Synthesis and Characterization of Novel Cellulosics Problem statement Petroleum based polymeric materials • Limited existing quantities of fossil supplies • Escalating cost • Problem of non biodegradability of petroleum based polymers • The recent environment conservative regulations. Th t i t ti l ti Natural polymers Renewable Renewable Environment friendly Contain many functional groups suitable to chemical functionalization Cost effective 2 Background Cellulose is the most abundant renewable biopolymer. Over ~1010 tons are produced per year and only 3% are explored. and only 3% are explored. ‐ Linear homopolymer of D‐anhydroglucopyranose u ts co ected by β( ) g ycos d c units connected by β(1‐4) glycosidic linkages ages Cellulose source DP Cellulose ‐ Semicrystalline in nature ‐ High degree of polymerization (DP) Cotton Wood Pulp Valonia Rayon Bagasse Acetobacter xylinum 8000-15000 8000-9000 500-2100 25000-27000 300 700-900 2000-6000 3 Cellulose Cellulose exists in four different polymorphs I (Iα, Iβ), II, III, IV ∆ ∆ Hydrogen bonds of cellulose I cellulose II S. Kamel et al. Polymer Letters, 2008, 2, 758–778 M. De Souza Lima et al.. Macromolecular Rapid Communication, 2004, 25, 771‐787 4 Cellulose I and II particle types Particle Type Particle size Length (μm) Width(nm) Crystallinity (%) Wood fiber & Plant fiber >2000 20‐50 43‐65 Microcrystalline cellulose 10‐50 10‐50(μm) 80‐85 Mi fib il t d Microfibrilated 0 5 10’ 0.5‐10’s 10‐100 10 100 45 58 45‐58 Nanofibrilated Cellulose 0.5‐2 4‐20 51‐69 Cellulose nanocrystals 0.05‐0.5 3‐8 54‐88 Algae cellulose >1 20‐30 >80 Bacterial cellulose >1 6‐50 65‐79 Cellulose II Regenerated cellulose g 27‐43 R. J. Moon, A. Martini, J. Nairn, J. Simonsen and J. Youngblood, Chem. Soc. Rev., 2011, 40, 3941–3994 5 Applications of cellulose fiber derivatives Cellulose esters Films, fibers, explosives coatings heat coatings, heat resistant fabrics Cellulose ethers Food additives, fibers, coatings, oil‐well drilling, g, g, gelling and foaming , paints, detergents, cosmetics controlled‐ cosmetics, controlled release drug tablets Oxidized cellulose Wound dressing, pharmaceutical pharmaceutical, skin care S. Kalia et al. (eds.), Cellulose Fibers: Bio‐ and Nano‐Polymer Composites, Springer‐Verlag Berlin Heidelberg 2011 6 Cellulose beads Important features of bead cellulose Cellulose fiber solution •Excellent Excellent mechanical stability mechanical stability •Rigid spherical particles •Narrow particle size distribution •High chemical resistance and compatibility with •High chemical resistance and compatibility with most commonly used solvents •High temperature stability •High selectivity of separation •High selectivity of separation Regeneration Bead cellulose Bead cellulose Application of bead cellulose Metal adsorption Immobilization support Chromatography Drug delivery D. Zhoua, L. Zhanga and S. Guo, Water Res. 39, 3755 (2005). W. De Oliveira and W. Glasser, J. Appl. Polym. Sci. 60, 63 (1996). V. Weber, I. Linsberger, M. Ettenauer, F. Loth, M. Höyhtyä and D. Falkenhagen, Biomacromolecules 6, 1864 (2005) 7 Cellulose nanowhiskers (CNWs) Cellulose nanowhiskers are defined as crystalline rod‐like nanoparticles which are obtained by acid hydrolysis of nanoparticles which are obtained by acid hydrolysis of cellulose fibers Plant cell Microfibril 200nm G. Siqueira, J. Bras, A. Dufresne, Biomacromolecules 2009, 10, 425‐432. M. A. S. Azizi Samir, F. Alloin, A. Dufresne, Biomacromolecules 2005, 6, 612‐626. S. Beck‐Candanedo, M. Roman, D. G. Gray, Biomacromolecules 2005, 6, 1048‐ 1054. M. M. de Souza Lima, R. Borsali, Macromol. Rapid Commun. 2004, 25, 771‐787. Acid hydrolysis 8 Cellulose nanowhiskers (CNWs) Acid Hydrolysis OH H2SO4 /HCl O HO O OH OH OH O HO O OH OH HO HO O OH HO O OH O OH H2SO4 Chracteristics of CNWs Nano dimension d High aspect ratio g High surface area High mechanical property Y. Li, A. Ragauskas, Advance in diverse applications of nanocomposites 2011, pp.17‐36. 9 Cellulose nanowhiskers The geometric dimensions depend on the source of the cellulosic material and hydrolysis conditions. Cotton Ramie Wood L/D=11.8 L/D=28.6 L/D=25.0 Tunicate L/D=67.0 Dimensions: Length: 100 – 1000 nm; Diameter: 4 – 50 nm. Habibi, Y.; Goffin, A.‐L.; Schiltz, N.; Duquesne, E.; Dubois, P.; Dufresne, A. J. Mater. Chem. 2008, 18, 5002. Azizi Samir, M. A. S.; Alloin, F.; Paillet, M.; Dufresne, A. Macromolecules 2004, 37, 4313. Roohani, M.; Habibi, Y.; Belgacem, N. M.; Ebrahim, G.; Karimi, A. N.; Dufresne, A. Eur. Polym. J. 2008, 44, 2489.Favier, V.; Canova, G. R.; Cavaille, J. Y.; Chanzy, H.; Dufresne, A.; Gauthier, C. Polym. AdV. Technol. 1995, 6, 351. 10 Effect of reaction parameters on cellulose nanowhiskers properties Effect of reaction conditions on whisker properties (H2SO4 hydrolysis, softwood pulp) Reaction conditions diti (reaction time (min), acid/pulp) Length (nm) Aspect ratio ti Sulfur content(%) Surface charge d it ( / 2) density (e/nm 25, 8.75 141±6 28.2 0.89±0.06 0.33±0.02 45, 8.75 120±5 24.5 1.06±0.02 0.38±0.01 45 17 5 45, 17.5 105±4 23 3 23.3 1 26±0 01 1.26±0.01 Sample Amounts of acidic groups on Amounts of acidic groups on surface (mmol kg‐1) Strong acid groups Weak acid groups H2SO4 84 26 HCl 0 <18 TEM images of (a) H TEM images of (a) H2SO4 4 (b) HCl hydrolyzed whiskers (b) HCl hydrolyzed whiskers J. Araki et. al. Colloids Surfaces A, 1998, 142, 75 – 82. J. Araki et. al. J. wood Sci. 1999, 45, 258 ‐ 261 11 Cellulose nanowhiskers potential areas of application Nanocomposites p Packaging, Adhesive Electronic displays Foams Electronic displays, Foams Aerogels, Films Paper & Paperboard p p Coatings / barriers Biomedical Bioimaging nanodevice drug nanodevice, drug delivery technology, skin care Arboranano* is a new Canadian Forest NanoProducts Network whose objective is to develop high value products from nanocrystalline cellulose. *Canada’s Business‐led Networks of Centers of Excellence program, FPInnovations *C d ’ B i l dN t k fC t f E ll FPI ti and NanoQuébec. 12 Typical chemical modification of cellulose Substitution Oxidation Acid hydrolysis Oxidative cleavage of C2‐C3 glycol l l Substitution Oxidation Mild reaction Highly selective Highly selective Cellulose Dialdehyde cellulose Dialdehyde cellulose (DAC) DAC acts as a reactive intermediate 13 Research Studies To investigate and explore the versatility of cellulose, a renewable resource of raw materials using periodate oxidative renewable resource of raw materials using periodate oxidative fragmentation synthetic approach Chemical modification of cellulose through periodate oxidation Cellulose fibers Cellulose beads Cellulose nanowhiskers 14
© Copyright 2025