Contents 1. Introduction I. 1 Refined BPS State Counting 2. The Refined Topological String 2.1. Twisting superconformal field theories . . . . . . . . . 2.1.1. Topological field theories . . . . . . . . . . . . 2.1.2. N = (2, 2) superconformal field theories . . . . 2.1.3. The chiral ring . . . . . . . . . . . . . . . . . . 2.1.4. Deformations . . . . . . . . . . . . . . . . . . . 2.1.5. The vacuum bundle . . . . . . . . . . . . . . . 2.1.6. The topological twist . . . . . . . . . . . . . . . 2.2. Nonlinear Sigma model realization . . . . . . . . . . . 2.2.1. The special role of Calabi-Yau threefolds . . . . 2.2.2. The moduli space of Calabi-Yau threefolds . . 2.2.3. The A-model . . . . . . . . . . . . . . . . . . . 2.2.4. A-model realization of the vacuum bundle . . . 2.2.5. The B-model . . . . . . . . . . . . . . . . . . . 2.2.6. Hodge filtration and Picard-Fuchs equations . . 2.3. Mirror symmetry and topological string theory . . . . 2.3.1. Topological string theory and mirror symmetry 2.3.2. Coupling the B-model to topological gravity . . 2.3.3. Coupling the A-model to topological gravity . . 2.4. Space-time perspective and refinement . . . . . . . . . 2.4.1. The Gopakumar Vafa invariants . . . . . . . . 2.4.2. The geometrical origin of the spin content . . . 2.4.3. Refinement of the free energy . . . . . . . . . . 2.4.4. Refined stable pair invariants . . . . . . . . . . 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . at higher genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Direct Integration of the Refined Holomorphic Anomaly Equations 3.1. Integration of the unrefined holomorphic anomaly equations . . . 3.2. The local and the holomorphic limit . . . . . . . . . . . . . . . . 3.2.1. The local limit . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2. The holomorphic limit . . . . . . . . . . . . . . . . . . . . 3.2.3. Holomorphicity versus modularity . . . . . . . . . . . . . 3.3. Direct integration of the refined topological string . . . . . . . . . 3.3.1. The refined holomorphic anomaly equations . . . . . . . . 3.3.2. The refined free energies at genus one and the propagator 3.3.3. The behavior at the conifold and the gap condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15 15 16 16 17 17 19 20 21 22 23 24 25 26 29 30 30 32 33 34 36 37 39 . . . . . . . . . 41 41 42 43 44 44 45 46 46 47 iii Contents 3.4. Elliptic curve mirrors and closed modular expressions . . . . . 3.4.1. Computing the period and prepotential from the elliptic 3.4.2. Determining the higher genus sector . . . . . . . . . . . 3.4.3. Fixing the holomorphic ambiguity . . . . . . . . . . . . . . . . curve . . . . . . . . 4. Geometry of del Pezzo Surfaces and Toric Mirror Symmetry 4.1. The geometry of del Pezzo and half K3 surface . . . . . . . . . . . . . 4.1.1. Algebraic realizations . . . . . . . . . . . . . . . . . . . . . . . 4.2. The Batyrev construction . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1. Toric Fano varieties and non-compact Calabi-Yau spaces . . . . 4.2.2. Constructing toric ambient spaces . . . . . . . . . . . . . . . . 4.2.3. Constructing mirror families of Calabi-Yau manifolds . . . . . 4.3. Non-compact mirror symmetry . . . . . . . . . . . . . . . . . . . . . . 4.3.1. Local mirror symmetry as a limit of compact mirror symmetry 4.3.2. Local mirror symmetry without a compact embedding . . . . . 4.4. Constructing the mirror curves of two-dimensional toric Fano varieties 5. Refined BPS Invariants of Toric Calabi-Yau Geometries 5.1. The massless D5 , E6 , E7 and E8 del Pezzo surfaces . . . . . . . . 5.1.1. The E8 del Pezzo surface . . . . . . . . . . . . . . . . . . 5.1.2. The E7 del Pezzo surface . . . . . . . . . . . . . . . . . . 5.1.3. The E6 del Pezzo surface . . . . . . . . . . . . . . . . . . 5.1.4. The D5 del Pezzo surface . . . . . . . . . . . . . . . . . . 5.2. An alternative approach to the massless cases . . . . . . . . . . . 5.3. The toric del Pezzo surfaces . . . . . . . . . . . . . . . . . . . . . 5.3.1. O(−KP2 ) → P2 . . . . . . . . . . . . . . . . . . . . . . . . 5.3.2. O(−KF0 ) → F0 . . . . . . . . . . . . . . . . . . . . . . . . 5.3.3. O(−KB1 ) → B1 . . . . . . . . . . . . . . . . . . . . . . . . 5.3.4. O(−KF2 ) → F2 . . . . . . . . . . . . . . . . . . . . . . . . 5.3.5. O(−KB2 ) → B2 . . . . . . . . . . . . . . . . . . . . . . . . 5.3.6. O(−KB3 ) → B3 . . . . . . . . . . . . . . . . . . . . . . . . 5.4. Almost del Pezzo surfaces . . . . . . . . . . . . . . . . . . . . . . 5.4.1. A mass deformation of the local E8 del Pezzo surface . . . 5.5. Solving the topological string on C3 /Z5 . . . . . . . . . . . . . . 5.5.1. Genus two curves and Igusa invariants . . . . . . . . . . . 5.5.2. The geometry and its mirror . . . . . . . . . . . . . . . . 5.5.3. Extracting the complex structure moduli from the mirror 5.5.4. Periods and free energies at genus zero and one . . . . . . 5.5.5. The propagator . . . . . . . . . . . . . . . . . . . . . . . . 6. The 6.1. 6.2. 6.3. 6.4. iv Refined BPS Invariants for the Half K3 The refined G¨ ottsche formula and the unrefined Refined BPS invariants for the massless half K3 The massive half K3 . . . . . . . . . . . . . . . Flow to the del Pezzo models . . . . . . . . . . HST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 49 50 51 . . . . . . . . . . 53 53 55 57 57 57 58 59 59 60 61 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 65 66 67 70 72 74 79 80 81 84 86 88 89 91 94 96 96 97 98 98 100 recursion relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 101 104 108 115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents II. Corrections and Nonperturbative Phenomena in F-theory 121 7. Basic Concepts of F-Theory 7.1. F-theory as the strong coupling regime of Type IIB . 7.2. Embedding F-theory into the web of string dualities 7.2.1. M/F-Theory duality . . . . . . . . . . . . . . 7.2.2. Heterotic/F-theory duality . . . . . . . . . . . . . . 123 123 125 125 127 . . . . . . . . . . 129 129 129 130 131 132 134 134 135 136 137 . . . . . . . . . . . 139 140 140 143 145 145 147 151 151 153 155 157 . . . . 8. Counting Non-Perturbative States in F-Theory 8.1. Counting refined BPS states of the E-string . . . . . . 8.1.1. Zero-sized Heterotic instantons . . . . . . . . . 8.1.2. The E-String in six and five dimensions . . . . 8.1.3. The Green-Schwarz string . . . . . . . . . . . . 8.1.4. The F-theory perspective . . . . . . . . . . . . 8.1.5. Refined stable pair invariants solve the problem 8.2. Counting [p, q]-strings using refined invariants . . . . . 8.2.1. The Seiberg-Witten description of the Sen limit 8.2.2. Generalizations . . . . . . . . . . . . . . . . . . 8.2.3. Counting [p, q]-strings in the half K3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. The Sevenbrane Gauge Coupling Function in F-Theory 9.1. Motivation: D7-brane gauge coupling function . . . . . . . . . . 9.1.1. D7-brane gauge couplings in 4d: Calabi-Yau orientifolds 9.1.2. Dimensional reduction to three dimensions . . . . . . . 9.2. M-theory compactifications and Taub-NUT geometries . . . . . 9.2.1. Kaluza-Klein-monopoles: TNk -spaces in M-theory . . . 9.2.2. S 1 -compactification of TNk : TN∞ k -space in M-theory . . 9.3. 7-brane gauge coupling functions in warped F-theory . . . . . . 9.3.1. The effective action of F-theory . . . . . . . . . . . . . . 9.3.2. Leading 7-brane gauge coupling functions . . . . . . . . 9.3.3. On dimensional reduction with fluxes and warp factor . 9.3.4. Calculation of corrections to the gauge kinetic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.Conclusion and Outlook 165 A. Appendix A.1. The general Weierstrass forms for the cubic, the quartic and the bi-quadratic A.1.1. The Weierstrass normal form of cubic curves . . . . . . . . . . . . . A.1.2. The Weierstrass normal form of quartic curves . . . . . . . . . . . . A.1.3. The Weierstrass normal form for a bi-quadratic curve . . . . . . . . A.2. Some more details on del Pezzo surfaces . . . . . . . . . . . . . . . . . . . . A.2.1. En -curves as Cubic curves . . . . . . . . . . . . . . . . . . . . . . . . A.2.2. The third order differential operator for B2 . . . . . . . . . . . . . . A.3. Jacobi and Siegel modular forms . . . . . . . . . . . . . . . . . . . . . . . . A.3.1. Weyl invariant Jacobi modular forms for E8 lattice . . . . . . . . . . A.3.2. Siegel modular forms of genus two . . . . . . . . . . . . . . . . . . . A.4. The BPS invariants for the half K3 and the diagonal classes of P × P1 . . . A.4.1. The diagonal P × P1 model . . . . . . . . . . . . . . . . . . . . . . . 169 169 169 171 172 174 174 179 179 179 180 184 184 v Contents A.4.2. The massless half K3 . . . . . . . . . . . A.4.3. The massive half K3 . . . . . . . . . . . A.5. Data for C3 /Z5 . . . . . . . . . . . . . . . . . . A.5.1. The Gopakumar Vafa invariants . . . . A.6. Conventions of N = 1 actions and dimensionful A.7. Linear multiplets and gauge couplings . . . . . A.8. Details of T Nk . . . . . . . . . . . . . . . . . . A.9. Details of T Nk∞ . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . vi . . . . . . . . . . . . . . . . . . . . . . . . constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 187 191 193 194 194 196 199 203
© Copyright 2025