Math 203 Hw 4 Spring 2015 Chapter 1 Math 203 Hw 4 1.1 12.2 * Evaluate the indicated limit or explain why it does not exist for 1, 3, 5, 6. 1) lim(x,y)→(2,−1) xy + x2 = 2(−1) + 22 = 2 3) lim(x,y)→(0,0) x2 +y 2 y It does not exist. If (x, y) → (0, 0) along x = 0, then y = x2 , then x2 +y 2 y 5) lim(x,y)→(1,π) x2 +y 2 y = y → 0. If (x, y) → (0, 0) along = 1 + x2 → 1. cos(xy) 1−x−cos y = 2 cos π = −1 1 − 1 − cos π 2 (y−1) 6) lim(x,y)→(0,1) xx2 +(y−1) 2 2 (y−1)2 2 2 We have 0 ≤ xx2 +(y−1) 2 ≤ x , and x → 0 as (x, y) → (0, 1). So the limit is 0. 15) What is the domain of f (x, y) = xx−y 2 −y 2 ? Does f (x, y) have a limit as (x, y) → (1, 1)? Can the domain of f be extended so that the resulting function is continuous at (1, 1)? Can the domain be extended so that the resulting function is continuous everywhere in the xy-plane? f (x, y) = x−y x−y = 2 2 x −y (x − y)(x + y) 1 Since f (x, y) = x+y at all points of the line x = y and so is defined at some points in any neighborhood of (1, 1), it approaches 1/(1 + 1) as (x, y) → (1, 1). If we define f (1, 1) = 1/2, 1 then f becomes continuous at (1, 1). Similarly, f (x, y) can be defined to be 2x at any point on 1 2 Math 203 Hw 4 the line x = y except the origin and becomes continuous at such points. However there is no 1 way to define f (x, y) so that f becomes continuous at y = −x, since |f (x, y)| = |x+y| → ∞ as y → −x. 19) What condition must the constants a, b, and c satisfy to guarantee that lim(x,y)→(0,0) xy ax2 +bxy+xy 2 exist? Prove your answer. Suppose (x, y) → (0, 0) along y = kx. Then xy k = 2 + bxy + xy a + bk + ck 2 thus f (x, y) has a different constant values along different rays from the origin unless a = c = 0 and b 6= 0. f (x, y) = ax2 20) Can be the function f (x, y) = becomes continuous there? If so, how? sin x sin3 y 1−cos(x2 +y 2 ) be defined at (0, 0) in such a way that it f (x, y) has no limit at (0, 0) so it cannot be defined at (0, 0) to become continuous. f (x, 0) = 0, so if the limit exists it must be 0. But f (x, x) = 1.2 sin4 x sin4 x 1 = → as x → 0 2 1 − cos(2x2 ) 2 2 sin x2 12.3 * Find all the first partial derivatives of the function specified, and evaluate then at the given point for 1, 3, 4, 5, 7. 1) f (x, y) = x − y + 2, (3, 2) fx (x, y) = 1 = fx (3, 2) fy (x, y) = −1 = fy (3, 2) , 3) f (x, y, z) = x3 y 4 z 5 , (0, −1, −1) 4 g(x, y, z) = fx (x, y, z) = 3x2 y 4 z 5 , fx (0, −1, −1) = 0 fy (x, y, z) = 4x3 y 3 z 5 , fy (0, −1, −1) = 0 fz (x, y, z) = 5x3 y 4 z 4 , fz (0, −1, −1) = 0 , gx (1, 1, 1) = xz , (1, 1, 1) y+z gx (x, y, z) = z y+z 1 2 1.2 12.3 3 gy (x, y, z) = −xz (y + z)2 gz (x, y, z) = 5) z = tan−1 x y gy (1, 1, 1) = − , xy (y + z)2 , gz (1, 1, 1) = 1 4 1 4 , (−1, 1) ∂z y =− 2 ∂x x + y2 , x2 ∂z = 2 ∂y x + y2 √ 7) f (x, y) = sin(x y), ∂z 1 =− ∂x (−1,1) 2 1 ∂z =− ∂y (−1,1) 2 , π ,4 3 √ √ y cos(x y) , fx x √ fy (x, y) = √ cos(x y) 2 y , fy fx (x, y) = π 3 , 4 = −1 π ,4 = − 3 24 π * Find equations of the tangent plane and normal line to the graph of the given function at the point with specified values of x and y for 13, 15, 17. 13) f (x, y) = x2 − y 2 , (−2, 1) fx (x, y) = 2x fx (−2, 1) = −4 , fy (x, y) = −2y fy (−2, 1) = −2 , Tangent plane: z = 3 − 4(x + 2) − 2(y − 1) Normal line: 15) f (x, y) = cos x y y−1 z−3 x+2 = = −4 −2 −1 , (π, 4) 1 fx (x, y) = − sin y x y , 1 fx (π, 4) = − √ 4 2 x fy (x, y) = 2 sin y x y , fy (π, 4) = π √ 16 2 4 Math 203 Hw 4 1 Tangent plane: z = √ 2 1 π 1 − (x − π) + (y − 4) 4 16 √ √ 1 16 2 (y − 4) = −z + √ Normal line: − 4 2(x − π) = π 2 17) f (x, y) = x , (1, 2) x2 +y 2 fx (x, y) = fy (x, y) = − y 2 − x2 (x2 + y 2 )2 , fx (1, 2) = 2xy + y 2 )2 , fy (1, 2) = − (x2 Tangent plane: z = Normal line: 3 25 4 25 1 3 4 + (x − 1) − (y − 2) 5 25 25 y−2 5z − 1 x−1 = = 3 −4 −125 23) Find the coordinates of all points on the surface with equation z = x4 − 4xy 3 + 6y 2 − 2 where the surface has a horizontal tangent plane. ∂z = 4x3 − 4y 3 = 4(x − y)(x2 + xy + y 2 ) ∂x ∂z = −12xy 2 + 12y = 12y(1 − xy) ∂y The tangent plane will be horizontal at points where both first partials are zero. Thus we require x = y and either y = 0 or xy = 1. So the points are (0, 0), (1, 1), (−1, −1). * Show that the given function satisfies the given partial differential equation for 25, 28 and 31. ∂z 25) z = xey , x ∂x = ∂z ∂y ∂z = ey ∂x , ∂z ∂z ∂z = xey =⇒ x = xey = ∂y ∂x ∂y 28) w = x2 + yz, x ∂w + y ∂w + z ∂w = 2w ∂x ∂y ∂z ∂w = 2x , ∂x ∂w =z ∂y , ∂w ∂w ∂w ∂w = y =⇒ x +y +z = 2(x2 + yz) = 2w ∂z ∂x ∂y ∂z ∂z ∂z 31) z = f (x2 − y 2 ), where f is any differentiable function of one variable, y ∂x + x ∂y =0 1.2 12.3 5 ∂z = 2xf 0 (x2 − y 2 ) ∂x 1.3 , ∂z ∂z ∂z = −2yf 0 (x2 − y 2 ) =⇒ y +x =0 ∂y ∂x ∂y 12.3 * Find all the second derivatives of the given function for 1, 2, 3, 5. 1) z = x2 (1 + y 2 ) ∂z = 2x(1 + y 2 ) ∂x ∂ 2z = 2(1 + y 2 ) ∂x2 , ∂z = 2x2 y ∂z , ∂ 2z = 2x2 ∂y 2 ∂ 2z ∂z = = 4xy ∂x∂y ∂y∂x , 2) f (x, y) = x2 + y 2 fx (x, y) = 2x fxx (x, y) = 2 , , fyy = 2 fy (x, y) = 2y , fxy (x, y) = f( yx)(x, y) = 0 3) w = x3 y 3 z 3 ∂w = 3x2 y 3 z 3 ∂x , ∂w = 3x3 y 2 z 3 ∂y , ∂w = 3x3 y 3 z 2 ∂z ∂ 2w = 6xy 3 z 3 ∂x2 , ∂ 2w = 6x3 yz 3 ∂y 2 , ∂ 2w = 6x3 y 3 z ∂z 2 ∂ 2w ∂ 2w = = 9x2 y 2 z 3 ∂x∂y ∂y∂x ∂ 2w ∂ 2w = = 9x2 y 3 z 2 ∂x∂z ∂z∂x , , ∂ 2w ∂ 2w = = 9x3 y 2 z 2 ∂y∂z ∂z∂y 5) z = xey − yex ∂z = ey − yex ∂x ∂ 2z = −yex ∂x2 , ∂ 2z = xey ∂y 2 ∂z = xey − ex ∂y , , ∂ 2z ∂ 2z = = ey − ex ∂x∂y ∂y∂x * Show that the functions are harmonic in the plane regions indicated for 8, 9, 10. 6 Math 203 Hw 4 8) f (x, y) = A(x2 − y 2 ) + Bxy in the whole plane (A and B are constants.) fx = 2Ax + By fxx = 2A fy = −2Ay + Bx , fyy = −2A =⇒ fxx + fyy = 2A − 2A = 0 so f is harmonic. , 9) f (x, y) = 3x2 y − y 3 in the whole plane (Can you think of another polynomial of degree 3 in x and y that is also harmonic?) fx (x, y) = 6xy fxx (x, y) = 6y , fy (x, y) = 3x2 − 3y 2 , fyy = −6y =⇒ fxx + fyy = 6y − 6y = 0 so f is harmonic. Also g(x, y) = x3 − 3xy 2 is harmonic. 10) f (x, y) = x x2 +y 2 everywhere except at the origin. fx (x, y) = fxx (x, y) = y 2 − x2 (x2 + y 2 )2 , fy (x, y) = − 2x3 − 6xy 2 (x2 + y 2 )3 , fyy (x, y) = =⇒ fxx (x, y) + fyy (x, y) = (x2 2xy + y 2 )2 −2x3 + 6xy 2 (x2 + y 2 )3 2x3 − 6xy 2 −2x3 + 6xy 2 + = 0 so f is harmonic. (x2 + y 2 )3 (x2 + y 2 )3 15) Let the functions u(x, y) and v(x, y) have continuous second partial derivatives and satisfy the Cauchy-Riemann equations ∂u ∂v = and ∂x ∂y Show that u and v are both harmonic. Solution: ∂v ∂u =− ∂x ∂y ∂ 2u ∂ 2v ∂ 2v ∂ 2u ∂ 2u ∂ 2u = = = − =⇒ + = 0 so u is harmonic. ∂x2 ∂x∂y ∂y∂x ∂y 2 ∂x2 ∂y 2 The proof for v is similar. 1 x2 17) Show that the function u(x, t) = t− 2 e− 4t satisfies the partial differential equation ∂u ∂ 2u = ∂t ∂x2 1.3 12.3 7 This equation is called the one-dimensional heat equation because it models heat diffusion in an insulated rod (with u(x, t) representing the temperature at position x at time t) and other similar phenomena. Solution: ∂u = ∂t 1 − 3 1 − 5 2 − x2 2 2 − t + t x e 4t 2 4 ∂ 2u =⇒ = ∂x2 , 3 x2 ∂u 1 = − xt− 2 e− 4t ∂x 2 ∂u 1 − 3 1 − 5 2 − x2 − t 2 + t 2 x e 4t = 2 4 ∂t 18) Show that the function u(x, y, t) = t−1 e− equation x2 +y 2 4t satisfies the two-dimensional heat ∂u ∂ 2u ∂ 2u = + ∂t ∂x2 ∂y 2 Solution: ∂u = ∂t 1 − 3 x2 + y 2 − x2 +y2 − t 2+ e 4t 2 4t3 1 − x2 +y2 x2 − x2 +y2 ∂ 2u = − 2 e 4t + 3 e 4t ∂x2 2t 4t , , x2 +y 2 ∂u x = − 2 e− 4t ∂x 2t x2 +y 2 ∂u y = − 2 e− 4t ∂y 2t , 1 − x2 +y2 y 2 − x2 +y2 ∂ 2u ∂ 2u ∂ 2u ∂u 4t 4t = − 2e = + + 3e =⇒ ∂x2 2t 4t ∂t ∂x2 ∂y 2 21) Verify that u(x, y) = x4 − 3x2 y 2 is biharmonic. ∂ 2u ∂ 3 2 = 4x − 6xy = 12x2 − 6y 2 ∂x2 ∂x ∂ 4u ∂ = (24x) = 24 4 ∂x ∂x =⇒ , ∂ 2u ∂ 2 = −6x y = −6x2 ∂y 2 ∂y , ∂ 4u ∂ = (−12x) = −12 2 2 ∂x ∂y ∂x ∂ 4u =0 ∂y 4 , ∂ 4u ∂ 4u ∂ 4u = +2 = + == 24 + 2(−12) + 0 = 0 so u is biharmonic. ∂x4 ∂x2 ∂y 2 ∂y 4 22) Show that if u(x, y) is harmonic, then v(x, y) = xu(x, y) and w = yu(x, y) are biharmonic. We have ∂2u ∂x2 + ∂2u ∂y 2 ∂ 2v ∂ = 2 ∂x ∂x = 0. ∂u u+x ∂x ∂u ∂ 2u =2 +x 2 ∂x ∂x , ∂ 2v ∂ = 2 ∂y ∂y ∂u x ∂y =x ∂ 2u ∂y 2 8 Math 203 Hw 4 ∂ 2v ∂ 2v ∂u =⇒ +x + = 2 ∂x2 ∂y 2 ∂x Since u is harmonic, so is Thus ∂2v ∂x2 + ∂2v ∂y 2 ∂ 2u ∂ 2u + ∂x2 ∂y 2 =2 ∂u ∂x ∂u : ∂x ∂2 ∂2 + ∂x2 ∂y 2 ∂u ∂ = ∂x ∂x ∂ 2u ∂ 2u + ∂x2 ∂y 2 = ∂ (0) = 0 ∂x is harmonic, so v is biharmonic. The proof for w is similar.
© Copyright 2024