Algological Studies 64 141-157 Stuttgart, Dezember 1991 Marine and aerophytic Cyanosarcina, Stanieria and Pseudocapsa (Chroococcales) species from Hellas (Greece) By K o n s t a n t in o s A n a g n o s t id is and A n d r ia n a P a n t a z id o u University of Athens, Institute of Systematic Botany, Athens, Hellas (Greece) With 24 figures in the text Abstract: Epilithic field and cultured materials of Cyanosarcina ΚονΑδ., Stanieria K o m . et and Pseudocapsa E r c e g . (Chroococcales) were studied from Hellenic marine and aero phytic calcareous substrates. A new marine species, Cyanosarcina thalassia A n a g n . et P a n t , and a new aerophytic, chasmoendolithic species, Cyanosarcina parthenonensis A n a g n . are described. The marine species Dermocarpa sublitoralis L in d s t . and Cyanocystis sphaerica ( S r t c h . et G a r d n .) K o m . et A n a g n . are transferred to Stanieria. Morphological features and the life cycle of the debatable, aerophytic, epilithic type species of Pseudocapsa, P. dubia E r c e g . are elucidated, confirming the validity of this genus. Key words: Cyanophytes, cyanobacteria, Chroococcales, Chroococcaceae, Dermocarpellaceae, Cyanosarcina n. sp., Dermocarpa, Myxosarcina, Cyanocystis, taxonomy, Stanieria, Pseudocapsa, intergeneric features, taxonomy, morphology, life cycle, cultures, epilithic, epiphytic, aerophytic (caves), chasmoendolithic, marine (littoral zone), Hellas (Greece). A nagn. PDC*: SS 02, 021; ST 052, 06, 08, 10; BN 01, 04, 05; MO 01, 09; EC 02, 063, 093; EB 01, 03, 252; ME 06, 10; EP 032, 19; UC 011, 012. Introduction The taxonomic position of the non-filamentous cyanophytes has been the subject of many dicussions by several authors. Until recently they were classified in three (or four) orders, Chroococcales, Chamaesiphonales (Dermocarpales) and Pleurocapsales, according to different types of reproduction (G e it l e r 1925, 1932, 1942, F r £ m y 1930, 1934, E l e n k in 1938, F r it s c h 1945, H o l l e r b a c h et al. 1953, D e s ik a c h a r y 1959, S t a r m a c h 1966, B o u r r e l l y 1970, 1985, K o n d r a t e v a 1975, W a t e r b u r y & S t a n ie r 1978, R ip p k a et al. 1979, 1981, K o n d r a t e v a et al. 1984, R ip pk a & H e r d m a n 1985, R ip p k a 1988, C a s t e n h o l z & W a t e r b u r y 1989, W a t e r b u r y & R ip p k a 1989, W a t e r b u r y 1989). Since cell division is basically the same in all cyanophytes (simple binary fission, multiple fission, presence/absence of nanocytes-baeocytes with many transi * Phycological Documentation Code - see; Algological Studies 9: 450-481, 1973. 0342-1120/91/0092-0141 $ 4.25 © 1991 E. Schweizerbart’sche Verlagsbuchhandlung, D-7000 Stuttgart 1 142 Konstantinos Anagnostidis and Andriana Pantazidou tions) and sharp boundaries between the reproductive processes of different unicellular species are lacking, additional features (polarity, apolarity of cells, etc.) were used in the recently revised classification system by K o m Ar e k & A n a g n o s t id is (1986). They classify all unicellular cyanophytes in a single order Chroococcales, consisting of seven definable and clearly distinguishable families. In that revised system the family Chroococcaceae contains the genera Chroococcus NAg., 1849, Cyanocybus S c h il l . 1956, Cyanosarcina K o v A c . 1988, Gloeocapsopsis G e it l . 1925 and Pseudocapsa E r c e g . 1925 that possess spherical cells, and that divide successively in three or more different planes; nanocytes are lacking. The family Dermocarpellaceae (sensu K o m A r e k & A n a g n o s t id is 1986) contains genera characterized by cells that may or may not possess polarity, and that divide exclusively by multiple fission into many nano cytes; included are the genus Cyanocystis B o r z i 1878 (synonym, Dermocarpa C r o u a n sensu auctt. post.; sensu W a t e r b u r y & S t a n ie r 1978; sensu W a t e r b u r y 1989) that displays apical-basal polarity, the genus Dermocarpella L e m m . 1907 that possesses polarity and cleaves entirely into nanocytes, and the genus Stanieria K o m . et A n a g n . 1986 (synonym, “Dermocarpa” sensu W a t e r b u r y & S t a n ie r 1978; sensu W a t e r b u r y 1989) that possesses spherical non polarized cells and also cleaves en tirely into nanocytes. The present study deals with the systematics of some rare and interesting marine (epilithic and epiphytic) and aerophytic (epilithic, chasmoendolithic) chroococcacean and dermocarpellacean (sensu K o m Ar e k & A n a g n o s t id is 1986) cyanophytes. A new marine species, Cyanosarcina thalassia, and a new aerophytic, chasmoendolithic spe cies, Cyanosarcina parthenonensis, are described. The species Dermocarpa sublitoralis L in d s t . and Cyanocystis sphaerica (S e t c h . et G a r d n .) K o m . et A n a g n . are assigned to the recently established genus Stanieria. The diagnostic criteria of Pseudo capsa dubia E r c e g . are elucidated and the validity of the genus Pseudocapsa is dis cussed. Materials and methods Aerophytic, epilithic material with Pseudocapsa dubia has been collected from the cave Melidoni, located at the Province Rethymnon of Crete Island, as well as from the cave of Nympholipton and some other anonymous small caves located at the SE part on the mountain Hymettos at the Attiki Peninsula. Marine, epilithic and epiphytic materials with Cyanosarcina thalassia, Stanieria sublitoralis and S. sphaerica were collected from the littoral zone of calcareous coasts near the villages Vouliagmeni, Varkiza, Kavouri, Lavrion and Rafina, and the area of Cape Sounion at the Attiki Peninsula, Aegaeon Pelagos (Aegean Sea), Hellas (Greece). The initial field and culti vated material derived from the lower part of an exposed marble column of the eastern part of the Parthenon (ancient Athenian Acropolis) studied by A n a g n o s t id is et al. (1983) was taxonomically re-evaluated. Enrichment cultures of C. thalassia, S. sublitoralis and P. dubia were obtained with BG, MN, and AS ΠΙ media (W a t e r b u r y & S t a n ie r 1978). Cultures were grown in 18-22 °C and illuminated with white daylight fluorescent tubes (light intensities about 3.102 cal cm-2 min-1 at 16:8 LD cycle). Photodocumentation and morphometric evaluation have been carried out by light microscopy (Photomicroscope ΙΠ, Zeiss) on field and cultured materials. Marine and aerophytic Chroococcales from Hellas 143 Figs 1-3. Cyanosarcina thalassia A n a g n . et P a n t a z ., LM micrographs; mass culture, liquid MN medium. 1 - Young aggregates showing the cell size uniformity and the regularity of the planes of successive divisions. 2-3 - Older aggregates showing the maintenance of fairly regular cubical packets of cells. [Scale bar: 15 μπι.] Results Genus Cyanosarcina Κ ο ν λ έ . 1988 C yanosarcina thalassia spec, nova (Figs 1-3) D i a g n o s i s : Thallus epilithicus, pallidus coeruleo-viridis ad substratum carbonaceum aquamaris adhaerens. Coloniae 2-32 cellulares vel compositae, multicellulares, sarcinoides, ad 12x18 μπι in dimensione, cum tegumentis mucilaginosis tenuis, homogeneis, incoloribus et sine structura circumdatae. Cellulae sphaericae, post divisionem subglobosae vel hemisphaericae, 144 Konstantinos Anagnostidis and Andriana Pantazidou 2-3 μηι in diametro. Protoplastum aerugineum, homogeneum, raro griseo-olivaceum. Propagatio cellularum divisione transversali in directiones tres; nanocyta carrentes. E t y m o l o g y : Thalassia (Greek) = θαλασσια: Epitheton related to the ancient and modem Hellenic words θαλαττα, θαλασσα = sea, and αλς, α λα ς = salt; living in thalassic (marine) biotopes. I c o n o t y p e : Figs 1-3. T y p e s p e c i m e n : Microscope slides (A t h u - C y 7 5 8 8 3 , A-B) with field populations and cultured material have been deposited in the Athenian Botanical Museum (Herbarium), Athens University. T y p e l o c a l i t y : South western coasts of Attild Peninsula, near the village Varkiza, Saronikos Gulf, Aegaeon Pelagos (Aegean Sea), Hellas (Greece). H a b i t a t : Epilithic on calcareous coastal rocks at the marine littoral zone. D i s t r i b u t i o n : Epilithic on calcareous rocks at the marine littoral zone of the village Varkiza, Vouliagmeni, Kavouri, and the area of Cape Sounion, Attiki Peninsula, Saronikos Gulf, Aegaeon Pelagos (Aegean Sea), Hellas (Greece). The pale blue-green thallus of Cyanosarcina thalassia is epilithic, growing on marine calcareous substrates, consisting of 2-32-celled or compound, multicelled colonies arranged in more or less cubical packet-like aggregates, 12 x 18 μιη in dimension, with thin colourless and structureless mucilaginous envelope (Figs 1-3). The cells are spherical and after division subspherical or hemispherical, 2-3 μπι in diameter, with a blue-green, rarely olive-green, finely granular protoplast. The cells divide successively in three perpendicular planes, not growing before the next division in the original form, later forming dense packets; nanocytes are lacking. Stages in the life cycle of C. thalassia were observed by periodic examination of cultures over several months. The morphology was not affected by the different cul ture media used; only slight differences in growth rate and the morphometric charac ters between strains were ascertained. C. thalassia is the only marine species of the recently established genus and clearly differs in morphology and ecology from the type species C. fontana and the related species C. litoralis as well as from the other species of the genus. Cyanosarcina parthenonensis A n a g n o s t id is s p e c , n o v a (Fig. 24 ) S y n o n y m : Myxosarcina concinna P r in t z , p.p., sensu A n a g n o s t id is et al. Nova Hedwigia 38: 246, Fig. 6 (upper part), 22-26, 1983. D i a g n o s i s : Thallus aerophyticus, chasmoendolithicus, olivaceo-viridis ad substratum carbonaceum adhaerens. Coloniae 2-16 cellulares vel compositae, multicellulares, sarcinoides, ad 37 μπι in diametro, cum tegumentis mucilaginosis tenuis, homogeneis incoloribus et sine structura circumdatae. Cellulae sphaericae, post divisionem subglobosae vel subsphaericae, 2.54.5-(5) μm in diametro. Protoplastum olivaceo-viridum, luteo-viridum, raro luteo-brunneum, homogeneum, plerumque subtOiter granulatum. Propagatio cellularum divisione transversali in directiones tres; nanocyta carrentes. E t y m o l o g y : Parthenonensis (Greek): Epitheton derived from the name Parthenon = Παρθένων, the unique and most important templum monument of the ancient Athenian Acropolis, erected in favor of Pallas Athene. I c o n o t y p e : Fig. 24. T y p e l o c a l i t y : Eastern part of Parthenon, ancient Athenian Acropolis, Athens, Hellas (Greece). H a b i t a t : Aerophytic, chasmoendolithic into fissures and cracks of Pentelic marble (calcite, microcrystalline of low porosity with veins and chlorite and muscovite) at an exposed weathered column of Parthenon. The olive-green thallus of Cyanosarcina parthenonensis is aerophytic, chasmoen dolithic on calcareous substrate, consisting of 2-16-celled or compound, multicelled colonies arranged in more or less cubical packet-like aggregates, 10-37 μm in diame Marine and aerophytic Chroococcales from Hellas 145 ter, with thin colourless and structureless mucilaginous envelope. The cells are spheri cal and after division subglobose or subspherical, 2.5-4.5-(5) μm in diameter, with olive-green, yellow-green, rarely olive-brown, finely granulated protoplasts. The cells divide successively in three perpendicular planes, not growing before the next division in the original form, later forming dense packets; nanocytes are lacking. C. parthenonensis was initially placed in the genus Myxosarcina P r in t z 1921, designated as M. concinna (A n a g n o s t id is et al. 1983). In spite of the fact that Cyano sarcina is morphologically similar to Myxosarcina and the cell division proceeds in three or more planes, it never forms nanocytes. Therefore, the cyanophyte from Par thenon (field and cultured materials) is re-evaluated and assigned to Cyanosarcina. C. parthenonensis is the only chasmoendolithic, aerophytic species of the genus and clearly differs in morphometric characters and ecology from the new species C. thalas sia and the other species of the genus. Genus Cyanosarcina comprises now nine species known from thermal springs, freshwater, marine and aerophytic habitats (G e it l e r 1927, 1932, 1942, G e it l e r & R u t t n e r 1935, E m o t o & Y o n e d a 1941, S c h w a b e 1944, S k u ja 1949, H in d Ak 1975, H ir a n o & H ir o s e 1977, A n a g n o s t id is et al. 1983, K o v A& k 1988, A n a g n o s t id is , unpubl. results; the authors): C. burmensis (S k u ja ) K o v Ac ., C. chroococcoides (G e it l .) K o v AC., C.fontana KovAc. (type species), C. gelatinosa (E m o t o et Y o n e d a ) KovAc., C. litoralis (S c h w a b e ) K o v Ac ., C. spectabilis (G e it l .) ΚονΑά, C. thermalis (H in d .) KovAd, and the new species C. thalassia A n a g n . et P a n t , and C. parthenon ensis A n a g n . Another taxon found in caves and described as Cyanosarcina sp. (A b d e l a h a d 1989) was not taxonomically evaluated. The Cyanosarcina species are char acterized by sarcinoid-like aggregates and the cell division proceeds in one, two, three or more, more or less perpendicular directions in the successive generations; nanocytes are lacking. Cyanosarcina exhibits similarities to the genus Myxosarcina in the way of cell division but differs in the mode of reproduction as the latter reproduces with combined binary fission and by nanocytes. It is noted that all the species, except the type species and C. thalassia, were initially classified under the genus Myxosarcina (see review in A n a g n o s t id is et al. 1983; Table 1). Cyanosarcina additionally shows some relationship to Pseudocapsa in the mode of reproduction and the pattern of cell division (see p. 149). Both genera are classified into the family Chroococcaceae (sensu K o m Ar e k & A n a g n o s t id is 1986), whereas Myxosarcina into the family Xenococcaceae (sensu K o m Ar e k & A n a g n o s t id is 1986). Genus Stanieria Kom. et A nagn. 1986 Stanieria sublitoralis ( L in d s t .) c o m b , n o v a B a s i o n y m : Dermocarpa sublitoralis p. 30, Fig. 203, 1943. L in d s t ., (Figs 4-7) FI. Mar. Cyanophyc. Schwed. Westkiiste Stanieria sublitoralis is characterized by solitary spherical cells, 7-12-(18) μm in diameter, just before multiple fission reaching up to 25 μm. The cell content is bluish to reddish and more or less homogeneous. Reproduction is taking place by up to 64 spherical motile nanocytes (planocytes) 1.5-2.5-{4) μm in diameter, developing by a simultaneous division of the protoplast; the nanocytes are released by a rupture of the mother cell wall and increase in size until the onset of multiple fission. It was found epilithic widely distributed in the littoral zone of calcareous marine coasts near the villages Vouliagmeni, Varkiza, Kavouri, Lavrion and Raima, and the area of Cape Sounion at the Attiki Peninsula, Saronikos Gulf, Aegaeon Pelagos (Aegean Sea), Hellas (Greece). Konstantinos Anagnostidis and Andriana Pantazidou Figs 4 - 7 . Stanieria sublitoralis ( L tndst .) A n a g n . etPA N TA Z., LM micrographs; mass culture, liquid MN medium. Spherical cells of varying size with or without nanocytes. Liberated and developing nanocyte groups as well as empty cell-walls are indicated by arrows. [Scale bar: 20 μm.] Marine and aerophytic Chroococcales from Hellas 147 S. sublitoralis was initially described as Dermocarpa sublitoralis by L in d st e d t (1943); it was found widely distributed in the sublittoral zone (1-2 m up to 15-20 m deep) forming red spots attached on various sea animals, algae and mussel valves on the west coasts of Sweden. The morphometric characters and the life cycle of the epilithic cyanophyte studied do not differ significantly from those originally described. L in d s t e d t (1943) measured cells 10-18 μm in diameter with red or violet protoplasts, and nanocytes (to 128) 2-3 μm in diameter. S. sublitoralis grows well in culture (for more than seven months) on the solid substrate, exhibiting the typical features of the species, whereas the cells in the stirred solutions agglomerated and formed anomalies. Obviously, the sessile mode of life of that marine cyanophyte needs even in culture a substrate to attach. Excep tionally, in cultured material, the simultaneous cell division does not extend to the entire cytoplasm and a small portion is left undivided. Cells with such incomplete simultaneous divisions were also observed in Cyanocystis violacea (C r o u a n ) K o m . et A n a g n . (H u a et al. 1989) and in Dermocarpella (sensu W a t e r b u r y & S t a n ie r 1978; W a t e r b u r y 1989); they occur obligatorily in the genus Cyanocystis. After the simul taneous multiple fission of the cells growing on agar, the resulting nanocytes are capable of gliding motility for a short period immediately following their release and react positive phototactic in a light gradient. Planocytes (motile nanocytes) showing a photoactive response were also observed in the strains PCC 7302 (ATCC 29368), PCC 7303 (ATCC 29369), PCC 7304 (ATCC 29270) and PCC 7437 (ATCC 29371) that were assigned to the genus Dermocarpa (W a t e r b u r y & S t a n ie r 1978, R ip pk a et al. 1979, W a t e r b u r y 1989). The strain PCC 7437 originally described as Chroococcidiopsis cyanosphaera (K o m Ar e k & H in d Ak 1975) and later as Dermocarpa cyanosphaera (W a t e r b u r y & S t a n ie r 1978, R ip p k a et al. 1979, W a t e r b u r y 1989) represents the type species of the recently established genus Stanieria by K o m Ar e k & A n a g n o s t id is (1986). The strains PCC 7302 and PCC 7303 and (probably) the strain PCC 7304 all of marine origin (W a t e r b u r y & S t a n ie r 1978, R ip p k a et al. 1979, W a t e r b u r y 1989) exhibit many similarities in ecology and morphology (maximum diameter of vegetative cells 30 μm, nanocyte diameter 1.5-2 μm) to S. sublitoralis and therefore could be classified under the latter taxon. Worth noticing is that the strains PCC 7302 and PCC 7303, closely resemble one another, should probably be assigned to a new species of “Dermocarpa” according to W a t e r b u r y (1989, p. 1758). Stanieria sphaerica (S e t c h . e t G a r d n .) c o m b , n o v a B a s i o n y m : Dermocarpa sphaerica S e t c h . e t G a r d n . in (Figs G ardn. 8 -1 0 ) Univ. Cal. Publ., p. 457, Table 39, Fig. 14, 1918. S y n o n y m : biol./Suppl. 73, Cyanocystis sphaerica A lg o l. Stud. 43: (S e t c h . e t G a r d n .) K o m . e t A n a g n . A r c h . H y d r o - 203, 1986. The cells are spherical, 6-10 μm in diameter, solitary with bluish more or less homogeneous content. Reproduction proceeds by a simultaneous, multiple fission of the protoplast in up to 32 motile spherical nanocytes (planocytes), 1.5-2-(3) μm in diameter, that are released by a dissolution of the mother cell wall and increase in size until the onset of multiple fission. The cell and nanocyte dimensions of the form studied in field material are smaller than that of the typical species (cells 8-16 μm; nanocytes 2.5-3 μm). S. sphaerica was found epiphytic on Lyngbya aestuarii L ie b m . attached on calcareous rocks of the littoral zone at the Attiki Peninsula. 148 Konstantinos Anagnostidis and Andriana Pantazidou %. r" I .'v'\ • * w <: ·"* sSP ' « _ 8 ^ Figs 8-10. Stanieria sphaerica ( S e t c h . et G a r d .) A n a g n . et P a n t a z ., LM micrographs; field material. 8 - Spherical solitary cells, epiphytic on the marine cyanophyte Lyngbya aestuarii L ie b m . 9 - Cells divided by multiple fission into nanocytes. 10 - Released free, motile nanocytes (planocytes) or attached on a filament of Lyngbya aestuarii. [Scale bar: 25 μ m ] This species was initially described as Dermocarpa sphaerica S e t c h . et G a r d n . 1918; recently it was revised and renamed Cyanocystis sphaerica (S e t c h . et G a r d n .) K o m . et A n a g n . 1986. Nevertheless, the non heteropolar cells (Figs 8-10, 23) corre spond rather to the definition of the genus Stanieria K o m . et A n a g n . than to the genus Cyanocystis B o r z i . Therefore, this species is re-evaluated, reclassified and renamed Stanieria sphaerica. S. sphaerica e x h ib its a c lo s e re la tio n s h ip in m o r p h o lo g y a n d e c o lo g y to S. subli toralis a n d th e o n ly d if fe r e n c e s a r e th e c e ll a n d m o tile n a n o c y te (p la n o c y te ) s iz e s ( s e e a ls o L in d s t e d 1943). G e n u s Stanieria c o m p r is e s n o w th r e e s p e c ie s , S. cyanosphaera (ty p e s p e c ie s) k n o w n f r o m m in e r a l s p rin g s o f C u b a (K o m Ar e k & H in d Ak 1975, K o m Ar e k & A n a g n o s t id is 1986) a n d th e a p p a r e n tly w id e d is tr ib u te d m a r in e s p e c ie s S. sphaerica a n d S. sublitoralis (S e t c h e l l & G a r d n e r 1919, G eit l e r 1932, F r 6 m y 1934, L in d s t e d t 1943, K o s in s k a ja 1948, G o n z a l e z & P a r r a 1981, N ev e s 1988, th e a u th o rs ). I t s e e m s p o s s ib le th a t S ta n ie r ia e x h ib its a m o r e w id e d is tr ib u tio n ; d is c o v e rin g a n d d e s c rip tio n o f m o r e s p e c ie s is e x p e c te d . Dermocarpa sphaerica S e t c h . e t G a r d n . (s e n s u R a o 1940, in D e s ik a c h a r y 1959, 174) c o u ld b e p o s s ib ly c o n s id e re d a s a n o th e r ta x o n o f th e g e n u s Stanieria b e c a u s e o f Marine and aerophytic Chroococcales from Hellas 149 its difference in ecology and morphology. It has larger cells (up to 16.5-(23.1) μm long!) and was found epiphytic on the chlorophyte Pithophora sp. in a freshwater habitat of Delhi, India. Genus Pseudocapsa E r c e g . 1925 Pseudocapsa dubia E rceg. 1925 (Figs 1 1-17) The organism found aerophytic, epilithic on calcareous rocks (walls) of Hellenic caves is characterized by more or less spherical 2-16-celled, solitary colonies or by multi celled packet-like aggregates, up to 170 μm in diameter, with yellowish or colourless, structured (layered), gelatinous envelopes. The cells are irregularly spherical, during the division hemispherical, usually arranged radially or fan-like in the colony, 2.5-34.5 μm in diameter; ensheathed cells are 4—6.5 μm in diameter, with a blue-green homogeneous protoplast. Cells divide successively in three or more different planes with radially or fan-like oriented cells; cells do not grow before the next division into the original more or less spherical form. Nanocytes are lacking. The life cycle of P. dubia proceeds as following: After the liberation from the colony the ensheathed cells (Figs 12, 14, arrow) start to enlarge and to divide (Figs 11, 13). Initially the cell division takes place transverse in one plane, later in two perpen dicular planes, thus the resulting colonies resemble those of the genus Chroococcus (“Chroococcus-lype”; Figs 11, 14—15). Later the cells divide radially in three or more different, more or less perpendicular planes resulting in the formation of spherical or ellipsoid colonies up to packet-like aggregates with spherical, subspherical or fan-like oriented cells (Figs 11-17). The same life cycle were recently described for P. venkataramanii by KovAcnc (1988) and for P. dubia by A b d e l a h a d (1989). The morphometric features do not differ significantly from those of the original (Fig. 20) description (E r c e g o v ic 1925: cells polyhedral, 3-10 μm in diameter, without special envelopes, yellow-green or blue-green, arranged in one-layered or multi layered, spherical or irregularly shaped colonies). The developmental stages and the mode of reproduction observed in our field and cultured materials from Hellenic caves correspond more or less to those illustrated (Fig. 21a-n) by S t a r m a c h (1966) for P. dubia·, multiple fission into many nanocytes was never observed. This reproductive process (absence of nanocyte formation) and the pattern of cell division in radial direction (without growing up to the original spherical form) with the cell arrangement in radial or fan-like directions in the colonies (Fig. 19) justifies the classification of Pseudocapsa in the family Chroococcaceae N a g . (sensu K o m Ar e k & A n a g n o s t id is 1986; see also G e it l e r 1942). On the other hand, A b d e l a h a d (1989) interpreting some of the developmental stages of P. dubia and P. venkataramanii observed by S t a r m a c h (1936, 1966, Fig. 170) and K o v ACik (1988, Figs 24e, 25i, 26) respectively, in relation to her find ings of “tunicate cells” and clusters of emptied “sporocysts” as early and advanced stages of nanocyte formation respectively (Figs 15-16), considers that the genus Pseu docapsa should belong to the family Xenococcaceae (sensu K o m Ar e k et A n a g n o s t id is 1986), the members of which are defined by cell division in three or more planes and also by nanocytes (endospores, baeocytes). The term “tunicate cell” is used by A b d e l a h a d (1989) to indicate “cells of varying size surrounded by a firm sheath” (i.e. the ensheathed cells) that are considered “the development stage of the nanocytes” and the term “sporocyst” to indicate “the firm sheath envelope which encloses the cluster of nanocytes produced by a parental cell”. The term n a n o c y t e (“endospore”, “baeocyte”) has been used by botanists and/or microbiologists to describe very small cyanophyte daughter cells (in comparison to the vegetative ones) produced succes11 A rc h iv f. H y d ro b io lo g ie , S u p p l.-B d . 92 150 Konstantinos Anagnostidis and Andriana Pantazidou Figs 11-14. Pseudocapsa dubia E r c e g ., LM micrographs; field material. 1 1 - 1 2 -Sm all, 1-8-celled and large multicelled densely packed colonies within yellowish or colourless mucilaginous, structured (layered) envelopes. 1 3 - 1 4 - Various developmental stages; characteristic colonies with radially or fan-like oriented cells (arrow); ensheathed solitary cells liberated from the colony (arrow) and 2-8-celled colonies. [Scale bar: 20 μm.] Marine and aerophytic Chroococcales from Hellas 151 15 Figs 15-17. Pseudocapsa dubia E r c e g ., LM micrographs; field material. Developmental stages; 1-32 celled spherical colonies. [Scale bar: 20 μm.] s iv e ly o r s p o n ta n e o u s ly b y m u ltip le f is s io n ( d e ta ils s e e in K o m Ar e k & A n a g n o s t id is 1986, 165-170, s e e a ls o G e it l e r 1932, 1942, 1960, 1979, F r it s c h 1945, B o u r r e l l y 1970, 1985, W a t e r b u r y & S t a n ie r 1978, A n a g n o s t id is e t a l. 1983, W a t e r b u r y & R ip p k a 1989, A n a g n o s t id is & K o m Ar e k 1990). G e n u s Pseudocapsa E r c e g . c o m p r is e s f o u r s p e c ie s : P. dubia ( ty p e s p e c ie s ) , P. maritima K o m . 1956, P. sphaerica (P r o Sk .-L a v r .) K o v Ac . 1988 (sy n . Myxosarcina sphaerica P r o Sk .-L a v r . 1951) a n d P. venkataramanii KovAc. 1988. P. dubia r e p r e s e n ts a n a e r o p h y tic , e p ilith ic c y a n o p h y te w ith r e s tr ic te d d is tr ib u tio n o n m o is t c a l c a r e o u s r o c k s , a n d s ta la g m ite s a n d s ta la c tite s o f c a v e s f o u n d in Y u g o s la v ia , P o la n d , I ta ly a n d H e lla s (E r c e g o v i £ 1925, G e it l e r 1932, S t a r m a c h 1966, A n a g n o s t id is e t al. 1983; A b d e l a h a d 1989, A n a g n o s t id is , u n p u b l. r e s u lts ; th e a u th o rs ); its s y s te m a tic p o s itio n w a s c o n s id e r e d to b e u n c le a r (G e it l e r 1932, S t a r m a c h 1936, 1966, B o u r relly 1970; s e e a ls o G e it l e r 1942, ΚονΑάκ 1988, A bdelahad 1989). P. maritima w a s f o u n d in B u lg a r ia o n m a r in e c o a s ta l c a lc a r e o u s r o c k s o f th e B la c k S e a (K o m Ar e k Konstantinos Anagnostidis and Andriana Pantazidou 152 Figs 18-21. Illustrations of the genera Cyanosarcina KovAc., Pseudocapsa E r c e g . 1 8 - 1 9 Schemes of different types of cell division (in 1,2,3 or more planes in successive generations (after KomArek & A n a g n o s t id is 1986). 2 0 - 2 1 - Pseudocapsa dubia E r c e g . 2 0 - Original illustration (after E r c e g o v ic 1925). 2 1 - (a-n): Developmental stages (after S t a r m a c h 1966). 1956). sphaerica is known from mineralized salt waters of USSR (P r o Sk in a -L a v 1951, K r a s a v in a 1968, H o l l e r b a c h & K r a s a v in a 1971, K o n d r a t e v a et al. 1984). P. venkataramanii was recently isolated from soils of India (details see in P a d m a ja 1972, ΚονΑάκ 1988). Other Pseudocapsa species not yet taxonomically evaluated could be considered: 1) Pseudocapsa sp. (sensu A b d e l a h a d 1989, Fig. 23) with rounded colonies up to 25 μ m in P. renko diameter, polygonal, bright green or violet, radially oriented cells, 1.5—2-{3) μ m in diameter, without nanocytes and “tunicate cells”. 2) Pseudocapsa sp. (sensu A n a g n o s t id is , unpubl. results). The studied field and cultured, aerophytic, chasmoendolithic material from the Parthenon column and identified as Cyanosarcina parthenonensis (see p. 144) comprises also populations of another chroococcacean cyanophyte. Marine and aerophytic Chroococcales from Hellas Fig. 22. Distinguish ing characters be tween the genera Stanieria K o m . et A n a g n ., Cyanocystis B o r z i and Dermocarpella L e m m ., family Dermocarpellaceae (after K o m Ar e k & Scheme of cell division 153 Generic mmei Chroococddiopsis (p. p., excL typo) Dermocarpa (excL typo) Stanieria gen. n. A n a g n o s t id is 1 9 8 6 ). Dermocarpa (p. p , exd. typo) Q Cyanocystis B o r z i Q Dermocarpdta L em m . 22 Fig. 23. Stanieria sphaerica (S e t c h . et G a r d n .) A n a g n . et P a n t a z . Original illustration (after S e t c h e l l & G a r d n e r 1 9 1 9 ). 154 Konstantinos Anagnostidis and Andriana Pantazidou Fig. 2 4 . Cyanosarcina parthenonensis 1983). [Scale bar: 10 μm.] A nagn. Original illustrations (after A n a g n o s t id is et al. Marine and aerophytic Chroococcales from Hellas 155 The morphometric features of that populations initially assigned to Myxosarcina concinna (sensu et al. 1 9 8 3 , 246, Fig. 6: lower part) are the following: The cells are more or less spherical, olive-green, 2.5-3 μm in diameter, initially forming 2-3—4-celled, “Chroococcus-type” colonies and later dividing in three or more perpendicular directions resulting to radial densely packed, spherical or irregular multicelled aggregates; ensheathed cells 3.5-5.5 μm in diameter with yellowish or colourless structured envelopes; nanocytes are lacking. These features are attributed rather to the genus Pseudocapsa than to Myxosarcina or Cyanosarcina·, therefore, that cyanophyte is taxonomically re-evaluated and placed to Pseudocapsa, provisionally assigned as Pseudocapsa sp. A n a g n o s t id is In spite of the fact that the type material of P. dubia does not exist and despite all the mentioned doubts, our observations from field and cultured materials in relation to those of G e it l e r (1942), A n a g n o s t id is et al. (1983), K o m Ar e k & A n a g n o s t id is (1986), K o v Ac ik (1988), A b d e l a h a d (1989) and A n a g n o s t id is (unpubl. results) prove its taxonomic position and support the validity of the genus Pseudocapsa. Obviously, Pseudocapsa, a “small” genus (sensu A n a g n o s t id is & K o m Ar e k 1985) rarely and occasionally reported, mainly with the abundantly widespread aerophytic P. dubia, exhibits a more wide distribution; discovering and description of other species is expected. A c k n o w le d g e m e n ts This research was supported by the Hellenic Ministry of Agriculture (grant 70/2/4) Athinai, by the Max-Planck-Gesellschaft (Max-Planck-Institut fur Limnologie, PH5n), and by the Volkswagenwerk-Stiftung, Hannover, Federal Republic of Germany. R e fe re n c e s N. (1989): O n f o u r Myxosarcina-hke s p e c i e s ( C y a n o p h y t a ) l i v i n g i n t h e I n f e r n i - A r c h . H y d r o b i o l ./ S u p p l . 82, A lg o l o g i c a l S tu d ie s 54: 3-19. A n a g n o s t id is , Κ.; E c o n o m o u - A m i l l i , A . & R o u s s o m o u s t a k a k i , M. (1983): E p i l i t h i c a n d A bdelahad, g lio c a v e (Ita ly ). c h a s m o l i t h i c m i c r o f l o r a ( C y a n o p h y t a , B a c i l l a r i o p h y t a ) f r o m m a r b le s o f t h e P a r t h e n o n - N o v a H e d w i g i a 38: 227-287. & K o m Ar e k , J. (1985): Modern approach to the classification system of cyanophytes 1 - Introduction. - Arch. Hydrobiol./Suppl. 71, Algological Studies 38/39: 291-302. ----(1990): Modem approach to the classification system of cyanophytes 5 - Stigonematales. - Arch. Hydrobiol./Suppl. 86, Algological Studies 59: 1-73. B o u r r e l l y , P. (1970): Les algues d ’eau douce. III. - 512 pp., N. Boubee & Cie., Paris. - (1985): Les algues d ’eau douces, III. - 2. ed., 606 pp., N. Boubee & Cie, Paris. C a s t e n h o l z , R. W . & W a t e r b u r y , J. B . (1989): Cyanobacteria. - In: S t a l e y , J. T.; B r y a n t , M. P .; P f e n n ig , N. & H o l t , J. G. (eds.): B e r g e y ’s manual of Systematic Bacteriology 3: 1710-1728, Williams & Wilkins, Baltimore - Hong Kong - London - Sydney. D e s ik a c h a r y , T. V. (1959): Cyanophyta. - ICAR Monographs of Algae, 686 pp., New Delhi. E l e n k in , A. A. (1938): Monographia algarum cyanophycearum aquis dulcium et terrestrium in finibus URSS inventarum. - 1: 1-684, Moskva - Leningrad. E m o t o , Y . & Y o n e d a , Y . (1941): Bacteria and algae of the thermal springs in Simane Prefec ture. - II. - 1. Jap. Bot. 17: 704-720. E r c e g o v ic , A. (1925): Litofitska vegetacija vapnenaca i dolomita u Hrvatskoj. [La vegetation des lithophytes sur les calcaires et les dolomites en Croatie]. - Acta Bot. Zagreb 1: 64-114. F r S m y , P. (1930): Les Myxophycees de l ’Afrique equatoriale franfaise. - Arch. Bot. 2: 1-508. - (1934): Les Cyanophycees des Cotes d’Europe. - Mem. Soc. n a L Sci. Nat. Mat. Cherbourg 41: 1-236. F r it s c h , F . E. (1945): The structure and reproduction of algae, II. - 939 pp., The University Press, Cambridge. (A c ro p o lis -A th e n s , G re e c e ). A n a g n o s t id is , K. 156 Konstantinos Anagnostidis and Andriana Pantazidou L. (1925): Cyanophyceae. - In: P a s c h e r , A. (ed.): Die SUBwasserflora Deutschlands, Gsterreichs und der Schweiz 12: 1-450, G . Fischer, Jena. - (1927): (Jber VegetationsPdrbungen in Bachen. - Biol, gener. 3: 791-814. - (1932): Cyanophyceae. - In: K o l k w it z , R . (ed.): Dr. R a b e n h o r s t ’s Kryptogamenflora von Deutschland, Osterreich und der Schweiz 14: 1-1196. Akad. Verlagsges., Leipzig. - (1942): Schizophyta (Klasse Schizophyceae). - In: E n g l e r , A. & P r a n t l , K. (eds.): Die natiirlichen Pflanzenfamilien lb: 1-232, Duncker & Humblot, Berlin. - (1960): Schizophyceen. - In: Z im m e r m a n n , W. & O z e n d a , P. (eds.): Handbuch der Pflanzenanatomie, 6: 1 Spez. Teil., 2. Aufl., 131 pp., Gebr. Bomtraeger, Berlin. - (1979): Einige kritische Bemerkungen zu neuen zusammenfassenden Darstellungen der Morphologie und Systematik der Cyanophyceen. - PI. Syst Evol. 132: 153-160. G e it l e r , L. & R u t t n e r , F. (1935/1936): Die Cyanophyceen der deutschen limnologischen Sundaexpedition, ihre Morphologie, Systematik und Okologie. I—II. - Arch. Hydro biol./Suppl. 14, Trop. Binnengew. 6: 308-369, 371-483. G o n z a l e z , M. & P a r r a , O. (1981): Cianofitas marinas de Chile. 2. Cianofitas del ambiente intermareal de algunas localidades de la region del Bio-Bio. - Phycol. lat.-amer. 1: 73110. H in d Ak , F. (1975): Einige neue und interessante Planktonblaualgen aus der Westslowakei. Arch. Hydrobiol./Suppl. 46, Algological Studies 13: 330-353. H ir a n o , M. & H ir o s e , H . (1977): Cyanophyceae. - In: H ir o s e , H . & Y a m a g is h i , T. (eds.): Illustrations of the Japanese fresh-water algae, p. 1-151, Uchidarokakuho Publ. Co., Tokyo. H o l l e r b a c h , Μ. M.; K o s in s k a j a , E. & P o u a n s k u , V. I. (1953): Sinezelenye vodorosli [Bluegreen algae.] - Opred. presnovod. vodoroslej SSSR 2: 1-652, Izd. “Sovetskaja nauka”, Moskva. H o l l e r b a c h , Μ. M. & K r a s a v in a , L. K . (1971): Vodorosli. Svodnij ukazatel k otecestvennim bibliografijam po vodorsljam za 1737-1960 gg. [Algae. Cumulatrive index to the national bibliography on algae for 1737-1960 incl.]. - 623 pp., Izd. AN SSSR, Bot. Inst., Lening rad. H u a , M.; F r ie d m a n n , E. I.; O c a m p o - F r ie d m a n n , R. & C a m p b e l l , S. (1989): Heteropolarity in unicellular cyanobacteria: Structure and development of Cyanocystis violacea. - PI. Syst. Evol. 164: 17-26. K o m Ar e k , J. (1956): Neskol’ko interesnych sinezelenych vodoroslej Cemomorskogo poberez’ja v okrestnostjach Burgasskoj bucht (Bolgaria). [Some interesting blue-green algae from Bulgarian coast of Black Sea near Burgas.] - Acta Univ. Carol, biol. (Praha) 2(1): 91-123. K o m Ar e k , J. & A n a g n o s t id is , K . (1986): Modern approach to the classification system of cyanophytes. - Arch. Hydrobiol./Suppl. 73. Algological Studies 43: 157-226. K o m Ar e k , J. & H in d A k , F. (1975): Taxonomy of the new isolated strains of Chroococcidiopsis (Cyanophyceae). - Arch. Hydrobiol./Suppl. 46, Algological Studies 13: 311-329. K o n d r a t e v a , N. V. (1975): Morfogenez i osnovnye puti evollljucii gormogonieych vodoreslej. [Morphoigenesis and the main evolutionary trends in hormogonal algae.] - 302 pp., Izd. “Naukova dumka”, Kiev. K o n d r a t e v a , N. V.; K o v a l e n k o , Ο. V. & P r ic h o d k o v a , L. P . (1984): Sinozeleni vodorosti Cyanophyta. 1. Zagalna charakteristika sinozelenych vodorostej - Cyanophyta klas Chrookovi - Chroococcophyceae klas Chamesifonovi - Chamaesiphonophyceae. [Bluegreen algae - Cyanophyta. General characteristics of blue-green algae - Cyanophyta, Chroococcophyceae, Chamaesiphonophyceae.] - Vizn. prisnovod. Vodorost. Ukr. RSR., I. 1: 1-388, Izd. “Naukova dumka”, Kiev. K o s in s k a j a , E. K . (1948): Opredelitel’ morskich sinezelenych vodoroslej. [Determination key for marine blue-green algae.] - 278 pp., Izd. AN SSSR, Moskva - Leningrad. K o v A c ik , L. (1988): Cell division in simple coccal Cyanophytes. - Arch. Hydrobiol./Suppl. 80, Algological Studies 50-53: 149-190. K r a s a v in a , L. K. (1968): Bibliografija sovetskoj literatur’ po vodorosljam za 1941-1960 gg. [Soviet algological literature from 1941-1960 incl.]. - 342 pp., Izd. AN SSSR, Bot. Inst., Leningrad. L in d s t e d t , A. (1943): Die Flora der marinen Cyanophyceen der schwedischen Westkttste. 121 pp., PhD Thesis, Lund. G e it l e r , Marine and aerophytic Chroococcales from Hellas 157 Μ. M. C. B. (1988): Etude des cyanophycees marines de l a region de Cabo Frio (Rio de Janeiro, Bresil). - 155 pp., Dr. Thesis, Univ. Paris. P a d m a j a , T. D . (1972): Studies on coccoid blue-green algae. II. - In: D e s ik a c h a r y , T. V. (ed.): Taxonomy and biology of blue-green algae, p. 75-127, Univ. Madras. P r o Sk in a - L a v r e n k o , A. I. (1951): Novie vidi vodoroslej is solenich vodoemov S s s r . 2. [New algal species from salt waters of USSR. 2] - Bot. Mater. Otd. spor. RasL Bot. Inst. AN SSSR 7: 69-74. R ip p k a , R . (1988): Recognition and identification of cyanobacteria. - In: P a c k e r , L . & G l a z e r , A. N. (eds.): Cyanobacteria. - Methods Enzymol. 167: 28-67, Acad. Press, San Diego, Cal. R ip p k a , R .; D e r u e l l e s , J.; W a t e r b u r y , J. B.; H e r d m a n , M. & S t a n ie r , R . Y. (1979): Generic assignments, strain histories and properties o f pure cultures of cyanobacteria. - J. gen. Microbiol. I l l : 1-61. R ip p k a , R . & H e r d m a n , M. (1985): Division patterns and cellular differentiation in cyanobac teria. - Ann. Inst. Pasteur/Microbiol. 136B: 33-39. R ip p k a , R .; W a t e r b u r y , J. B. & S t a n ie r , R . Y. (1981): Isolation and purification of cyanobac teria; some general principles. - In: S t a r r , M. P.; S t o l p , H.; T r u f e r , H. C.; B a l o w s , A. & S c h l e g e l , H. G. (eds.): The Prokaryotes, 1: 212-220, Springer-Verlag Berlin - Heidelberg - New York. S c h w a b e , G. H. (1944): Umraumfremde Quellen. - Mitt. DL Gesell. Nat.-V81kerkde. Ostasiens (Shanghai), Suppl. 21: 1-300. S e t c h e l l , W. A. & G a r d n e r , N. L. (1919): The marine algae of the Pacific coast of North America, I. Myxophyceae. - Univ. Calif. Publ. Bot. 8: 1-139. S k u j a , H . (1949): SUBwasseralgenflora Burmas. - Nova Acta Reg. Soc. Sci. Uppsal., Ser. 4, 14(5): 1-188. S t a r m a c h , K. (1936): Zapiski algologiczne I.-II. [Algologische Notizen I.— II.] - Acta Soc. Bot. Polon. 13: 23-37. - (1966): Cyanophyta - sinice, Glaucophyta - glaukofity. - Flora Sodkow. Polski 2: 1-808. W a t e r b u r y , J. B . (1989): Order Pleurocapsales G e it l e r 1925, e m e n d . W a t e r b u r y a n d S t a n ie r 1978. - I n : S t a n l e y , J. T.; B r y a n t , M. P .; P f e n n ig , N. & H o l t , J. G . ( e d s .) : B e r g e y ’ s m a n u a l of S y s t e m a t i c Bacteriology 3: 1746-1770, W i lli a m s & W i l k i n s , Bal N eves, ti m o r e - H o n g K o n g - L o n d o n - S y d n e y . W aterbury, J. B. & R ip p k a , R. (1989): O r d e r C h r o o c o c c a l e s W e t t s t e in 1924, e m e n d . R ip p k a e t a l ., 1979. - In : S t a n l e y , J. T.; B r y a n t , M. P .; P f e n n ig , N. & H o l t , J. G . ( e d s .) : B e r g e y ’ s m a n u a l o f S y s t e m a t i c B a c t e r i o l o g y 3: 1728-1746, W i lli a m s & W i l k i n s , B a l W tim o re - H o n g K o n g - L o n d o n - S y d n e y . J. B. & S t a n ie r , R. Y. (1978): Patterns of growth and development in pleurocapsalean cyanobacteria. - Microbiol. Rev. 42: 2-44. aterbury, The authors’ address: Prof. Dr. K o n s t a n t in o s A n a g n o s t id is , Dr. A n d r ia n a P a n t a z id o u , University of Athens, Faculty of Biology, Section Ecology and Systematics, Institute of Systematic Botany, Panepistimiopolis, GR-157 84 Athens, Hellas (Greece).
© Copyright 2024