Na-ion - Innovatives

Les batteries pour l’automobile :
défis et stratégies scientifiques
M. Morcrette
[email protected]
Laboratoire de Réactivité et de Chimie des Solides
UMR 7314, Amiens
Electrochemical Energy Storage

To better manage the use of renewable energy resources
Fossil energy
Wind
Sun
Sea
 To meet the demand for IoT

To favour the development of electric transportations (HEVs, EVs) so as to
ensure a better environment .
Thermal
Electric / hybrid
How ? By creating new sustainable technologies
for electrochemical energy storage
2
Diagramme de Ragone (Automobile)
Condensateurs
Couplage
Energie-Puissance
=
Vitesse (dé)charge
Accélération
facteur 15
= autonomie
600 kg
48 L
Objectives for Electrochemical storage systems
Energy density
Various Technologies
(Wh.kg-1 ; Wh.L-1)
Number of cycles /
DOD
Type of Materials
H
Process Higher Safety
Higher Energy
Higher Rat
e
Li-ion
Li-Metal
Li/S
Li/air
Redox Flow
 Na-ion
Na/S (hot temp.)
 Aqueous batteries
 Organic batteries
Lower Cost
Driven by the market / applications
Foresight
4
Advanced Li-ion
Advanced electrode materials, new electrolytes, electrode formulation
 Understanding of the capacity
decay for Li-rich layered compounds
Opening new chemistry with 4d and 5d metals
Doubling of the capacity by triggering anionic
redox
5
Eco-compatible storage
Eco-efficient synthesis, biomimicry, renewable electrodes, organic redox, LCA-recycling
Ionic liquid approach
Bacteries/viruses mediated synthesis
Decreasing from 700 °C to 200 °C the synthesis
temperature and adjusting the morphology
Oxidative bacteries to prepare a-Fe2O3
100
200nm
100à-200nm
Bacterium
(Acidovorax
Nanograins
of textured
a-Fe2O3
BoFeN1)
 Allow for the synthesis
of metastable materials
+Fe2+
30 C/2 days
Bacterium +
g-FeOOH
6
N. Recham … M. Armand, J.M. Tarascon, Nature Materials, 9, 68-75, 2010
J. Miot, D. Larcher, JM Tarascon , EES, 7, 451-460, 2014
D. Larcher and J.M. Tarascon, Nature Chemistry 2014 doi:10.1038/nchem.2085
6
Capacitive storage
Nanostructured materials, pseudo-capacitives, template synthesis
From new materials – new pseudocapacitive storage to chemical understanding
Demonstration of Pseudocapacitive
storage through fast Li+ intercalation
into oxides: 2D Li+ - Nb2O5
V. Augustina … P.L. Taberna, P. Simon and B. Dunn
Nature Materials , 12, 518-522, 2013
Solid-state MAS-NMR to probe the
relative ions concentration in the
pores of electrodes
7
M. Deschamps … D. Massiot and F. Beguin Nature Materials
,
12, 351-358, 2013
7
Na-ion
Prototyping of Na-ion technology
 Good capacity
 Good cycling properties (200 cycles)
Need to scale-up
A. Ponrouch; R. Dedryvere; D. Monti; AE. Demet; JM Ateba Mba; L. Croguennec; C. Masquelier; P. Johansson; MR. Palacin
Energy & Environmental Science 6 (8), 2361-2369 (2013) - DOI: 10.1039/c3ee41379a
8
Na-ion
Prototyping of Na-ion technology
80 Wh/kg
Production d‘électrodes à grande échelle sur
Production
of du
large
les
lignes pilotes
CEAscale electrodes
120-130 Wh/kg
Développement de prototypes à ions sodium
Prototyping Na-ion cells
(Cellules de type 18650 et poches)
(pouch and 18650 cells)
Na-ion technology should enter the market in 5-10 years
(costs advantages + alternative to Na-S technology)
9
New chemistries
Li-air, Li-S, Solid State Battery
Solid State Batteries
Li/S batteries
1000
1,004
1,002
600
1,000
400
0,998
200
Charge
Discharge
Coloumbic efficiency
Capacity mAh.g
-1
800
0,996
0
0
50
100
150
200
250
300
350
Cycle Number
Concrétiser ces recherches en innovation !
Industrialization of EES-related discoveries (batteries/supercapacitors)
takes place abroad (even if discoveries are French/European)
BUT
France has world-leading companies in the field of energy storage (users AND
suppliers: Saft, Blue Solutions, Renault, EDF, Airbus, Solvay…) as well as
innovative start-ups.
AND
Excellence and versatility of French research labs on EES.
Research network on electrochemical energy storage (RS2E)
Initiated in 2011 by CNRS and Ministry of Research under the proposition of J.M. Tarascon
11
RS2E GOALS FOR EES IN FRANCE
• Create a continuum between scientific discoveries and commercial products
• Be an active part of a lucrative and growing market (Li-ion market expected
to double in 2017 at 24 billion $)
• Promote and fund breakthrough researches (unlock and discover)
• Sharing ideas amongst a wide array of partners from different backgrounds
• Share human resources and equipment
12
ONE NETWORK / THREE KIND OF PARTNERS
Coordinated by Jean-Marie Tarascon (CdF) and Patrice Simon (CIRIMAT)
17 NATIONAL
RESEARCH LABS
(basic research and pretechnological transfer)
• 17 labs
• 1 beamline (SOLEIL)
• 120 researchers + 75
PostDoc/PhD (25 RS2E)
14 COMPANIES
3 PUBLIC RESEARCH
ORGANIZATIONS
(industrialization, research
partnership)
(technological research and
innovation)
• CEA
• INERIS
• IFPEN
• St-Gobain, Solvay, Total,
Solvionic
•SAFT, E4V, easyLi, Freemens
•Alstom, Airbus Group, Renault,
EDF, Zodiac Aerospace
13
17 NATIONAL RESEARCH LABS
 191 researchers : 46 from CNRS, 75 Universities (25 professors), 70 PhD and Post Docs
14
RESEARCH AREAS
5 MAIN RESEARCH AREAS
Advanced Li-ion
(L. Croguennec,
L. Monconduit)
Advanced
electrode
materials, new,
electrolytes,
electrode
formulation
Capacitive
storage
(P. Simon, T.
Brousse)
nanostructured
materials,
pseudocapacitives,
template
synthesis
Eco-compatible
storage
(A. Chagnes)
eco-efficient
synthesis,
biomimicry,
renewable
electrodes,
organic redox,
LCA-recycling
New chemistries
(J-M Tarascon)
Li-air, Li-S, Naion, Na-S, redoxflow, solid state
battery
Smart materials
(F. Sauvage)
faradic/
photovoltaics
coupling; 3D
microbatteries,
micro supercap
4 TRANSVERSE RESEARCH AREAS
Safety
(S. Laruelle)
Aging , additives,
thermic and
electrochemical stability
Theory
(M-L Doublet)
Combinatorial
approaches,
transports limitations,
Systems modelisation
Pre-protoyping
(M. Morcrette)
Electrode formulation, upscaling and repeatability
Analytical Platforms
(M. Ménétrier)
In situ techniques,
(XRD, HRTEM, HREELS,
preferential access to large
equipement)
15
OUR FUTURE HEADQUARTERS
750 m2 of Research
labs
600 m2 for
communication and
scientific exchanges
800 m2 for
Characterization
tools
Coating
Calendering
Winding
700 m2 of specific
equpiments (SEM, TEM, FIB,
XRD) opened to industries
500 m2 for Li-ion
prototyping
16
INTEGRATION
EVALUATION
FAISABILITY
DEMONSTRATION
193 Wh/kg
17