criteria do you apply to select the important vertices?! V10 | App GIS II: Generalisation 36 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Douglas & Peucker algorithms (1973)" • “Classical”, broadly used —discussed in GEO 113.! • Uses a Tolerance band: Vertices, that exceed this band are considered important and are retained.! http://commons.wikimedia.org/wiki/File:Douglas-Peucker_animated.gif Ü Douglas, D.H. & Peucker, T.K. (1973): Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or its Caricature. Canadian Cartographer, 10(2): 112-122.! 18 V10 | App GIS II: Generalisation 37 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Douglas & Peucker algorithms (1973)" • “Classical”, broadly used —discussed in GEO 113.! • Uses a Tolerance band: Vertices, that exceed this band are considered important and are retained.! • Animation: http://gitta.info/Generalisati/en/html/GenMethods_learningObject3.html Ü Douglas, D.H. & Peucker, T.K. (1973): Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or its Caricature. Canadian Cartographer, 10(2): 112-122.! V10 | App GIS II: Generalisation 38 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Example Douglas/Peucker: Wanderweg bei S-chanf" Original line 312 Vertices 100 m 200 m 19 V10 | App GIS II: Generalisation 39 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Example Douglas/Peucker: Wanderweg bei S-chanf" Tolerance ε = 5 m (accuracy of Vector25 = 3 - 8 m) 102 Vertices 100 m 200 m V10 | App GIS II: Generalisation 40 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Example Douglas/Peucker: Wanderweg bei S-chanf" Tolerance ε = 10 m 61 Vertices 100 m 200 m 20 V10 | App GIS II: Generalisation 41 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Example Douglas/Peucker: Wanderweg bei S-chanf" Tolerance ε = 50 m 20 Vertices 100 m 200 m V10 | App GIS II: Generalisation 42 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Beispiel Douglas/Peucker: Wanderweg bei S-chanf" Toleranz ε = 100 m 17 Vertices 100 m 200 m 21 V10 | App GIS II: Generalisation 43 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Example Douglas/Peucker: Wanderweg bei S-chanf" Tolerance ε = 200m 11 Vertices 100 m 200 m V10 | App GIS II: Generalisation 44 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Example Douglas/Peucker: Wanderweg bei S-chanf" Tolerance ε = 500m 3 Vertices 100 m 200 m 22 V10 | App GIS II: Generalisation 45 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Line Smoothing" • Task: shape simplification through smoothing and approximation of the original line.! • Suitable for lines with smoothly transitioning, “rounded” forms (e.g. rivers, railways)! • Corresponds to low pass filtering or moving average! • Parameters: window size (obligatory), weight (optional; here: distance) from central vertex p[i])! Does this look familiar? Many variants/option for weighting and the tuning of the smoothing are possible (McMaster/Shea) Ü McMaster, R.B. & Shea, K.S. (1992): Generalization in Digital Cartography. Assoc. of American Geographers.! V10 | App GIS II: Generalisation 46 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Example of line smoothing using moving average" Original line 312 Vertices 100 m 200 m 23 V10 | App GIS II: Generalisation 47 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Example of line smoothing using moving average" Window size ± 7 points (total 15) Equally weighted points 312 Vertices 100 m 200 m V10 | App GIS II: Generalisation 48 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Example of line smoothing using moving average" Window size ± 7 points (total 15) Equally weighted points 312 Vertices 100 m 200 m 24 V10 | App GIS II: Generalisation 49 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Example of line smoothing using moving average" Window size ± 3, 7, 15, 21 vertices Equally weighted points 312 Vertices 100 m 200 m V10 | App GIS II: Generalisation 50 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Line simplification of polygon boundaries" Original: • Vegetation polygon from the SNP 25 V10 | App GIS II: Generalisation 51 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Line simplification of polygon boundaries" Line simplification: • Tolerance = 10 m V10 | App GIS II: Generalisation 52 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Line simplification of polygon boundaries" Line simplification: • Tolerance = 20 m 26 V10 | App GIS II: Generalisation 53 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Line simplification of polygon boundaries" Line simplification: • Tolerance = 50 m V10 | App GIS II: Generalisation 54 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Combination line simplification and smoothing" Simplification: • Tolerance = 50 m Smoothing: • Window size ± 3 Pte • Weight 0.5 for vertices other than central vertex 27 V10 | App GIS II: Generalisation 55 | 3. GIS Operations for generalisations (entities/vectors)! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Polygon simplification – beware of topology" www.aurin.org.au - Morandini et al, 2013,2014 V10 | App GIS II: Generalisation 56 | 1. Cartographic generalisation! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Contents" 1. Cartographic generalisation (Recap from GEO 113)! 2. Breakdown of the overall process: Generalisation operations! 3. GIS Operations for cartographic generalisation! – – Operations on Fields / Rasters! Operation on Entities / Vectors! 4. Cartographic pattern recognition" – – What is a pattern! GIS operations for pattern recognition! 28 V10 | App GIS II: Generalisation 57 | 4. Cartographic pattern analysis! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Pattern recognition in generalisation" • Good generalisation requires deep understanding of the map:! – Meaning of the individual objects! – Distinguishing between relevant and irrelevant objects! • Example: generalisation of settlements – buildings in city centers are generalised differently to those in suburban areas.! • BUT: “city centers” are not well defined and typically are not explicitly stored in spatial databases as objects! • “city centers”, “Inner cities” or “CBDs” are important also in other contexts:! – Spatial planning, traffic planning! – Search engines, to find “Hotels in the center of Zurich”! V10 | App GIS II: Generalisation 58 | 4. Cartographic pattern analysis! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Identification of city centers" • If city centers are not identified explicitly, they may be implicitly stored in spatial DBs - can they be identified thorugh pattern discovery techniques?! • Idea" – In a topographic DB there are many objects that belong to a city center;! – If one can identify high numbers of these, or if they are clustered in some locations in high concentration, then the “cityness” is high;! • Lüscher & Weibel (2013) tried this for British cities.! Ü Lüscher, P. & Weibel, R. (2013). Exploiting Empirical Knowledge for Automatic Delineation of City Centres from Large-scale Topographic Databases. Computers, Environment and Urban Systems, 37(1): 18-34.! 29 V10 | App GIS II: Generalisation 59 | 4. Cartographic pattern analysis! Overview" GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Special procedure – not covered here (see. Lüscher et al. 2009) KDE Buffer Web-based questionnaire to identify parameters of city centers Ü Lüscher, P., Weibel, R. & Burghardt, D. (2009). Integrating ontological modelling and Bayesian inference for the recognition of urban concepts in cartographic vector data. Computers, Environment and Urban Systems, 33(5): 363-374.! V10 | App GIS II: Generalisation 60 | 4. Cartographic pattern analysis! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Definition of the pattern “city center”" • This procedure is similar to a Multi–criteria evaluation (MCE).! • As for a MCE, we must “operationalise” the criteria that are used to characterise a city center.! • BUT: a city center is a vaguely defined concept – which relates to human cognition and conceptualisation.! • Thus, a user experiment has been conducted to identify the most important characteristics/criteria of a city center :! – Internet –based survey of UK residents! 30 V10 | App GIS II: Generalisation 61 | 4. Cartographic pattern analysis! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Operationalisation of a “city center”" 3 types of object classes have been defined to operationalise a city center: • F = Frequency-based: frequent objects à KDE • L = Landmark-like: rare objects (Town hall, cathedralHBF) à euklidean buffer • A = Area-like: Objects, that can not be represented as a set of objects (residential areas, industrial zones) à special procedure, not covered here (Lüscher et al. 2009). V10 | App GIS II: Generalisation 62 | 4. Cartographic pattern analysis! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Computation of a City Centre Typicality" • For each of the 17 object classes a separate surface is computed.! • The city center typicality for a point in space is a weighted sum of the 17 surfaces à local operation over 17 layers! • In the formula below:! – cm and ca are normalisation constants, so that 0 ≤ typicalitycitycentre ≤ 1.! – ca stands for all the negative criteria: retail parks (wret), Industrial areas (wind), residential areas (wres), natural areas (wnatural).! 31 V10 | App GIS II: Generalisation 63 | 4. Cartographic pattern analysis! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Results" (b) Isolines of typicality for Bristolà a Typicality of 0.5 was applied as limit criterion (a) City Centre Typicality vs. the area of the city centers. Peaks – multicenter cities with auxiliary centers (e.g., Oerlikon in Zürich) V10 | App GIS II: Generalisation 64 | 4. Cartographic pattern analysis! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Evaluation of the results through comparison" First, the resulting city centers have been compared with reference polygons through spatial intersection and the degree of match evaluated à precision, recall and F1-Score: Reference polygons: collected from guide books, planning documents etc... 32 V10 | App GIS II: Generalisation 65 | 4. Cartographic pattern analysis! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Evaluation of the results through comparison (2)" In a second round, a KDE surface of point coordinates of georeferenced Flick photos (flickr.com) has been computed and a 80%-Isoline polygon of this surface has been intersected with the typicaity polygons, and again analysed through Precision, Recall and F1-Score. V10 | App GIS II: Generalisation 66 | Wrap-up! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich Summary" • Example: Cartographic generalisation as a representative of a complex holistic process.! • Division into partial processes (steps) enables automation.! • These partial processes can be executed as common GIS operations.! • Many of these GIS operations are already familiar to you:! – Focal operations for the generalisation of raster data! – Moving average for smoothing of Lines (a 1D focal operation)" – Multi – criteria analysis for the identification of city centers, and the operationalisation of ist criteria! – KDE and euklidean distance for the realisation of partial parameters of typicality of city centers! – Weighted summation as a Local operation over 17 layers! – Spatial Intersection to compare polygons (Evaluation of the Results)! 33 V10 | App GIS II: Generalisation 67 | References! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich References" • Bader, M. (2001): Energy Minimizing Methods for Feature Displacement in Map Generalization. Dissertation, Geogr. Inst. UZH.! • Bader, M., Barrault, M. & Weibel, R. (2005): Building Displacement by Means of a Ductile Truss. Int. Journal of Geographical Information Science, 19(8/9): 915-936.! • Douglas, D.H. & Peucker, T.K. (1973): Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or its Caricature. Canadian Cartographer, 10(2): 112-122.! • Hake, G., Grünreich, D. & Meng, L. (2002): Kartographie. Berlin: de Gruyter! • Harrie, L. & Weibel, R. (2007): Modelling the Overall Process of Generalisation. In: Mackaness, W.A., Ruas, A. & Sarjakoski, L.T. (eds.): Generalisation of Geographic Information: Cartographic Modelling and Applications. Elsevier Science, 67-87.! V10 | App GIS II: Generalisation 68 | References! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich References" • Lecordix, F., Plazanet, C. & Lagrange, J.-P. (1997): A Platform for Research in Generalization: Application to Caricature. GeoInformatica, 1(2): 161-182.! • Lüscher, P., Weibel, R. & Burghardt, D. (2009). Integrating ontological modelling and Bayesian inference for the recognition of urban concepts in cartographic vector data. Computers, Environment and Urban Systems, 33(5): 363-374.! • Lüscher, P. & Weibel, R. (2013). Exploiting Empirical Knowledge for Automatic Delineation of City Centres from Large-scale Topographic Databases. Computers, Environment and Urban Systems, 37(1): 18-34.! • McMaster, R.B. & Shea, K.S. (1992): Generalization in Digital Cartography. Association of American Geographers.! 34 V10 | App GIS II: Generalisation 69 | References! GEO 243.1 | Intro to spatial analysis with GIS | FS 2015 M. Tomko, GIUZ, Uni Zürich References" • SGK (Schweiz. Gesellschaft für Kartographie) (2002): Topografische Karten – Kartengrafik und Generalisierung. Kartografische Publikationsreihe, Nr. 16 (erhältlich bei http://www.kartographie.ch/publikationen/index.html)! • Shea, K.S. & McMaster, R.B. (1989): Cartographic generalization in a digital environment: When and how to generalize. Proceedings AutoCarto 9, pp. 56-67.! • Stoter, J., Post, M., van Altena, V., Nijhuis, R. & Bruns, B. (2014): Fully automated generalization of a 1:50k map from 1:10k data. Cartography and Geographic Information Science, 41(1).! 35
© Copyright 2025