“VIVYA`S POINT” - International Journal of Mathematical Sciences

Int. Jr. of Mathematical Sciences and Applications
Vol. 5, No. 2, July-December 2015
Copyright Mind Reader Publications
ISSN No: 2230-9888
A FEW MINUTES WITH A NEW TRIANGLE CENTRE COINED
AS
“VIVYA’S POINT”
D. N.Vijay Krishna
Keshava Reddy Educational Institutions
Machilipatnam, Kurnool, Andhra Pradesh (India).
E-mail: [email protected]
Abstract
We have nearly 6102 triangle centers in the literature of ‘geometry of triangles’,
“vivya’s point” is one of such triangle center, in this paper let us discuss very few and
important properties of this point in a more analytical way.
Key Words:
Vivya’s point, vivians,maneeal’s identity, cevas theorem,eulers inequality, maneeals inequality,
weill’s point
INTRODUCTION
In our classical “Euclidian Geometry” and in “Modern Geometry” we come across
with a lot of different classical centers of triangle. These are all defined by
the concurrence of important lines in the triangle. These centres and the cevians that
create them are
Centroid
medians
Incenter
angle bisectors
Circumcenter
penpendicular bisectors
Orthocenter
altitudes
Others discovered more recently (about 100 to 150 years ago) are
Associated with the incenter
Gergonne point.
cevians to contact points of incircle
Nagel Point,
cevians to contract points of excircles
Spieker center
incircle to medial triangle.
357
VIJAY DASARI
Associated with the centroid
symmedian point
cevians which are reflections of medians
respect to angular bisectors
weills point
centroid of intouch triangle
9 pt center
center of 9 pt circle
Points that occur in pairs such as the isodynamic and isogonal points.
They play vital Role in Discussion and Improvement of our study in the Abstract Geometry.
Now in this paper Let us spend very few minutes with a new triangle centre
coined as “Vivya’s point” and let us discuss its properties, using this Discussion we
will try to prove the famous Inequality named as ‘Maneeal’s Inequality” and also Famous
classical Inequality “Euler’s Inequality” and also many more curiosities.
358
Int. Jr. of Mathematical Sciences and Applications
Formal notations and some standard formulas :1) We know  = s ( s  a )(s  b )(s  c)
 2  s ( s  a)( s  b)( s  c)
 2  s ( s 3  s 2 (a  b  c)  s (ab  bc  ca)  abc]
Where   rs and abc  4 R
 (rs) 2  s ( s 3  s 2 (2s )  s ( ab  bc  ca)  4Rrs ]
 r 2 s 2  s 2 [ s 2  2s 2  (ab  bc  ca)  4 Rr ]
 r 2  s 2  (ab  bc  ca)  4 Rr
 ab  bc  ca  r ²  s ²  4 Rr
And
a2+b2+c2= (a+b+c) 2-2(ab+bc+ca)
= (2s) 2-2(r2+s2+4Rr) =2s2-2r2-8Rr
 a²  b²  c²  2  s ²  r ²  4Rr 
2)
Let K = a(s-b) (s-c) + b(s-c) (s-a) +c(s-b) (s-a)
= s2 (a+b+c)-2s (ab+ac+bc) + 3abc
= s2 [2s]-2s [r2+s2+4Rr] + 3 [4Rrs]
= 2s [s2-r2-s2-4Rr+6Rr]
= 2s [-r2+2Rr]
K  2rs  2R  r  = 2  2 R  r   2 R  r 
K
2
 K  a  s  b  s  c   b  s  c  s  a   c  s  b  s  a   2rs  2R  r 
3.
Let P= c(s-b) +b(s-c)
 P=s (b+c) -2bc
So, K = a(s-b) (s-c) + b(s-c) (s-a) +c(s-b) (s-a)
= a(s-b) (s-c) + (s-a) P
= as2-as (b+c) + abc + P(s-a)
= as2-a(s (b+c)-2bc) - abc + P(s-a)
= as2-aP-abc + P(s-a)
= as2+P(s-2a) - abc
= as2-abc + P(s-2a)
 K= as²-abc + P  s  2a 
359
A few minutes with a new triangle centre coined as “ VIVYA’S POINT”
4.
aK +a2bc-4(s-b)2(s-c)2
= a [as2-abc+P(s-2a)] + a2bc-4(s-b) (s-c)2
= a2s2-a2bc+aP(s-2a) + a2bc-(2(s-b) (s-c)]2
= (as) 2- [2(s-b) (s-c)] 2 + P[as-2a2]
= [as + 2(s-b) (s-c)] [as- 2(s-b)(s-c)] + P(as-2a2)
= [as+2s2-2s (b+c) +2bc] [as-2s2+2s (b+c)-2bc] +P (2s-2a2)]
= [s (2s)-(b+c)] +2s2-2s (b+c)+2bc] [s[(2s)-(b+c)]-2s2+2s (b+c)-2bc] + P[as-2a2]
= [2s2 -s(b+c)+2s2-2s(b+c)+2bc][ 2s2-s(b+c)-2s2 +2s(b+c)-2bc]+P(as-2a2 )
= [4s2-3s (b+c) +2bc] [s(b+c)-2bc]+P(as-2a2)
= [4s2-3s (b+c) +2bc] [P] +P (as-2a2)
= P [4s2-3s (b+c) +2bc+as-2a2]
= P [(a+b+c) 2-3(a+b+c) (s) +4as+2bc-2a2]
 a b c
abc
2
  4a 
  2bc  2 a ]
2
2




= P [a2+b2+c2+2ab+2bc+2ca-3(a+b+c) 
3
2
= P [a2+b2+c2+2ab+2bc+2ca- (a2+b2+c2+2ab+2bc+2ca)+2a2+2ab+2ac+2bc-2a2 ]
=
P
[2a2+2b2+2c2+4ab+4bc+4ca-3a2-3b2-3c2-6ab-6bc-6ca+4a2+4ab+4ac+4bc-4a2]
2
=
P
[2ab+2bc+2ca-a2-b2-c2]
2
=
P
[2(ab+bc+ca)-(a2+b2+c2)]
2
=
P
[2(r2+s2+4Rr)-2(s2-r2-4Rr)]
2
=
P
(2) [r2+s2+4Rr-s2+r2+4Rr]
2
= P [2r2+8Rr] =2rp[r+4R]

aK +a2bc-4(s-b)2(s-c)2=2rP(r+4R)
360
VIJAY DASARI
5.
If We is a Weill’s point and X be any point in the plant of  le ABC, then
1
 sb
s  c
r
2
WeX² = 3   c  b  AX  9 R  r  4 R 2r  3 R
Formal Definitions :
If ABC is a triangle and D, E, F are the points of contacts of the Incircle of
 le ABC on the sides BC, CA, AB. Let DP, EQ, FR are the perpendiculars Drawn from the
vertices D,E,F to the sides EF, DF, DE of  le DEF then the lines formed by joining vertices A,B,C of  le ABC and the points P, Q, R are called as “Vivian’s” . We have 3 “Vivians”
in the triangle and If we extend the 3 Vivians in the triangle they meet the opposite
sides of the  le ABC at A1, B1, C1 and these 3 Vivians Intersect at a point called as “Vivya’s
point” denoted by ‘Vm’and the triangle formed by joining the 3 points A1, B1, C1 is
called as “Vivians Triangle” and for any orbitary triangle the Circumcentre (S), Vivya’s
point (Vm) and Incentre (I) are collinear. The line through these 3 points is called as
Vivya’s line
The following figures demonstrate about the vivians.
A
A
A
P
F
Q
B
D
Fig (1)
C
B
P
E
F
E
F
R
D
Fig (2)
E
R
Q
C
B
D
Fig (3)
C
Fig (4)
In the above 4 figures we can see how the vivians can be constructed and also we
can identify how the new triangle centre “Vivya’s point” denoted by “Vm” formed.
Now let us prove some theorems related to this point.
361
Int. Jr. of Mathematical Sciences and Applications
Theorem 1 :
The three Vivians of triangle are concurrent and the point of concurrence is called as
“Vivya’s point” (Vm).
Proof:
Step - I
“From Figure 1”
We can observe that  le DEF is a contact triangle (or) In touch triangle, so we can
find the lengths of AE, AF, BF, BD, CE, CD as follows.
Let us consider formal notations Say BC= a units, CA= b units, AB= c units.
BDC , BFA are Tangents to the Incircle.
We know that “Tangents Drawn from an External Point are equal in length”.
So BD=BF=x, CD=CE=y, AF=AE=z (let)
Hence BC = a = BD + BC = xy
CA = b = CE + EA = y +z
AB = c = AF + BF = x + z
 2s = a + b +c
= 2(x+y+z)
 s= x + y + z where s is semi perimeter
A
So BD=BF= x = (x+y+z) – (y+z) = s-b
z
CD= CE = y =(x+y+z) –(x+z) = s-c
x
AE = AF = z= (x+y+z) –(x+y) = s-a
Now from  le BDF, BD=BF and  FBD =B
F
x
B
C
Similarly for  le CDE,  CDE=  CED = 90  (  OCE =C )
2
A
and for  le AEF,  AEF=  AFE= 90  (  EAF =A)
2

o
A)
 DFE = 180 – (  BFD +  EFA)

B
A
= 180o –  90   90  
2
2

362
E
y
B
So  BED=  BDE = 90 
2
z
D
C
y
A few minutes with a new triangle centre coined as “ VIVYA’S POINT”
=
A B
C
  90 
2 2
2
DEF  90  C
(  A+  B+  C =180o)
2
Similarly,
FDE  90  A
DEF  90  B
2
2
Now from  le BDF, By Consine Rule
DF2 = BD2 + BF2 – 2BD BF Cos B

DF2 = (s-b) 2 +(s-b)2 -2 (s-b) (s-b) Cos B

DF2= 2(s-b) 2 -2(s-b) 2 Cos B

DF2 = 2(s-b) 2 [1-cos B] =2(s-b)22sin2 B 2 =4(s-b)2.sin2 B 2 =[2(s-b)(sin B 2 )]2

DF = [2(s-b)(sin B 2 )]
Similarly,
DE= 2(s-c) Sin C 2
EF = 2(s-a) Sin A 2

The sides of  le DEF are 2(s-c) sin C/2, 2(s-a) Sin A/2 and 2(s-b) sin B/2.
The angles of  le DEF are 90-C/2, 90 –A/2, 90 –B/2 respectively. .
Step - 2:
A
P
E
F
“From Fig 2 “
Since EQ, DP, FR are r to the sides FD, EF, DE
For  le FED,
EQ is cevian (the line from the vertex to the opposite side
Now For  le EQF,  EQF =90o and  QFE = 90-C/2
So  FEQ= 180o – (  EQF +  QFE) =C/2
Similarly
 QED = A/2
363
Q
B
R
D
C
VIJAY DASARI
So since EQ is cevian of the  le FED meets the opposite side DF in Q then the Ratio it
divides the opposite side equal to the ratio of Areas of two triangles formed by the
cevian.
[le FEQ ]
FQ
i.e., QB  le
[  EQD ]
( [ ] represents area)
and we know that Area of triangle  le = ½ ab sinC
So [  le FEQ]
=
1
EF .EQ. Sin  PEQ
2
1
2
= 2 (s-a) Sin
Similarly
A
C
A
C
.EQ sin
= (s-a) Sin
.EQ sin
2
2
2
2
1
1
  le EQR   ED.EQ sin QED = .2  s  c  sin C .EQ.sin A = (s-c) sin A .EQ sin C
2
2
2
2
2
2

C
A
FQ  s  a  sin 2 sin 2 EQ s  a
FQ s  a



QD  s  c  sin A sin C EQ s  c  QD s  c
2
2
Similarly we can find
And
DR
RE

s  b
s  c
EP
PF

s  c
s  b
Step - 3
From figure 3
Let FAP  A1 , EAP  A2
 ECR=C1,  DCR=C2,  DBQ=B1,  FBQ=B2
Now consider le BFD,
Since BQ is cevian
BQ divides the opposite side DF in the ratio of Area of le BQD, le BQF
1
. BD.BQ sin B1
DQ [ le BQD ] 2
i.e.
 le

FQ [ BQF ] 1 .BQ.BFsin B
2
2
364
Int. Jr. of Mathematical Sciences and Applications

FQ BF sin B2

DQ BD sin B1

s  a  s  b  sin B2

s  c  s  b  sin B1 (Using step -2)

sin B2 s  a
sin B1 s  c



sin B1 s  c
sin B2 s  a
similarly we can prove that

sin A1 s  b
sin C1 s  a

and

sin A2 s  c
sin C2 s  b
Step -4
“From Fig 4”
Now AA1, BB1, CC1 are required Vivian’sand also they are Cevians.
We know that Cevian of triangle divides the opposite side in the Ratio of Areas
of triangles thus formed.
le
1
BA1   B AA 
So, A1C   le
1
  C AA 
1
BA. AA1.Sin A1
1
BA
2
 1 
A C 1 CA. AA1.Sin A
2
2
A
P
C1
BA1 c.Sin A1
 1 
A C b.Sin A2
BA1  c  s  b 
 1   
 (using step-3)
A C  b  s  c 
BA1 c( s  b )
 1 
A C b(s  c )
A2
A1
B2
Vm
Q
C2
A1
CB1 a  s  c  AC1 b  s  a 
Similarly can prove that B1 A  c s  a , C1 B  a s  b


 
Final step
AC1 BA1 CB1 b( s  a ) c( s  b) a ( s  b)

.
.
Now 1 . 1
C B A C B1 A a (s  b) b(s  c ) c ( s  a )
365
R
C1
B1
B
B1
C
A few minutes with a new triangle centre coined as “ VIVYA’S POINT”
=
abc (s  a)( s  b)(s  c)
1
abc (s  a)( s  b)(s  c)
Hence by the converse of ceva’s theorem we can conclude that the threeVivian’s
AA1, BB1, CC1 are Concurrent and the point of concurrence is called as “Vivya’s point
(Vm)”.
COROLLARIES :
I.
Let AA1, BB1, CC1 are Vivians then
BA1 c( s  b )

A1C b( s  a )
CB1 a ( s  c )
AC 1 b (s  a )

Similarly 1
and 1 
B A c( s  a )
C B a ( s  b)
II.
The point of concurrency of 3 Vivian’s is called as “Vivya’s point” and is denoted
as Vm’
III.
If Vm is the Vivya’s point then the length of the each Vivian in the triangle ABC is
given by
| 2
 AA 
a 2b 2 c 2  4 abc( s  b) 2 ( s  c) 2
=
[c( s  b)  b( s  c)]2
1
Hence
2 2 2
2
2
AA1 = c( s  b)  b( s  c) a b c  4bc( s  b) ( s  c)
Similarly
2 2 2
2
2
BB1 = a( s  c)  c( s  a) a b c  4ac(s  a) ( s  c)
1
1
2 2 2
2
2
CC1 = a(s  b)  b( s  c) a b c  4ab( s  a) ( s  b)
Proof:Let AA1 is Vivian
We know by using previous Discussion
BA1 c( s  b)

A1C c( s  c )
So let BA| = c(s-b) t
for some constant t
A|C= b(s-c) t
366
VIJAY DASARI
BA|+A|C = t [c(s-b) +b(s-c)]
BC = t[c(s-b)+b(s-c) ]
 a = t[c(s-b)+b(s-c)]
a
 t = c ( s  b)  b( s  c )
ca ( s  b)
 BA| = c(s-b) t = c( s  b)  b( s  c)
ba( s  c)
AC| = b(s-c) t = c( s  b)  b( s  c)
Since AA| is a vivian as well as Cevian So By STEWART’S THEOREM.
BA| . AC 2 CA| .BA2

 BA| .CA|
BC
BC
(AA|)2 =
| 2
  AA 
ac( s  b)b 2
ab(s  c)c 2
a 2bc(s  b )(s  c)
=
+
[c( s  b)  b( s  c)](a) [c( s  b)  b( s  c)](a) [c( s  b)  b( s  c)]2
  AA|  =
bc
a 2 bc( s  b)(s  c)
[b( s  b)  c( s  c)] 
[c( s  b)  b( s  c)]
[c( s  b )  b( s  c)]2
  AA|  =
bc
[b( s  b)  c( s  c)][c( s  b )  b( s  c)]  [a 2 ( s  b)( s  c ) 
[c( s  b)  b ( s  c)]2 
  AA|  =
bc
bc ( s  b) 2  b2 ( s  b)( s  c)  c 2 ( s  c )( s  b)  bc( s  c )2  a 2 ( s  b )( s  c) 
[c( s  b)  b ( s  c)]2 
  AA|  =
bc
bc  s  b 2   s  c 2    s  b  s  c  b²  c²  a ²  


[c( s  b)  b ( s  c)]2  
  AA|  =
bc
bc  s  b  s  c 2  2bc  s  b  s  c    s  b  s  c  b²  c²  a ²  

[c( s  b)  b ( s  c)]2 
2
2
2
2
2
bc
2
2
  AA|  = [c( s  b )  b( s  c)] 2 bc  2 s   b  c     s  b  s  c  b ²  c ²  a ²  2bc 
bc
2
2
2
  AA|  = [c( s  b )  b( s  c)] 2 bc  a    s  b  s  c   b  c   a ²  
bc
2
  AA|  = [c( s  b )  b( s  c)] 2  a ²bc   s  b  s  c  b  c  a  b  c  a 
bc
2
  AA|  = [c( s  b )  b( s  c)] 2  a ²bc   s  b  s  c  2 s  2c  2 s  2b   where 2s= a+b+c
| 2
  AA 
a 2b 2 c 2  4bc( s  b) 2 ( s  c ) 2
=
[c (s  b )  b( s  c)]2
367
Int. Jr. of Mathematical Sciences and Applications
1
2 2 2
2
2
 AA1 = c( s  b)  b (s  c) a b c  4bc( s  b) (s  c)
Similarly we can prove that
BB1=
1
a (s  c)  c( s  a )
a 2 b 2 c 2  4bc( s  a ) 2 ( s  c ) 2
1
CC1= a  s  b  b  s  a  a 2 b 2 c 2  4 ab( s  a ) 2 ( s  b) 2
IV.
If Vm is the Vivya’s point of a triangle then the Vivya’s point divides each Vivian
in the ratio is given by
AVm c( s  a )( s  b)  b (s  a )( s  c)

Vm A1
a ( s  b)( s  c)
BVm c( s  b)( s  a )  a ( s  b)( s  c)

Vm B1
b( s  a )( s  c)
Similarly
and
CVm a( s  c)( s  b)  b( s  c)( s  a )

VmC1
c( s  a )( s  b )
Proof :Let AA1, CC1 are vivians of  le ABC and Vm is “Vivya’s point”
Since C1, Vm, C are collinear

For  le A BA1 and C 1VmC is a transversal
Hence By Menelau’s theorem
|
AC | BC AV
m
.
.
We have C | B CA| V A  1
m
A1Vm BC1 CA1
So V A  C1 A BC
m
b sc
(“-” is removed since it represents only direction but not magnitude)
we know that
BC1 a( s  b )

C 1 A b( s  a)
and
BA1 c( s  b )

A1C b( s  c)

(By adding 1 on both sides )
BA1
c ( s  b)
1 
1
1
AC
b( s  c )
368
A few minutes with a new triangle centre coined as “ VIVYA’S POINT”

BA1  A1C c( s  b)  b ( s  c)

A1C
b( s  c )

BC c( s  b)  b( s  c)

A1C
b( s  c )

CA1
b( s  c )

BC c( s  b)  b( s  c )
A1Vm BC1 CA
since V A  C 1 A . BC
m
a  s  b  s  c 
A1Vm a ( s  b)
b( s  c )

.
=
Vm A
( s  a ) c( s  b)  b( s  c) c  s  a  s  b    s  a  s  c 

AVm c( s  a )( s  b)  b ( s  a )( s  c)

.
Vm A1
a ( s  a )( s  c)
Similarly we can prove
BVm c( s  b)( s  a )  a ( s  b)( s  c)

Vm B1
b( s  a )( s  c)
CVm
And V C| 
m
V.
a  s  c  s  b   b  s  c  s  a 
c  s  a  s  b 
If Vm is Vivya’s points of  le ABC and AA1 , BB 1 ,CC 1 are Vivian’s then
 2 R  r   r ²  4Rr 8R ²  r ² 
AVm2  BVm2  CVm2  S 2 
2

 2R  r 
 2R  r 
Proof: We have by previous theorem :
AVm  s  a  s  b   b  s  a  s  c  K  a  s  b  s  c 


Vm A1
a  s  b  s  c 
a  s  b  s  c 

 s  a  c  s  b   b  s  c  
 s  a p

a  s  b  s  c 
a  s  b  s  c 
So
AVm   K  a  s  b  s  c   t
Vm A1   a  s  b  s  c   t
Now AVm  Vm A1  t  K 
 AA1  tK
369
for some real constant ‘’t’’
VIJAY DASARI
t 
AA1
K
1
AA1 p  s  a  AA

So AVm   K  a  s  b  s  c 
K
K
Vm A1 
a  s  b  s  c  AA1
K
 k  b  s  a  s  b  BB
b  s  a  s  c  |
BB
Siimilarly BVm  
, Vm B| 
1
K
K
1
 k  c  s  a  s  b  CC1
c  s  a  s  b  CC
1
CVm 
, VmC 
k
k
and
Now
AVm2  BVm2  CVm2  AVm2
=

p2  s  a 
k
AA1
2
p2  s  a 
k
2
2
1
 a 2b 2 c 2  4bc  s  b 2  s  c 2 

 c  s  b   b  s  c  
2
2
2
2
2
p 2  s  a   a 2b2 c 2  4bc  s  b   s  c  



k2
p²


 a 2b 2c 2  s  a  2 4bc  s  a 2  s  b 2  s  c 2 



k2
k2



a 2b 2 c 2 
2
2
2
4
2
2
2
 s  a    s  b    s  c    2  s  a   s  b   s  c   ab  bc  ca 
k2 
k
2
2
2
2
a 2b 2c 2
4 s  s  a   s  b  s  c 
2
2
2
2



3
s

2
s
a

b

c

a

b

c



 ab  bc  ca 
 k2
k2 
s2

16 R 2 2
4 4
2
2
2
2
2


3
s

4
s

a

b

c

 k 2 s 2  ab  bc  ca 
k2 
=
16 R 2  2
4 4
  s 2  2 s 2  2 r 2  8 Rr   2 2  r 2  s 2  4 Rr 
2
k
k s
4 2
= k2
=
 abc  4 R and 2s  a  b  c 
 2 2

2 2 2
2
4
R
s

2
r

8
Rr

r  s  4 Rr     rs 

2
s






4 2  2 2
4 R s  8 R 2 r 2  32 R 3 r  r 2 r 2 rs 2  4 Rr 
k2 


370
Int. Jr. of Mathematical Sciences and Applications
4 2
= 2  4 R 2 s 2  8R 2 r 2  32R 3 r  r 4  r 2 s 2  4R 4r 3 
k
4 2  2
= 2  s 4R 2  r 2  8r 2 8R 2  r 2  4Rr 8R 2  r 2 
k






4 2  2
= 2  s 4R2  r 2  r 2  4Rr 8R 2  r ² 
k


 
4 ²
4 ²  2 R  r 
2


 s ²  4 R ²  r ²    r ²  4 Rr  8 R ²  r ² 
 2 R  r   r ²  4 Rr  8 R²  r ² 
 S²

2
 2R  r 
 2R  r 
 2 R  r   r ²  4 Rr  8R ²  r ² 
AVm2  BVm2  CVm2  S 2 

2
 2 R  r 
 2R  r 

Theorem 2 :
MANEEAL’s Identity:
Let ABC is a triangle and Vm is it’s “Vivya’s point” and X be any point in the plane of
 le ABC
Then
Vm X 2 
a (s  b)(s  c )
b( s  a)(s  c)
c(s  a)(s  b)
2 Rr 2 (r  4 R )
AX 2 
BX 2 
CX 2 
K
K
K
(2 R  r ) 2
where K  2rs  2R  r 
The other form of maneeal’s Identity as
Vm X 2 
2 RSin 2 A / 2
2 RSin 2 B / 2
2 RSin 2 C / 2
2 Rr 2 (r  4 R )
AX 2 
BX 2 
CX 2 
(2 R  r )
2R  r
2R  r
(2 R  r ) 2
Proof:Let R= circum radius of  ABC
Vm
r = In radius of  ABC
s =semi perimeter
Vm
= Vivya’s point
X
= Any point in the plane of  ABC
371
A few minutes with a new triangle centre coined as “ VIVYA’S POINT”
AB
= c, BC=a, CA=b
P
= c(s-b) +b(s-c)
K
= a(s-b) (s-c) +b(s-a) (s-c) +(s-a) (s-b)
 K-a(s-b) (s-c) = (s-a) [b(s-c) +c(s-b)] =(s-a) P
We know by previous calculations
BA1 c( s  b)

A1C b( s  c)
ac( s  b )
And BA1 = c( s  b)  b( s  c)
ac( s  b)
p
=
Similarly A1C=
ab( s  c)
p
and Vm is Vivya’s point and we have
AVm c( s  a )( s  b)  b( s  a )(s  c)

Vm A1
a ( s  b)( s  c )
by previous theorems we have

 c  s  a  s  b   b  s  a  s  c  AA|  K  a  s  b  s  c   AA|
AVm  

K
K
and
VmA1 =
a (s  b)( s  c) AA1
k
Step - 1 :
Now from  le BXC,
Since XA| is a cevian so by STEWARTS THEOREM, we have
BA| .CX 2 CA| .BX 2
|

 BA| . AC
BC
BC
2
 XA|  
2
  XA|  
2
  XA|  
ac  s  b 
ab  s  c 
a 2bc  s  b  s  c 
CX 2 
BX ² 
Pa
Pa
P²
c s  b
b  s  c
a 2bc  s  b  s  c 
CX 2 
BX ² 
P
P
P²
Step - 2 :
Now From  le AXA|,
372
VIJAY DASARI
Since VmX is a cevian so by Stewart’s theorem, we have
AVm  XA| 
2
Vm X 
AA|
2

Vm A| . AX 2
 AVm .Vm A|
|
AA
 K  a  s  b  s  c    a  s  b  s  c   AA| 
 K  a  s  b  s  c   AA|
a  s  b  s  c  AA|
| 2
2
 Vm X 2  
XA

AX



K . AA|
K . AA|
K2
 K  a  s  b  s  c    c  s  b  CX 2 b  s  c  BX 2 a 2bc  s  b  s  c  
 Vm X 2  




K
P
P
P2




a  s  b  s  c 
K
 K  a  s  b  s  c    a  s  b  s  c   AA| 
AX 
K2
2
2
  s  a  P   c  s  b  CX 2 b  s  c  BX 2 a 2bc  s  b  s  c  
 Vm X  




P
P
P2
 K


2

 Vm X 2 

a  s  b  s  c 
K
2
AX 
 s  a  P  a  s  b  s  c   AA| 
2
K2
c( s  b)( s  a)CX 2 b( s  c)( s  a) BX 2 a( s  b)( s  c) AX 2


K
K
K
a 2 bc( s  a )( s  b)( s  c ) p p( s  a)( s  b)( s  c) 12

AA
K P2
K2
 Vm X 2 

 a( s  b)(s  c)
a ( s  a)(s  b)(s  c)
2
12
AX 2 
Kabc

P
AA
K
K2P
Step - 3 :
Now
Kabc + P2  AA| 
2
 a 2 b 2 c 2  4bc( s  b) 2 ( s  c ) 2 

P2


= Kabc+P2 
Where  AA|  =
2
a 2b 2 c 2  4bc( s  b) 2 ( s  c ) 2
P2
= K abc+a2b2c2 -4bc(s-b)2 (s-c)2
= bc[Ka+a2bc-4(s-b)2(s-c)2]
= bc[2rp(r+4R)] [By notation 4]
373


Int. Jr. of Mathematical Sciences and Applications
Vm X 2  

2
a ( s  b)(s  c)
a( s  a )(s  b )(s  c)
AX 2 
Kabc  P 2 AA1
2
K
K P

 Vm X 2  
a( s  b)( s  c)
a ( s  a )(s  b)( s  c)
AX 2 
2rpbc  (r  4 R)
K
K2 P
 Vm X 2  
a (s  b )(s  c)
abc(s  a )( s  b)(s  c)(r  4 R)(2 r )
AX 2 
K
K2
 Vm X 2  
a ( s  b)( s  c)
abc( s  a )( s  b)( s  c )(2 r )(r  4 R )
AX 2 
2rs(2R - r)
(2rs)2 ( 2 R  r ) 2
 Vm X 2  
a ( s  b)( s  c)
abc(s  a )(s  b)( s  c)(2r )(r  4 R )
AX 2 
2rs(2R - r)
4 r 2 s 2 (2 R  r ) 2
Step - 4 :
Now
abc( s  a )( s  b)( s  c )(2r )(r  4 R )
4r 2 s 2 (2 R  r ) 2
=
4 Rrs ( s  a)( s  b)( s  c)(2r )(r  4 R )
4r 2 s 2 (2 R  r ) 2
=
8 Rr 2 s ( s  a )( s  b)( s  c)(r  4 R)
4(rs ) 2 (2 R  r ) 2
 abc  4 Rrs 
8 Rr 2 2 ( r  4 R)
   rs
=
42 (2 R  r ) 2
=

2 Rr 2 (r  4 R)
(2 R  r ) 2
Vm X 2  
2
 Vm X 
a ( s  b)( s  c)
2 Rr 2 (r  4 R)
AX 2 
2 rs(2 R  r )
(2 R  r ) 2
a (s  b)(s  c )
b( s  a)(s  c)
c(s  a)(s  b)
2 Rr 2 (r  4 R )
AX 2 
BX 2 
CX 2 
K
K
K
(2 R  r ) 2
where K  2rs  2R  r 
This is our MANEEAL’s Identity
Now
a( s  b)( s  c) abc sin 2 A / 2 4 R sin 2 A / 2 2 R sin 2 A / 2


=
2rs(2 R  r )
2 rs(2 R  r )
2 ( 2 R  r )
2R  r
Hence the other form of MANEEAL’s identity is
374
A few minutes with a new triangle centre coined as “ VIVYA’S POINT”
Vm X 2 
2 R sin 2 A / 2
2 R sin 2 B / 2
2 R sin 2 C / 2
2 Rr 2 (r  4 R)
AX 2 
BX 2 
CX 2 
2R  r
2R  r
2R  r
(2 R  r )2
Corollaries :
I.
If Vivya’s point (Vm) and circumcentre (S) of a triangle then
 2R  r 
VmS² = R  R  2r  
 2 R  r 
2
Proof
1.
If we put instead of X as S (Circumcentre) in VmX using the previous theorem then
we can find the distance between our ‘Vivya’s point and Circumcentre (S).
Vm S 2 
a ( s  b)( s  c )
b( s  a)( s  c) 2 c( s  a )( s  b) 2 2 Rr 2 (r  4 R)
AS 2 
BS 
CS 
2rs (2 R  r )
2 rs( 2 R  r )
2rs (2 R  r )
(2 R  r ) 2
and we have AS=BS=CS=R= Circum Radius
2
Hence Vm S 
a ( s  b)( s  c) 2 b (s  a )(s  c) 2 c( s  a )( s  b) 2 2 Rr 2 (r  4 R)
R 
R 
Rr 
K
K
K
(2 R  r ) 2
 2 Rr 2 (r  4 R ) 
R2
Vm S 
a( s  a)(s  c)  b( s  a)( s  c )  c (s  a)( s  b)-  (2 R  r ) 2 
K


2
 Vm S 2 
R2
2 Rr 2 (r  4 R)
(k ) 
K
( 2R  r ) 2
 Vm S 2  R 2 
2 Rr 2 (r  4 R)
(2 R  r ) 2
 R ( 2 R  r ) 2  2r 2 ( r  4 R) 
 Vm S 2  R 

(2 R  r ) 2


 Vm S 2 
R
R[4 R 2  r 2  4 Rr ]  2r 2 (r  4 R)
(2 R  r ) 2
 Vm S 2 
R
4 R 3  Rr 2  4 R 2 r  2r 3  8 Rr 2
(2 R  r ) 2
 Vm S 2 
R
4 R 3  4 R 2 r  7 Rr 2  2r 3
(2 R  r ) 2




Vm S ² 
=
R
 2R  r 
R
 2R  r 
2
2



 4 R ³  4 R ²r  7 Rr ²  2r ³
 R  2r  2R  r 2   R  R  2r   2 R  r 
 2R  r 




375
2
VIJAY DASARI
 2R  r 
VmS² = R  R  2r  
 2 R  r 

II.
2
If Vivya’s point (Vm) and incentre (I) of a triangle then VmI² =
4 Rr 2  R  2r 
 2R  r 
2
Proof :
If we put instead of X in VmX2 as I (In centre) we can get a relation to find the
distance between our “Vivya’s point and Incentre.
VmI =
2
2 R sin 2  A / 2 
2R  r
AI 2 
2 R sin 2  B / 2 
2R  r
BI 2 
2 R sin 2  C / 2 
2R  r

2 Rr 2 (r  4 R )
2R  r 
2
And we know that
AI 
r
r
r
, BI 
, CI 
 r 2  AI 2 sin 2 A  BI 2 sin B  CI 2 sin 2 C
2
2
2
sin A / 2
sin B / 2
sin C / 2
2 Rr 2
2 Rr 2
2 Rr 2 2 Rr 2 (r  4 R)



 Vm I =
2R  r 2 R  r 2 R  r
(2 R  r ) 2
2
 Vm I 2 =
6 Rr 2 2 Rr 2 (r  4 R)

2R  r
(2 R  r ) 2
 Vm I 2 =
2 Rr 2
[3(2 R  r )  (r  4 R )]
2R  r
2 Rr 2
[ 2 R  4r ]
 Vm I =
2( R  r ) 2
2
2
 Vm I 
4 Rr 2  R  2r 
 2R  r 
2
Vm S 2  IS 2 2 R

III. The relation between the VmS, VmI, IS is
Vm I 2
r
2
2
Proof : We know that SI =R -2Rr=R[R-2r] where S, I are circum centre, In centre.
By previous theorems we have
2
4 Rr 2  R  2r 
2
 2R  r 
V
I

2
VmS² = R  R  2r  
& m
 2R  r 
 2 R  r 
 2R  r 
(2 R  r ) 2
[Vm S 2  SI 2 ] =
Now
R
R
2


R
4 R 3  4 R 2 r  7 Rr 2  2 r 3   R  R  2r  

2 
  2 R  r 

= [4R3-4R2r-7R2-2r3-(R-2r)(2R-r)2]
= 4R3-4R2r-7Rr2-2r3-(R-2r)(4R2+r2-4Rr)
376
Int. Jr. of Mathematical Sciences and Applications
= 4R3-4R2r-7Rr2-2r3-[4R3+Rr2-4R2r-8R2r-2r3+8Rr2]
= 8R2r-16Rr2
= 8Rr(R-2r)

8Rr 2  R  2 r  2 R  r 
2
2
 2R  r   r 
2
 4 Rr 2  R  2r    2  2 R  r  
 = (V I2)
=   2R  r   
m
r

 


 2
  (2R-r)2
r
2
(2 R  r ) 2
[VmS2-IS2]= (2R-r)2 (VmI2)
r
R
 r(VmS2 – IS 2) =2R(VmI2)

 r Vm S 2  IS 2   2 R Vm I 2

IV.

Vm S 2  IS 2 2 R

Vm I 2
r
If VmS, VmI are the distances from Vivya’s point (Vm) to circumcentre (S), Incentre
V S
m
(I) then V I 
m
2R  r
2r
Proof :
We know by previous theorem
2
2
 2 R  r  V I 2  4 Rr  R  2r 
2
2
R
R

2
r
m

2
VmS² = 
,
 2R  r  & SI =R -2Rr=R[R-2r]
 2 R  r 
Vm S 2
So clearly we have R 2R  r 2



Vm I 2
4 Rr 2

Vm S
V I
 m
2 R  r 2r

Vm S 2 R  r

Vm I
2r
V.

r 
If We is the Weill’s point then WeI²=  1  

3R 
2
 R² 2Rr 
Proof :
If We is a Weill’s point and X is any point in the plane of  le , then we havee
377
A few minutes with a new triangle centre coined as “ VIVYA’S POINT”
We X 2 
1  s  b s  c
r

AX 2 
 r  4R  2r  3R



3  c
b 
9R
Put X = S where AS  BS  CS  R
 We S2 
1  s  b s  c 2 r

AS 
 r  4 R 2r  3R

3  c
b 
4R

1  s  b s  c
r

R ²
 r  4R 2r  3R



3  c
b 
9R

1 s  b s  c s  a s  b s  c s  a r
R²






 r  4R 2r  3R
3  c
b
b
a
a
c  9 R

1
r
R ² 1 1 1 
 r  4R 2r  3R
3
9R
 R² 



r
 r  4R 2r  3R
9R
9 R³ r  2r ² 3Rr  8Rr  12R ²
9R
9 R³ 2r ³ 11Rr ² 12R r²
9R
 R² 2Rr  9R ² r ²
6Rr 
9 R²
 3R  r 

 3 R 
2
 3R  r 

 3 R 
2
 R² 2Rr 
 R² 2Rr 
2
 3R  r 

SI ²
 3 R 
2
  3R  r  

r  
 
SI     1 
SI

3R  
  3R  


r  
WeS²   1
SI 
3R  

2
2

r 
WeS   1 
SI

3 R 
378
VIJAY DASARI
VI.
If We is the Weill's point then We I 
2
r 2  R  2r 
9R
Proof :
If We is a Weill’s point and X is any point in the plane of  le , then we havee
We X 2 
1  s  b s  c
r

AX 2 
 r  4R  2r  3R



3  c
b 
9R
r
Put X=I and AI = Sin A
 r ²  s  a 
2
r
BI = Sin B
2
 r ²  s  b 
2
2
r
CI = Sin C
 r ²  s  c 
2
2
1
 sb
s  c
1
 sb
s  c
r

2
2
So We I  3    c  b  AI   9 R  r  4 R 2r  3R


2

r

= 3    c  b  r ²  s  a   9 R  r  4R 2r  3R


1   sb
sc
sa
sb
sa
s  c
= 3 r ² c  b  b  a  c  a 

2
2
2
2
c
b
c
a
2
2
b
a
 s  a  s  b   s  a  s  c    s  b   s  a    s  b   s  c 

 s  c   s  a   s  c  s  b  


r
 r  4 R 2r  3R
 9R

1
1  s  a s  b
1  s  b s  c 
r ² 3 
 s  a  s  b 
 s  b  s  c 
3
3
c
3
a

1  s  c  s  a
r
 s  c  s  a 
 r  4R 2r  3R
3
b
9R
1
r
 r ²  s  a s  b   s  b s  c    s  c  s  a  
 r  4R 2r  3R
3
9R
1
r
 r 2   3S² 2S  a  b  c   ab  bc  ca  
 r  4R 2r  3R
3
9R
379
Int. Jr. of Mathematical Sciences and Applications
1
r
 r ²  3s ² 2s  a  b  c   s ² r 
² Rr
4  
 r  R4  r2 R3
3
9R 
1
r
 r ²  r ² 4Rr  
 r  4R 2r  3R
3
9R

4r ² 4Rr r

 r  4 R 2r  3R
3
9R

12r ²R  12R ²r  2r ³ 11
r R
²  12
R r²
9R

r ²R  2r ³ r ² R  2r  r ² R ² 2Rr 


9R
9R
9 R²
We I ² 
We I 
VII.
r ² R ² 2Rr 
9 R²
2
 r 
 r

   SI ² 
SI
 3R 
 3R 
2
r
SI
3R
2
If We is the Weill's point and V m is vivya's point then VmWe 
r 2 ( r  4 R)2 ( R 2  2 Rr )
9 R 2 (2 R  r )2
Proof :
we have by theorem 2
Vm X 2  
a( s  b)( s  c )
2 Rr 2 (r  4 R)
AX 2 
K
(2 R  r )2
Put X= We and
AWe 2 
1  s  a s  c  2 1  s  a s  b 2 r

b  

c 
 r  4 R 2r  3R
3  c
a 
3 b
a 
9R
BWe 2 
1  s  b s  c 2 1  s  b s  a 2 r

a  

c 
 r  4R  2r  3R 
3  c
b 
3 a
b 
9R
CWe 2 
1  s  c s  a 2 1  s  c s  b 2 r

b  

a 
 r  4R  2r  3R 
3  a
c 
3 b
c 
9R
so
VmWe 2  
a( s  b)( s  c )
2 Rr 2 (r  4 R)
AWe 2 
K
(2 R  r )2

 2 Rr 2 (r  4 R)
a( s  b)( s  c )  1  s  c s  a  2 1  s  c s  b  2 r

b


a

r

4
R
2
r

3
R


  (2R  r )2
 3  a
K
c 
3  b
c 
9R

2
2
1 
s  b s  c  c 2   s  c  s  b b2  ac  s  a s  b s  c   ab  s  a s  b  s  c  


3K 
380
A few minutes with a new triangle centre coined as “ VIVYA’S POINT”

=
1
1
s  b s  c   c 2  s  c   b 2  s  b  


  s  a s  b s  c   ab  ac
3K
3K


r
2 Rr 2 ( r  4 R)
r  4 R 2r  3 R   a  s  b s  c   

9 RK
(2 R  r )2
r
2 Rr 2 (r  4 R)
r  4 R 2r  3 R  s2 ( a  b  c )  2 s(ab  bc  ca)  3abc  

9 RK
(2 R  r )2
1
2
s  b s  c   c 2  s  c   b 2  s  b  

 s  a  s  b s  c  ab  bc  ac

3K
3K

r
2 Rr 2 ( r  4 R)
r  4 R 2r  3 R  s2 (2 s)  2 s(r 2  s 2  4 Rr )  34 Rrs 

9 RK
(2 R  r )2
Where K = 2rs (2R-r) by brute force algebraic manipulation we get
2
2
VmWe 
r 2  r  4 R R2  2 Rr

9 R2  2 R  r 

2
2
r 2  r  4 R SI 2
=
9 R2  2 R  r 
2
 r  r  4 R SI 

= 
 3R  2R  r  
2
(where SI is the distance between the circumcenter and incenter)
 r  r  4 R SI 

hence VmWe  
 3R  2 R  r  
Theorem 3 :
Prove that Vivya’s point (Vm), circumcentre (S), Incentre (I) are collinear. The
line through these points are called as Vivya’s line.
Proof:
Method - I
By previous theorems
2
We have Vm s 
R  R  2r 
R  R  2r 
2
2
2r 
 2R  r  and Vm I 2 
2 
 2R  r 
 2R  r 
2
So clearly Vm s 2 , Vm I 2
We have
Vm S 2 R  r
Vm S 2  IS 2 2R


and
2
Vm I
2r
Vm I
r

Vm S 1  2 R  1
Vm S 2  IS 2 2 R
 


and
2
Vm I
r
Vm I 2  r  2
381
VIJAY DASARI

Vm S 1  Vm S 2  IS 2  1
 

Vm I 2  Vm I 2  2
 2Vm I .Vm S  Vm S 2  IS 2  Vm I 2
2
 IS 2  Vm S  Vm I 
Vm S  Vm I  IS
Method - II
We know that
Vm S  R  R  2r 
2R  r
2R  r
Vm I  R  R  2r 
2r
2R  r
IS  R  R  2r 
 2 R  r  2r 
 2R  r 
Vm I  IS  R  R  2r  
 R  R  2r  
= Vm s

 2R  r 
 2 R  r 

The Vivya’s point (Vm), circumcentre (S), Incentre (I) are collinear.
and
Vm I
2r

IS
2R  r
 Incentre (I) Divides the line joining of
Vm , S in the ratio 2r : 2R-r
Theorem : 4
Prove that weill's point also lies on the vivya's line.
Proof :
we have
 r  r  4 R SI 
VmWe  

 3R  2 R  r  

r 
WeS   1 
SI

3 R 
Vm I 
2r
SI
2R  r
Vm S 
2R  r
SI
2R  r
SI  ( R 2  2 Rr )
consider
382
Int. Jr. of Mathematical Sciences and Applications
VmWe  We I 
r  r  4R  2R  r 
  SI 
3R 
2R  r


2r
SI 
2R  r
= Vm I
VmWe  We I  Vm I
...............  1
and similarly consider
We I  IS 
r
 r

SI  SI  
 1 SI
 3R 
3R
 WeS
We I  IS  WeS
...................  2 
From (1), Vm , We and I are collinear and We lies in between Vm and I
From (2), We, I, S are collinear and I lies in between We and S
i.e., Vm, We, I, S are collinear and they lies on line Join of Vm, I, S.
So The point We is also lies on the Vivya's line
Now.
VmWe : WeI : IS

r  r  4 R
3R  2 R  r 
SI :
r
SI : SI
3R
 r  r  4 R : r  2 R  r  : 3 R
i.e., the points Vm, We, I, S are collinear and VmWe : WeI : IS = r(r+4R) : r(2R-r) : 3R
r r  4R
Vm
3R
We
Vivya's line
r 2R  r
I
S
In the similar argument what ever we adopted by using 'Maneeal's Identity', we
can also prove that the Vivya's point lies on the line join of different triangle centres.
Such as Vivya's point also lies on the line join of spieker centre and schiffler point. (I
am omitting proof of this statement) etc.,
383
A few minutes with a new triangle centre coined as “ VIVYA’S POINT”
Proving of famous Inequalities using Vivya’s point :
I. If R, r are circumradii, inradii then prove that
Proof :
2
We already proved that Vm I 
Since Vm I 2  o

R
 2 [Euler’s inequality]
r
4 Rr 2 ( R  2r )
(2 R  r )2
4 Rr 2 ( R  2r )
o
(2 R  r )2


4 Rr 2
 R  2r  o 
 o
2
 2( R  r )

 R  2r

R
2
r
Which is a famous Euler’s Inequality.
II. If R, r are circumradii, inradii then prove that 4 R 3  4 R 2 r  7 Rr 2  2r 3
[Maneeals inequality]
Proof :
We already proved that
Vm S 2 
R
2R  r 
2
 4 R 3  4 R 2 r  7 Rr 2  2r 3 
Since Vm S 2  o 
R
2R  r 
2
 4 R 3  4 R 2 r  7 Rr 2  2 r 3   o


R

 o

2
 4 R  4 R r  7 Rr  2r  o   2 R  r 


3
2
2
3
 4 R 3  4 R 2 r  7 Rr 2  2 r 3
Which is a famous maneeal’s inequality
III. Prove that Euler’s inequality using Maneeals inequality.
Proof :
Consider  4 R 3  4 R 2 r  7 Rr 2  2 r 3
384
VIJAY DASARI
 4 R 3  4 R 2 r  7 Rr 2  2 r 3  o
 4 R 3  4 R 2 r  Rr 2  8 R 2 r  8 Rr 2  2r 3  o
 R[4 R 2  4 Rr  r 2 ]  2 r[4 R 2  4 Rr  r 2 ]  o
  R  2r   4 R 2  4 Rr  r 2   o
2
  R  2r  2 R  r   o
 R  2r  o
 (2 R  r )
2
 o
 R  2r

R
2
r
Which is a famous Euler’s inequality
IV. Prove that if VmS, VmI, IS are the distances from Vivya’s point to Circumcentre,
Incentre and Circumcentre to Incentre respectively. Then prove that Vm S 2  4Vm I 2  IS 2 .
Proof :
We already proved that
r (Vm s 2  Is 2 )  2 R Vm I v 

But
So
Vm s 2  IS 2 2 R

Vm I 2
r
R
2R
2 
4
r
r
Vm S 2  IS 2
4
Vm I 2
 Vm S 2  IS 2  4Vm I 2
 Vm S 2  4Vm I 2  IS 2
These are the very few properties for the Vivya’s point.
385
Int. Jr. of Mathematical Sciences and Applications
ACKNOWLEDGMENT
The author is grateful to the creators of the free Geogebra software, without
which this work would have been impossible and the author is would like to thank an
anonymous refree for his/her kind comments and suggestions, which lead to a better
presentation of this paper.
References :
1. Applications of Stewart's theorem in Geometric Proofs. — WILLIAM CHAU
2. College Geometry: An Introduction to the Modern Geometry of the Triangle
and the Circle (Dover Books on Mathematics) by Nathan Altshiller-Court
3. en.wikipedia.org/wiki/encyclopedia-of-triangle-centre
4. en.wikipedia.org/wiki/stewart's theorem
5. forum geometricorum
6. H.S.M Coxeter, Introduction to Geometry, John Wiley 8 Sons, NY, 1961
7. H.S.M Coxeter and S.L.Greitzer, Geometry Revisited, MAA, 1967
8. MODERN GEOMETRY OF A TRIANGLE by WILLIAM GALLATLY
9. Ross Honsberger: Episodes in Nineteenth and Twentieth Century Euclidean
Geometry, USA 1995.
387