I R M A I V A N O V I E N Ė INVESTIGATION OF DYNAMICS OF CONTROL SYSTEMS USING LAMBERT FUNCTION S U M M A R Y O F D O C T O R A L D I S S E R T A T I O N P H Y S I C A L S C I E N C E S , I N F O R M A T I C S ( 0 9 P ) Kaunas 2015 KAUNAS UNIVERSITY OF TECHNOLOGY IRMA IVANOVIENĖ INVESTIGATION OF DYNAMICS OF CONTROL SYSTEMS USING LAMBERT FUNCTION Summary of Doctoral Dissertation Physical sciences, Informatics (09P) KAUNAS, 2015 The research was accomplished during the period of 2009 to 2014 at Kaunas University of Technology, Department of Applied Mathematics, Faculty of Mathematics and Natural Sciences. It was supported by the Lithuanian Research Council. Scientific supervisor: Prof. Dr. Jonas RIMAS (Kaunas University of Technology, Physical Sciences, Informatics – 09P). Scientific consultant: Prof. Dr. Habil. Henrikas PRANEVIČIUS (Kaunas University of Technology, Physical Sciences, Informatics – 09P). Dissertation Defence Board of Informatics Science Field: Chairman Prof. Dr. Habil. Rimantas BARAUSKAS (Kaunas University of Technology, Physical Sciences, Informatics – 09P). Members: Prof. Dr. Habil. Romas BARONAS (Vilnius University, Physical Sciences, Informatics – 09P), Prof. Dr. Habil. Vytautas KAMINSKAS (Vytautas Magnus University, Physical Sciences, Informatics – 09 P), Prof. Dr. Gintaras PALUBECKIS (Kaunas University of Technology, Physical Sciences, Informatics – 09P), Prof. Dr. Habil. Rimvydas SIMUTIS (Kaunas University of Technology, Physical Sciences, Informatics – 09P). Opponents: Prof. Dr. Habil. Feliksas IVANAUSKAS (Vilnius University, Physical Sciences, Informatics – 09P), Prof. Dr. Habil. Minvydas RAGULSKIS (Kaunas University of Technology, Physical Sciences, Informatics – 09P). The official defense of the dissertation will be held at 1 p.m. on June 17, 2015 at the Board of Informatics Sciences Field public meeting in the Dissertation Defense Hall at the Central Building of Kaunas University of Technology. Address: K. Donelaičio str. 73-403, LT-44249 Kaunas, Lithuania. The summary of the doctoral dissertation is sent on 15 May 2015. The Dissertation is available on the internet (http://ktu.edu) and at the library of Kaunas University of Technology (K. Donelaičio St. 20, Kaunas). KAUNO TECHNOLOGIJOS UNIVERSITETAS IRMA IVANOVIENĖ VALDYMO SISTEMŲ DINAMIKOS TYRIMAS, TAIKANT LAMBERTO FUNKCIJĄ Daktaro disertacijos santrauka Fiziniai mokslai, Informatika (09P) KAUNAS, 2015 Disertacija rengta 2009-2014 metais Kauno Technologijos Universiteto Taikomosios matematikos katedroje, Matematikos ir gamtos mokslų fakultete, remiant Lietuvos mokslo tarybai. Mokslinis vadovas: Prof. dr. Jonas RIMAS (Kauno technologijos universitetas, fiziniai mokslai, informatika – 09P). Mokslinis konsultantas: Prof. habil. dr. Henrikas PRANEVIČIUS universitetas, fiziniai mokslai, informatika – 09P). (Kauno technologijos Disertacija ginama informatikos mokslo krypties taryboje: Pirmininkas Prof. habil. dr. Rimantas BARAUSKAS (Kauno technologijos universitetas, fiziniai mokslai, informatika – 09P). Nariai: Prof. habil. dr. Romas BARONAS (Vilniaus universitetas, fiziniai mokslai, informatika – 09P), Prof. habil. dr. Vytautas KAMINSKAS (Vytauto didžiojo universitetas, fiziniai mokslai, informatika – 09 P), Prof. dr. Gintaras PALUBECKIS (Kauno technologijos universitetas, fiziniai mokslai, informatika – 09P), Prof. habil. dr. Rimvydas SIMUTIS (Kauno technologijos universitetas, fiziniai mokslai, informatika – 09P). Oponentai: Prof. habil. dr. Feliksas IVANAUSKAS (Vilniaus universitetas, fiziniai mokslai, informatika – 09P), Prof. habil. dr. Minvydas RAGULSKIS (Kauno technologijos universitetas, fiziniai mokslai, informatika – 09P). Disertacija bus ginama viešame informatikos mokslo krypties tarybos posėdyje 2015 m. birželio mėn. 17 d. 13 val. Kauno Technologijos Universiteto centrinių rūmų disertacijų gynimo salėje. Adresas: K. Donelaičio g. 73-403 , LT-44249 Kaunas, Lietuva. Disertacijos santrauka išsiųsta 2015 m. gegužės mėn. 15 d. Disertaciją galima peržiūrėti internete (http://ktu.edu) ir Kauno Technologijos Universiteto bibliotekoje (K. Donelaičio g. 20, Kaunas). INTRODUCTION In the first chapter there are presented: research subject, the main aim, its problems and methods applied in the given analysis. Research subject: multidimensional linear time-delay systems. Actuality of the research: automatic control systems are widely used in the present industrial technologies, cosmic technological devices, aviation, military industry, energetics, electronics and electrical appliance. When managing technological processes the signal delay, which influences system's dynamic features, is often encountered. Multidimensional control systems with delays are not fully investigated within control theory. The mathematic model of the multidimensional linear time-delay system is the matrix differential equation with delayed argument. This type of equations is being studied two decades intensively and a wide number of monographs and scientific works were published. Differential equations with delays are often solved using numerical methods, applying diverse approximations or analytically. Many numerical methods are implemented into engineering packages, such as Matlab, Maple, Mathematica. When the approximate results received by numerical methods do not satisfy, the exact methods of research are being sought. The main difficulty when solving the linear differential equations with delayed argument, is that a transcendental characteristic equation corresponding to them has an infinite number of roots. Research aim and problems: The main aim of the work is to propose the method for investigation of multidimensional linear time delay systems described by linear matrix differential equations with delayed argument, to use the proposed method for computation of step responses matrices of concrete control systems, to examine transients in the systems and to perform analysis of their stability. In order to reach the main aim the following tasks are formulated: 1. To perform the analysis of the method of investigation of control systems with delays, which is based on the use of the Lambert W function, and to test the possibility of the use of the method for finding solution of various differential equations with delayed argument: scalar differential equations and matrix differential equations, when coefficient matrices of the equation are commuting and not commuting. 2. To propose a new modification of the method of finding of the solution of linear matrix differential equation with delayed argument and non commuting coefficient matrices, which is based on the use of the Lambert W function and on the use of a special auxiliary matrix. 3. To propose a new method of finding of the solution of linear matrix differential equation with delayed argument, applicable in the case when the argument of the Lambert W function (which is a matrix) has zero eigenvalues. 5 4. To make the analysis of the concrete multidimensional control systems, described by the linear matrix differential equation with delayed argument, applying the offered technique (to find matrices of step responses, to investigate transients, to carry out the stability analysis). Research methods and means. The Linear matrix differential equation, which describes control system with delays, is solved using the method based on Lambert's W function application, using a special auxiliary matrix, and an application of a correction for Lambert W function values when its argument is equal to 0. Lambert's W matrix function is defined relying on the definition of a standard matrix function used in the matrix analysis. Represented research results. 1. A new solution method for linear matrix differential equations with delayed argument and for non- commuting coefficient matrices based on Lambert's W function application and on the use of special auxiliary matrix. This matrix is found using iteration process (applying fsolve function given in the Matlab program). The advantage of the suggested method is a simpler equation, defining the auxiliary matrix (in comparison with the known method), and the fact that the initial matrix in the iteration process is described by the same expression ( independently on the structure of coefficient matrices of the matrix differential equation with delayed argument). 2. A new method for finding solution of linear matrix differential equation with delayed argument, applicable in the case, when the argument of the Lambert W function (the matrix) has zero eigenvalues. 3. The results of analytical investigation of concrete multidimensional control systems with delays using the Lambert W function Scientific newness and practical importance. Investigation of control system with delays is actual. This fact is indicated by abundance of publications on this subject. There are widely used diverse numerical methods for control systems' investigations, too. In the case of approximated results, obtained applying numerical methods, there are pursued different means that would allow an exact or close to exact results. This is possible to achieve applying consequent integration method which gives an exact solution by finite sum of functions in any finite interval, and a method, based on Lambert's W function, that gives an exact result in the shape of infinite functional series. In doctoral dissertation control systems with delays are described by a linear matrix differential equation with delayed argument and by non-commuting coefficient matrices. They are investigated using a method offered in dissertation work. The main points of this method are following: 1. An original procedure of finding of an auxiliary matrix which enables to investigate systems having non- commuting coefficient matrices. 2. A new method for finding the solution, applicable in the case when Lambert W function's argument has zero eigenvalues. 6 There were analyzed diverse multidimensional control systems with delays applying the method suggested in dissertation work. The investigation of some control systems using known method was impossible. The suggested means could be used in analysis of mathematical models (described by linear matrix differential equation with delayed argument) that can be met in different areas such as physics, biochemistry, economics, etc.) Approval of the work results, publications 9 scientific papers published on the topic of the doctoral dissertation: • Papers in journals referred in the databases of Institute of Scientific Information: Included in the ISI Master journal list: 2 Included in database of ISI Proceedings: 3 • Papers in journals referred in the databases included in the list approved by the Science Council of Lithuania: 4 10 presentations in conferences: • Presentations in the national conferences: 4 • Presentations in the international conferences: 6 Work structure The doctoral dissertation is composed of an introduction, 5 main chapters, conclusion, references, list of publications. Its volume: 148 pages, 53 pictures and 94 entries in the references list. 7 2. OVERVIEW Lambert's function and its use in diverse control system investigations are introduced in the second chapter. There is presented a short overview of mathematical models that describe systems – differential equations with delayed argument – solution using Lambert function method when we have: linear homogenous and non-homogenous, scalar and matrix differential equation with delayed argument. There are also presented consequent integration and numerical methods, pseudo inverse matrix calculation method. Also control systems investigation examples, employing Lambert's function method, are presented. 2.1. Method of research of control systems using Lambert W function. There we will define a scalar and matrix Lambert function. 1. The scalar Lambert W function: The inverse function of z = ψ (w) = wew (2.1) (here z and w are complex numbers) is called the Lambert W function and is denoted (Chen, Horng and Yang, 2010) : W (z ) = w = ψ −1 (z ). W function Wk ( z ), k = 0,±1,±2,K Lambert has an (2.2) infinite number of 2. Matrix Lambert W function. In order to calculate the value branches: Wk (H ) of the k–th branch of the matrix Lambert function W (H ) of argument H , firstly λi , i = 1, n found. When matrix H eigenvalues and eigenvectors Vi , i = 1, n of matrix H have to be is diagonalizable, we will have (Horn, 1986) 0 Wk (λ1 ) 0 W k (λ 2 ) Wk ( H ) = V M M 0 0 L 0 −1 V , O M L Wk ( λ n ) L k = −∞ ,K ,−1,0,1,K ,+∞; 8 0 (2.3) here V = [V1 V2 K Vn ]. Otherwise i.e. when H is not diagonalizable, this expression will be more complicated (Jarlebring and Damm, 2007). Application of Lambert function allows to write transcendental equation solutions. This function is very practical because its values Wk H at different ( ) arguments H and for different branches k , can be calculated using Matlab, Mathematica, Maple packages (Corless, Gonnet, Hare, Jeffrey and Knuth, 1993). In this work the control system’s research is made using the scalar and matrix Lambert functions. There will be presented only mathematical models that describe the systems and general solutions obtained applying Lambert function (a detailed research is given in the dissertation work). 2.1.1. Application of Lambert W function for solution of linear scalar homogenous differential equation with delayed argument Let we have a linear homogenous matrix differential equation with delayed argument x' (t ) + ax(t − τ ) + bx(t ) = 0 x(t ) = φ (t ), t ∈ [− τ ,0]; here τ (τ > 0), t ≥ 0, is a fixed time delay, x (t ) – desired function, (2.4) φ (t ) is an initial function defined on the interval [ −τ ,0] , a and b are constants. The general solution of the equation (2.4), using a the scalar Lambert W function, is written as (Asl and Ulsoy, 2000): x(t ) = ∞ ∑C e 1 bτ Wk ( − aτe ) −b t τ k ; (2.5) k = −∞ here Ck ( k = 0,±1,±2, K ) is a coeficient. 2.1.2. Application of Lambert W function for solution of linear matrix homogenous differential equation with delayed argument Let we have a linear homogenous matrix differential equation with delayed argument: x' (t ) + B1 x(t ) + B2 x(t − τ ) = 0, x(t ) = φ (t ), t ∈ [−τ ,0]; (2.6) 9 here B1 and B2 are n× n numerical coefficient matrices, x (t ) is a vector τ is a constant time delay, φ (t ) is an initial function defined on the interval [− τ ;0] . The solution of the homogeneous matrix differential equation function, ( ) (2.6 on the interval 0,+∞ obtained follows (Asl and Ulsoy, 2003): x(t ) = ∞ ∑ e Skt Ck = lim N →∞ k = −∞ using Lambert function, is presented as N ∑e Sk t Ck , j = 1, n, t ∈ (τ ,+∞); (2.7) k =− N Ck ∈ M n×1 (C ) ( M n×m (C ) – is a set of all n × m matrices), S k ∈ M n×n (C ) . When coefficient matrices of a differential equation (2.6) are here commuting (Asl and Ulsoy, 2003), ( ) 1 S k = Wk − B2τe B1τ − B1 , k = 0,±1,±2,K τ (2.8) and if non-commuting (Yi, Ulsoy and Nelson, 2007), 1 S k = Wk (− B2τQk ) − B1 . (2.9) τ 2.1.3. Application of Lambert W function for solution of linear scalar nonhomogenous differential equation with delayed argument Let we have a linear scalar non-homogeneous differential equation with delayed argument: x' (t ) + ax(t ) + bx(t − τ ) = u(t ), x(t ) = φ (t ), t ∈ [−τ ,0]; (2.10) () here a, b are coefficients, φ (t ) is an initial function, u t is a free term (continuous vector-function depending on the initial conditions). The general solution of non-homogenous differential equation (2.10) on the interval can be written as follows (Yi and Ulsoy, 2006): x (t ) = ∞ ∞ e sk t C k + ∫ ∑ e sk (t −ζ )C k′ u (ζ ) dζ ; ∑ k = −∞ k = −∞ 1424 3 01 44424443 homogenous 10 t (0,+∞) non - homogenous (2.11) here ( ) 1 s k = Wk − bτe aτ − a. τ (2.12) 2.1.4. Application of Lambert W function for solution of linear matrix nonhomogenous differential equation with delayed argument Let we have a linear non-homogenous matrix differential equation with delayed argument: x' (t ) + B1 x(t ) + B2 x(t − τ ) = u (t ), x(t ) = φ (t ), t ∈ [−τ ,0]; here B1 function, and τ B2 are n× n (2.13) numerical coefficient matrices, x (t ) is vector is constant time delay, φ (t ) is initial vector function on the interval [− τ ;0] . The general solution of non-homogenous differential equation (2.13) on the interval (0,+∞) , using Lambert W function, is expressed so (Yi and Ulsoy, 2006): x (t ) = ∞ t ∞ e S k t C k + ∫ ∑ e S k (t −ζ )C k′ u (ζ ) dζ ; ∑ k = −∞ k = −∞ 1424 3 01 44424443 homogenous here (2.14) non - homogenous Ck′ = lim (η −1 (T , N ) × (σ − δ )) k , Ck′ ∈ M n×n (C ) and Sk are N →∞ expressed by (2.8), when coefficient matrices of the equation (2.13) are commuting, and by (2.9), when they are non-commuting. In the general solutions (2.5), (2.7), (2.11) and (2.14) the coefficients Ck ∈ M n×1 C and Ck′ ∈ M n×n C are used. The coefficient Ck is written ( ) ( ) so (Yi, Ulsoy and Nelson, 2010): { } Ck = lim X −1 (τ , N )Φ(τ , N ) k ; N →∞ (2.15) here 11 ϕ (0) e S− N ⋅0 τ S− N ⋅ − τ ϕ − e 2 N 2 N 2τ Φ (τ , N ) = 2τ ; Ω(τ , N ) = S− N ⋅ − 2 N e ϕ − 2 N M M e S− N ⋅(−τ ) ϕ (− v ) { Ck = C− N L L L O L e S N ⋅0 e 2τ S− N ⋅ − ; e 2N M e SN ⋅(−τ ) τ S− N ⋅ − 2N (2.16) } T C− N +1 C− N +2 L C N . The expression of the coefficient Ck′ is following (Yi, Ulsoy and Nelson, 2010): { } Ck′ = lim Π −1 (τ , N )Γ(τ , N ) ; N →∞ (2.17) here e B1 (τ ) e S − N ⋅(τ ) τ S − N ⋅ τ − τ B1 τ − e 2 N e 2 N 2 2τ τ Γ(τ , N ) = B1 τ − 2 N ; Π (τ , N ) = S − N ⋅ τ − 2 N e e M M e S − N ⋅(0 ) e B1 ( 0 ) [ C k′ = C −′ N Γ(τ , N ) , C −′ N +1 C −′ N + 2 L C N′ C k′ ∈ M n ( 2 N +1)×n (C ) , L L L O L ]; e S N ⋅(τ ) e 2τ S − N ⋅ τ − ; e 2N M S N ⋅( 0 ) e τ S − N ⋅ τ − 2N (2.18) T Π (τ , N ) ∈ M n ( 2 N +1)× n ( 2 N +1) (C ) . The coefficient C k can be found using Laplace transform (Yi, Ulsoy and Nelson, 2006): d (s − λk1 )(s − λk 2 ) λ + b1 + b2 e− sτ − b1 + b2 e− sτ 12 12 ds ki 1 22 2 22− sτ × lim 1 2 − sτ − b +b e s → λ ki d λ + b + b e 21 21 ki 11 11 ∆s ds d 012 λki − d 011 C , i = 1,2. × {x0 − B2G(λki )} = λki − d 022 k d 021 ( 12 ) ( ) (2.19) The coefficient Ck′ is found as follows: d (s − λ k1 )(s − λk 2 ) λ + b1 + b 2 e − sτ ki 1 22 2 22− sτ lim ds − b +b e s →λ ki d 21 21 ∆s ds d 012 λ − d 011 C ′ , i = 1,2. = ki λ ki − d 022 k d 021 ( ) ( ) 1 − b12 + b122 e − sτ = λ ki + b111 + b112 e − sτ (2.20) The given expressions (2.19) and (2.20) are obtained for the control system described by the second order matrix differential equation with delayed argument. In the matrix equations (2.15) and (2.17) the matrices X (τ , N ) and Π(τ , N ) are not singular. When matrices are close to the singular ones or they are singular, the expressions (2.15) and (2.17) for the search of coefficients cannot be applied. In this case the matrix equation can be solved using a pseudo inverse matrix (Barata and Hussein, 2012). The pseudo inverse matrix for the matrix A is found as it is shown below (Barata and Hussein, 2012): A + = VS +U T ; (2.21) U is eigenvector’s matrix of AA* ( A* is the conjugate transpose matrix), V is eigenvector’s matrix of A* A , S is a diagonal matrix which contains the here eigenvalues of A in its main diagonal. The pseudo inverse matrix of the matrix S is found as follows: 1 ,1≤ i ≤ r + + S (i, i ) = σ i , S (i, j ) = 0, i ≠ j; 0, r + 1 ≤ i ≤ n (2.22) r - is a range of the matrix A , σ i are non-zero elements in the main diagonal of matrix S . Following condition must be fulfilled for pseudo inverse matrix: ( ) A+ = AT A −1 AT (2.23) 13 2.2. Finding of the coefficients Ck and Ck′ using the pseudo inverse matrix Let we have a matrix equation in which singular: X (τ , N ) is singular or close to X (τ , N )Ck = Φ(τ , N ). Then the equation (2.24) is multiplied by X (τ , N )T : X (τ , N )T X (τ , N )C k = X (τ , N )T Φ (τ , N ). From the equation (2.25) (2.24) (2.25) Ck is expressed if the product X (τ , N )T X (τ , N ) is not singular matrix: ( Ck = X (τ , N )T X (τ , N ) ) −1 X (τ , N )T Φ (τ , N ). Applying the expression (2.23), we have Ck = X (τ , N ) + Φ (τ , N ). If the product X (τ , N ) methods must be used. T X (τ , N ) is a singular matrix, then the other 2.3. Investigation of control systems with delays using consequent integration method In the given dissertation there are presented solutions of linear matrix differential equations with delayed argument, describing multidimensional control systems with various structures of internal links, found applying consequent integration method. () 1. The step response matrix h t of the mutual synchronization system . Let we have a mathematical model of the multidimensional control system presented by a linear matrix differential equation: x' (t ) + B1 x(t ) + B2 x(t − τ ) = z (t ), x(t ) = φ (t ), t ∈ [−τ ,0]. The response of a component (2.26) xi (t ) of a vector x(t ) to the unit jump in the component x j (t ) will be referred as the step response hij (t ) of the system, 14 described by the (2.26) equation. The matrix h(t ) = (hij (t )) i, j = 1, n we shall call the step response matrix of the system. On the base of (2.26) equation, the corresponding systems of differential equations for step responses hij (t ) (i, j = 1, n ) can be written (Rimas,1986). There we shall present expressions for ( ( ))( ) L = 0,1,2,K for few the solution of this system on the interval 0; L + 1 τ special cases. A. Structure of the internal links of the system is "complete graph" or "star". Coefficient matrices are defined by B1 = κE ( κ –constant, E – identity matrix) , B2 = κ n −1 B ; here 0, i = j , {B}ij = (2.27) 1, i ≠ j for „complete graph“ structure and 1 1 L 1 0 n −1 0 0 O M B = n −1 O O O 0 O 0 0 0 M n −1 L 0 0 0 (2.28) for „star“ structure. Using the consequent integration method and Laplace transform the step responses hij (t ) can be presented as follows (Rimas,1986): κ (t − lτ ) −κ (t −lτ ) l e B ij 1(t − lτ ), hij (t ) = ∑ n − 1 l! l =0 0 < t < (L + 1)τ . l l { } L (2.29) B. Structure of the internal links of the system is "chain" or "ring". Coefficient matrices are defined by the expressions: B1 = κE ( κ – constant, κ E – identity matrix) , B2 = − B ; 2 here 15 0 2 0 1 0 1 B = 0 1 0 M O O 0 L 0 L 0 L 0 L 0 O M 2 0 (2.30) L 1 L M L 0 O M 1 0 (2.31) for „chain“ structure and 0 1 0 1 0 1 B = 0 1 0 M O O 1 L 0 for „ring“ structure. The step responses can be given by κ (t − lτ ) −κ ( t −lτ ) l e B ij 1(t − lτ ), hij (t ) = ∑ 2 l! l =0 0 < t < (L + 1)τ . l L l { } (2.32) 2. The analytical expressions of the elements hij (t ) of the step responses matrix h(t ) for forced synchronization system with „chain“ form structure of the internal links and odd number of oscillators in the system (Leonaitė and Rimas, 2006). In this case the system is described by the equation (2.26), in which coefficient matrices are defined as follows: B2 = κ 2 16 B; here B1 = diag(0, κ ,−κ ,K, κ ), 0 1 0 B= M 0 0 ( B1 , B2 , B ∈ M n×n (R ), 0 0 0 1 0 0 K 1 0 1 K M M O M 0 K 1 0 0 K 0 2 n - is odd). For this K 0 0 0 . M 1 0 system the step responses hij (t ) can be written by following expressions (Leonaitė and Rimas, 2006): e −κt 1(t ) + u ij (t ), i = j > 1, hij (t ) = u ij (t ), 1 < i ≠ j > 1, v (t ), i > 1 ir j = 1; ij (2.33) here L 1 κ (t − kτ ) −κ (t − kτ ) k u ij (t ) = ∑ e B k! k =1 2 k k { } 1(t − kτ ) , ij i > 1, j > 1, 0 < t < (L + 1)τ , L 1 vij = ∑ k =1 2 k k −1 κ l (t − kτ )l − κ t − kτ 1 − e B k ij 1(t − kτ ) , ∑ l! l =0 { } i > 1, j = 1, 0 < t < (L + 1)τ . 2.4. Investigation of control systems applying numerical methods When control system’s transient processes and stability are analyzed, precise results are not always requested and the use of numerical methods is sufficient. In dissertation work there are presented some of: widely used RungeKutta method (Tsitouras, 2007), which is described as dde23 function in the Matlab package (Shampine and Thompson, 2001), and the one based on Chebyshev polynomials application, which is used for the investigation of stability (Butcher, Ma, Bueler, Averina and Szabo, 2004). 17 2.4.1. dde23 function described in the Matlab package This function uses the Runge-Kutta method (its formulas of the second and third order are obtained choosing Teilor's series components respectively including the first or the second order derivatives. Runge-Kutta method is used for finding of solution of ordinary differential equation. It is modified so as it could be applied for the solution of differential equations with delayed argument (Shampine and Thompson, 2001). An example which presents the application of this functions is given in dissertation work. 2.4.2. Method of investigation of stability based on application of Chebyshev's polynomials (Butcher, Ma, Bueler, Averina and Szabo, 2004) Stability of the system, described by the linear matrix differential equation with delayed argument, can be analyzed using Chebyshev polynomials. A detailed information about this method is presented in dissertation work wherein are also given program codes for the stability analysis of any system. In the second chapter application of fsolve function, integrated in Matlab package, is described, too (fsolve function's purpose is to find solution X = A ( ) for non-linear matrix equation F X = 0 , which would satisfy the equation (Geletu, 2007)). There also results of analysis of various control systems using Lambert function method are presented. 3. NEW COMPLEMENTS FOR METHOD OF SOLUTION OF MATRIX DIFFERENTIAL EQUATION WITH DELAYED ARGUMENT BASED ON APPLICATION OF LAMBERT W FUNCTION In the third section the modified Lambert W function method and the method of finding of solution in the case when the argument (the matrix) of Lambert function has zero eigenvalues, proposed in the dissertation work, are presented. As well, there is presented the method of finding the step responses matrix of control system with delays. 3.1. Modified Lambert function method and method of finding solution in the case when Lambert function’s argument has zero eigenvalue When analyzing control systems, described by the linear matrix differential equation with delayed argument with non-commuting coefficient matrices using Lambert function method, some problems are met. For their solution the modified Lambert function method is created in the dissertation work. 18 3.1.1. Modified Lambert function method Using the method presented in the overview and solution (2.9), we introduce the substitution Dk = Wk − B2τQ . Then the equation (2.9) can be ( ) written as follows: Sk = 1 τ Dk − B1. We calculate the unknown matrix (3.1) Dk using fsolve function: Dk e Dk − B1τ = − B2τ . (3.2) The solution of the equation (2.6) is written as: x(t ) = ∞ ∑e Sk t Ck . (3.3) k =−∞ Using fsolve function in the Matlab program we realize an algorithm: Bτ (0) 1. Firstly, we choose an initial matrix Dk = Wk − B2τe 1 , which will be ( ) different for different branches of the Lambert function. (n) Rk(n ) = Dk( n ) e Dk −B1τ 2. Then we put into D k( 0 ) ( ) − B2τ , here D k(n +1) = D k(n ) + ϕ R k(n ) , n (n = 0,1,2, K) – is an iteration’s number. Using (n +1) fsolve function, iterations are presented till Rk (n) 3. D k Sk = 1 τ < Rk(n ) . , obtained by iteration method, is introduced instead of Dk into Dk − B1 . This method is better than the one, based on the matrix Qk search using iteration method, because: 1. The initial matrix, using fsolve function, is always selected using the same Bτ (0 ) expression Dk = Wk − B2τe 1 (when the branch of the Lambert function ( ) changes, the initial matrix changes, as well, thus we avoid the choice of different (0 ) initial matrix every time). While the initial matrix Qk not always can be determined so that the condition S k − B1 − B2 e − S kτ and would be fitting changing Lambert function branch < ε would be satisfied k and delay τ . 19 Qk from the equation 2. Thus we avoid a complicated search of Wk (− B2τQk )eWk (− B2τQk )− B1τ = B2τ using iteration method. Applying the method proposed in the dissertation work, the matrix Dk is found using a more simple equation (besides there is no necessity to calculate values of the matrix Lambert W function): Dk eDk e− B1τ = −B2τ . In control systems’ analysis, presented in the dissertation work and fulfilled by the modified Lambert function method, obtained results are compared with the exact results, got using consequent integration method, and results, obtained by numerical methods. In the case of non-homogenous differential equation with delayed argument (2.13), the general solution on the interval method, can be written as it is shown below: x(t ) = ∞ ∑ ( e 1 )C Dk − B1 t t ∞ ( e 1 (0, ∞ ) , got by Lambert function ) Dk − B1 (t −ζ ) +∫ ∑ C kN u (ζ )dζ . k = −∞ k = −∞ 1442443 01 4444 4244444 3 τ homogenous k τ (3.4) non - homogenous When investigating control systems by Lambert function’s method there are cases when we need to find the value of Lambert function at zero argument (it is known that the Lambert function values at zero argument are equal to minus infinity for all branches, except the zero branch). In dissertation work there was proposed the method of finding solution applicable in the case, when matrix Lambert function’s argument has zero eigenvalue. 3.1.2. Method of finding solution in the case when Lambert function’s argument has zero eigenvalue If at least one eigenvalue of the matrix H = − B2τe B1τ is zero (λi = 0 ) we meet the problem in computing values of Lambert function (this problem is described in the chapter 2). The value of the k-th branch Wk λ of the Lambert ( ) W (λ ) at argument λ = 0 is equal to minus infinity for all k (k = ±1,±2,K) except k = 0 (Corless, Gonnet, Hare, Jeffrey and Knuth, function 1996): − ∞, k ≠ 0, Wk (0) = k = 0. 0, 20 (3.5) We will assume that the value of the Lambert function branch W (λ ) for k-th Wk (λ ) at zero argument λ = 0 is equal to zero, as well: 0, Wk (0) = 0, k ≠ 0, k = 0. We make this assumption on the base of the function, W k ( z ) e Wk ( z ) = z , according which (k ≠ 0) (3.6) definition of Lambert x = x →−∞ x → −∞ e − x x' 1 1 = lim = lim = − lim − x = −0, − x ′ x →−∞ − e x → −∞ x →−∞ e e −x Wk (0)eWk (0 ) = lim xe x = lim (3.7) ( ) if we use the expression (3.5), and Wk (0)eWk (0) = 0e 0 = 0, (3.8) if we use the expression (3.6). This assumption is justified by an example presented in dissertation work. 3.1.3. Modified Lambert function’s method and method of finding of solution in the case when argument (matrix) of the Lambert function has zero eigenvalue If we have non-commuting coefficient matrices of the equations (2.6) and (2.13) and we use the modified Lambert function’s method then, in order to find the auxiliary matrix D k , we use the fsolve function and proposed new method of finding of solution in the case when argument (matrix) of the Lambert function Bτ (0 ) and has zero eigenvalue. Then the initial matrix is Dk = Wk − B2τe 1 ( ) Wk (0) = 0 , ∀k . The details of application of this method is presented in the dissertation work. 3.2. The step responses matrix of control system, described by linear nonhomogenous matrix differential equation with delayed argument, and its application The mathematical model of analyzed control system with delays is the matrix differential equation with delayed argument given by (2.26) expression. 21 In the case when (2.26) describes multidimensional control system – the synchronization system of communication network - then the symbol xi t () means the phase of the oscillation of i-th oscillator. In the dissertation work the transients arising in the synchronization system, when the increment of the unit ( ) step form is delivered to the phase of i-th oscillator i = 1, n , are investigated. To this end, the step response matrix of the system is found. The matrix h(t ) = hij (t ) is called the step response matrix of the ( ) synchronization system. The element hij (t ) of this matrix is the response of xi (t ) of a vector x(t ) to a unit jump in the component x j (t ) . There is found the matrix h(t ) . component When the unit phase jump affects the phase of oscillation of the j-th oscillator then the free term z (t ) of the equation (2.26) assumes the increment: ∆ z (t ) = δ (t ) I ( j ) ; (3.9) here I ( j ) is a column vector which has all its elements equal to zero, except j-th element which is equal to 1, δ (t ) is Dirac delta function. Considering the equation (2.26) we can write a differential equation for vector of step responses function h j (t ) ( j = 1, n): h' j (t ) + B1 h j (t ) + B2 h j (t − τ ) = δ (t ) I ( j ) , h j (t ) = 0, t ∈ [− τ ,0]; here j = 1, n, (3.10) h j (t ) = (h1 j (t ), h2 j (t ),K, hnj (t )) is j-th column of the step response T matrix h(t ) , matrices B1 and B2 are numerical matrices that depend on a the structure of the internal links of the system. Firstly, we will write the solution of the matrix differential equation (3.10) on the interval [ 0, τ ] . Due to the initial conditions (3.10), vector h j (t − τ ) is a zero vector on the interval [ 0, τ ] . Considering this, the differential equation (3.10) on the interval [ 0, τ ] is written as a simple differential equation (without delayed argument): 22 δ (t ) I ( j ) , i = j h' j (t ) + κh j (t ) = 0, i ≠ j. h j (0 ) = 0. (3.11) Solution of the equation (3.11) has following form: [ ] h j (t ) = h1 j (t ) h2 j (t ) K hnj (t ) , t ∈ [0,τ ]; (3.12) 0, i ≠ j hij (t ) = −κt e 1(t ), i = j , (3.13) T here 1(t ) – unit Heaviside function. Using the solution (3.12) the differential equation (3.10) on the interval be written as the linear homogenous matrix differential equation with delayed argument (τ , +∞ ) can h' j (t ) + B1 h j (t ) + B2 h j (t − τ ) = 0, j = 1, n, t > τ , h j (t ) = ϕ j (t ), t ∈ [0,τ ]; here (3.14) φ j (t ) = h j (t ) is an initial vector function defined by the expression (3.12) When the Lambert function method, described in the chapter (2), is used the approximate solution of the equation (2.26) on the interval (τ , +∞ ) is written as it is shown below: h j (t ) = N ∑e Sk t Ck , j = 1, n, t ∈ (τ ,+∞); (3.15) k =− N here N is a sufficiently large number, the matrix S k is defined by equation (3.1), when coefficient matrices of the differential equation with delayed argument are non-commuting, and by equation (2.8), when they are commuting. In the third chapter there also is presented analysis of the control system made applying the modified Lambert W function method and the proposed method of finding of solution in the case when the argument (matrix) of the Lambert function has zero eigenvalues. For every example there are given 23 expressions of the step responses got using consequent integration method and Laplace transform. The results are compared, as well, with results obtained by numerical method which uses dde23 function described in the Matlab's package. There are given pseudo codes of all algorithms, used for calculations within Matlab environment. The codes can be applied to generate programs for computing the step responses of the system by three methods: Lambert function, dde23 numerical and consequent integration. 4. INVESTIGATION OF SYNCHRONIZATION SYSTEM OF THE COMMUNICATION NETWORK In the fourth chapter there are analyzed synchronization systems with different structures of the internal links and described by the linear matrix nonhomogenous differential equations with delayed argument and with commuting coefficient matrices. 4.1. The step responses matrix of the synchronization system in the case of different structures of the internal links For the analysis of step responses of such systems the Lambert function’s method, presented in the chapter (2), is applied. Analyzed systems have following structures of the internal links: ring, star, full graph, chain. For the analysis of these systems the described method not always is sufficient. When the argument (matrix) of the Lambert function has zero eigenvalues, we shall apply the new method of finding of the solution, proposed in the dissertation (discussed in the third chapter). Looking for a general solution’s coefficients Ck ( ) , we need to find a inverse matrix of the matrix X τ , N . When this matrix is singular a pseudo inverse matrix finding procedure is applied: X (τ , N ) = VD +V −1 . + Derived results are compared with the ones derived using consequent integration and numerical (using dde23 function described in Matlab package) methods. For comparing the results a relative error at the fixed point t is calculated using the following formula: σ= xLamberto (t ) − xtikslus (t ) . xtikslus (t ) 4.2. Investigations of transients of phase differences of oscillations of the oscillators The phase differences of oscillations of the oscillators are investigated by two methods: Lambert function method and the consequent integration method (exact 24 method). The mathematical model of the analyzed system is the linear nonhomogenous matrix differential equation with delayed argument and commuting coefficient matrices. The obtained results are compared, as well, with the results, obtained by the numerical method, which uses the dde23 function, described in the Matlab package. The mathematical model of the multidimensional control system is matrix differential equation with delayed argument, given by (2.26). The symbol xi t () in this equation denote the phase of i-th oscillators. The phase xi t can be expressed by the following formula: () t f i (ξ )dξ + x0i , t > 0, xi (t ) = ∫0 f t + x , t ≤ 0; 0i 0i (4.1) x0i = xi (0) ( i = 1, n ) is initial phase of the i-th oscillator, f 0i is own frequency of i-th oscillator when control signal is disconnected (shut off), f i (t ) here is a frequency of the i-th oscillator. The meaning of the formula (4.1) is following: control signal for the i-th oscillator is connected at the moment t = 0 . Till then the oscillator worked at own frequency f 0i . Taking into account (4.1), expressions of the initial function and of the free term in the differential equation (2.26) can be written as it is shown below: φ (t ) = (φ1 (t ),φ2 (t ),K,φn (t ))T (4.2) φi (t ) = f 0i t + x0i , i = 1, n, t ∈ [− τ ,0], (4.3) z (t ) = ( f 01 , f 02 ,K, f 0 n ) . (4.4) T 4.3. Derivation of expressions of generalized (suited for any finite number of oscillators n ∈ N ) phase differences for different structures of internal links when consequent integration method is applied In the fourth chapter there are derived expressions of phase differences when synchronization systems have structure of the internal links s of the following forms: ring, full graph, chain. An exact solution of the differential equation (2.26), found applying consequent integration method and Laplace 25 transformation, when synchronization system has ring form structure of the internal links is written as it is shown below: xi (κt ) − x j (κt ) = σ ij (κt ) + Sij (κt ), 0 < κt < (L + 1)κτ ; i, j = 1, n, (4.5) čia σ ij (κt ) = σ ij ,1 (κt ) + σ ij , 2 (κt ) + σ ij ,3 (κt ) − σ ij ,3 (κt − κτ ) − σ ij , 4 (κt − κτ ), σ ij ,1 (κt ) = α ij ,1e−κt 1(κt ), σ ij ,2 (κt ) = βij (t )(1 − e−κt )1(κt ), σ ij ,3 (κt ) = α ij , 4 (κt − 1 + e −κt )1(κt ), σ ij , 4 (κt ) = α ij ,3 (1 − e −κt )1(κt ), α ij ,1 = ∑ ϕ0 m (σ im − σ jm ), n m =1 n α ij , 2 = ∑ m =1 f0m κ (σ im − σ jm ), α ij ,3 = ∑ϕm −1, m +1 (σ im − σ jm ), n m =1 n α ij , 4 = ∑ m =1 f m −1, m +1 κ (σ im − σ jm ), β ij (t ) = α ij , 2 + α ij ,3 − κtα ij , 4 Sij (κt ) = Sij ,1 (κt ) + Sij , 2 (κt ) + Sij ,3 (κt ) − Sij ,3 (κt − κτ ) − Sij , 4 (κt − κτ ), 1 (κt − kκτ ) e− (κt − kκτ )1(κt − kκτ ), Sij ,1 (κt ) = ∑ k aij ,1 (k ) k! k =1 2 k L k ( 1 κt − kκτ )r −(κt −kκτ ) Sij , 2 (κt ) = ∑ k bij (t , k )1 − ∑ e 1(κt − kκτ ), r! k =1 2 r =0 L 26 k r (κt − kκτ )s e−(κt −kκτ ) 1(κt − kκτ ), 1 a ( k ) ( κ t − k κτ ) − ( k + 1 ) + ∑∑ k ij , 4 s! k =1 2 r =0 s = 0 L Sij ,3 (κt ) = ∑ k (κt − kκτ )r e −(κt − kκτ ) 1(κt − kκτ ), 1 ( ) a k 1 − ij , 3 k ∑ r! k =1 2 r =0 L S ij , 4 (κt ) = ∑ aij ,1 (k ) = ∑ ϕ 0 m (d im (k ) − d jm (k )), n m =1 n aij , 2 (k ) = ∑ m =1 f 0m κ (d (k ) − d (k )), im jm aij ,3 (k ) = ∑ ϕ m−1,m +1 (d im (k ) − d jm (k )), n m =1 n aij , 4 (k ) = ∑ m =1 f m−1,m+1 κ (d (k ) − d (k )), im jm bij (t , k ) = aij , 2 + aij ,3 − κtaij , 4 , [ ] dij (k ) = B k ij , i, j = 1, n. There were used following notations: ϕ i −1,i − n f 0i −1 + f 0i +1 ϕ 0i −1 + ϕ 0i +1 , i ≠ 1, , i ≠ 1, 2 2 i ≠ n, i ≠ n, ; f i −1,i − n = f 0 n + f 02 ; = ϕ 0 n + ϕ 02 , 1 , i , i = 1 , = 2 2 f 0 n −1 + f 01 ϕ 0 n −1 + ϕ 01 , i = n. , i = n. 2 2 ; here ϕ 0i ( is an initial phase of the i-th oscillator i = 1, n frequency of i-th oscillator B ∈ M n (R ) is given by (2.31). (i = 1, n)l. ), f0i is own The expression of the matrix 27 When the synchronization system has complete graph structure of the internal links then in the expressions (4.5) of phase differences the following changing must be made: 1. In the formulas S ij ,1 (κt ) , S ij , 2 (κt ) , S ij ,3 (κt ) and S ij , 4 (κt ) 1 1 to . k 2 (n − 1)k 2. The expressions ϕ i −1,i − n and f i −1, i − n are defined as follows: change ϕ i −1,i −n = 1 n ∑ ϕ 0l , n − 1 l =1 l ≠i 3. The matrix f i −1,i − n = 1 n ∑ f 0l . n − 1 l =1 l ≠i B ∈ M n (R ) must be defined by the expression (2.27). When synchronization system has chain form structure of the internal links, the following changing in the phase difference expression (4.5) must be made: 1. Marks ϕ i −1,i − n and f i −1, i − n are defined thus: ϕ0i −1 + ϕ0i +1 , i ≠ 1, i ≠ n, 2 ; ϕi −1, i − n = ϕ02 , i = 1, ϕ , i = n. 0n f 0i −1 + f 0i +1 , i ≠ 1, i ≠ n, 2 . f i −1,i − n = f 02 , i = 1, f , i = n. 0n 2. 28 The matrix B ∈ M n (R ) is presented by the expression (2.30). 4.4. Calculation of phase differences applying Lambert W function method and the method of finding the solution in the case when argument (matrix) of the Lambert function has zero eigenvalues The solution of non-homogenous differential argument on the interval expressed as follows: ∞ ∞ x(t ) = lim ∑ e k C k + ∫ lim ∑ e N →+∞ k = −∞ 0 N →+∞ k = −∞ ∞ t S t t Sk t ∞ = ∑ e Ck + ∫ ∑ e k = −∞ here equation with delayed (0;+∞) , obtained by Lambert function method, is S k ( t −ζ ) 0 k =−∞ Sk ( t −ζ ) C k′ bu(ζ ) dζ = (4.7) Ck′ bu(ζ )dζ ; Ck is n × 1 vector of the coefficients calculated using the initial function x (t ) = φ (t ) given on the interval [− τ ;0] . C kN is n × n coefficient matrix calculated using the coefficient matrix B1 . In the calculation an approximate formula, derived from (4.7) when N is fixed, is used: t x(t ) = ∑ e k C k + ∫ ∑ e N S t k =N N 0 k=N S k ( t −ζ ) C k′ bu (ζ )dζ . (4.8) The phase difference xi (t ) − x j (t ) is found on the base of the general solution x(t ) = ( x1 (t ) K xn (t )) (see (4.8)). T Results, obtained in the dissertation work using the Lambert function method, are compared with the results, obtained applying numerical method, which uses dde23 function described in Matlab's package, and applying the consequent integration method. In order to compare results there is used a relative error, found as follows: within the chosen interval of κτ variation the such κt value is found at which the distance between graphs, got by Lambert function method and the exact method, is biggest. This value is denoted (κt )max . Then the relative error of Lambert function method is calculated as it is shown below σ max = x Lambert (κt )max − xtikslus (κt )max xtikslus (κt )max . 29 Pseudo codes presented in dissertation work (for Matlab) can be used to create calculation programs for phase differences when any of these three methods is applied: Lambert function, the dde23 numerical and consequent integration. 5. INVESTIGATION OF CONTROL SYSTEM STABILITY APPLYING LAMBERT W FUNCTION In the fifth chapter there is analyzed the method of finding roots of characteristic transcendental equation, corresponding to the linear scalar and matrix differential equation with delayed argument. This method is based on application of Lambert W function. When coefficient matrices of matrix differential equation with delayed argument are non-commuting a modified Lambert function method is applied and obtained results are compared with the ones obtained applying numerical (when Chebyshev polynomial is used) and the exact method ( sk1, 2 2 1 = Wk ± τ α used in the article (Jarlebring and τ 2 Damm, 2007)). 5.1. System described by linear scalar differential equation with delayed argument There is analyzed a characteristic transcendental equation of the linear differential equation (2.4) s + b + ae − sτ = 0 , (5.1) using Lambert function method. Since Lambert W function has infinite number of branches, linear scalar characteristic transcendental equation ( 5.1) will have infinite number of roots. These roots can be expressed as follows: 1 s k = Wk ( − aτeτβ ) − β , k = 0,±1,±2, K. τ (5.2) The solution of the differential equation with delayed argument (2.4) will be asymptotically stable if all complex numbers sk , k = 0,±1,±2,K will have negative real parts. Using expression (5.2) in dissertation work the dependence of location of points, representing eigenvalues on the complex plane, on system parameters is analyzed. The transients in the system are presented, too. 30 5.2. System described by linear matrix differential equation with delayed argument when coefficient matrices are commuting There is analyzed characteristic transcendental equation, corresponding to linear matrix differential equation, applying Lambert function method. The matrix transcendental characteristic equation will have infinite number of roots that are written as it is shown below: ( ) 1 S k = Wk − B2τe B1τ − B1 ; τ (5.3) Solution of differential equation with delayed argument (2.6) will be asymptotically stable if all real parts of eigenvalues of all complex matrices Sk , k = 0,±1,±2,K will be negative numbers. Using expression (5.3), in the work there is analyzed dependence of location of points, representing eigenvalues of the matrices S k , on the complex plane on system parameters. The transients in the system are presented, too. 5.3. System described by linear matrix differential equation with delayed argument when coefficient matrices are non-commuting Let we have control system described by linear matrix differential equation (2.6) and let its coefficient matrices are non-commuting. In the work a transcendental characteristic equation, corresponding to linear matrix differential equation, is solved using modified Lambert function method. The matrix transcendental characteristic equation will have infinite number of roots: Sk = 1 τ Dk − B1 , (k = 0,±1,±2,K) . (5.4) Solution of differential equation with delayed argument will be asymptotically stable if all eigenvalues of complex matrices S k , k = 0,±1,±2,K will have negative real parts. 31 CONCLUSIONS 1. There is proposed a new modification of the method of solution of linear matrix differential equation with delayed argument in the case, when the coefficient matrices of the equation are non-commuting. This modification is based on the use of Lambert W function and on application of special auxiliary matrix which is found using fsolve function, given in Matlab. The new modified method is better than the known one because the initial matrix in the iteration process of fsolve function is described by the same expression, fits for all branches of Lambert W function and is derived from a simpler expression. 2. There is proposed a new method of finding of the solution of linear matrix differential equation with delayed argument, applicable in the case when argument of matrix Lambert W function (matrix) has zero eigenvalues. ( ) According to this method, the value of the k-th branch k ≠ 0 of the Lambert function at zero argument is equated to zero (in fact this value is equal to − ∞). This replacement, as it is shown by example, does not changes all set of eigenvalues (it influences only their numbering). 3. For computing coefficient matrices, involved in the expression of general solution of the linear matrix differential equation with delayed argument there is used a pseudo inverse matrix or procedure of finding pseudo inverse, in the case when coefficient matrix of corresponding linear matrix differential equation is singular. 4. Dependence of accuracy of the solution, obtained by the Lambert W function‘s method, on number of branches, used in calculation of solution, is investigated. For this purpose the exact solutions, got for some systems using consequent integration method, are applied. The proposed method has advantage comparing with consequent integration method when coefficient matrices are of more than third order or their have not zeros elements, except the case, when B1 is diagonal matrix (synchronization systems). 32 REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Asl, F. M. and Ulsoy, A. G. "Analytical solution of a system of homogeneous delay differential equations via the Lambert function," in American Control Conference, 2000. Proceedings of the 2000, 2000, pp. 2496-2500 vol.4. Asl, F. M. and Ulsoy, A. G., "Analysis of a system of linear delay differential equations," Journal of Dynamic Systems, Measurement, and Control, vol. 125, pp. 215-223, 2003. Barata, J. and Hussein, M. "The Moore–Penrose Pseudoinverse: A Tutorial Review of the Theory," Brazilian Journal of Physics, vol. 42, pp. 146-165, 2012/04/01 2012. Butcher, A. E., Ma, H., Bueler, E., Averina, V. and Szabo, Z. "Stability of linear time‐periodic delay‐differential equations via Chebyshev polynomials." International Journal for Numerical Methods in Engineering 59.7 (2004): 895-922. Chen, H. C., Horng, T. and Yang, Y. "Reflexive decompositions for solving Poisson equation by Chebyshev pseudospectral method," Proceedings of Neural, Parallel, and Scientific Computations, vol. 4, pp. 98-103, 2010. Corless, R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J. and Knuth, D. "On the LambertW function," Advances in Computational Mathematics, vol. 5, pp. 329-359, 1996/12/01 1996. Corless, R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J. and Knuth, D. "Lambert’s W function in Maple," Maple Technical Newsletter, vol. 9, pp. 12-22, 1993. Geletu, A. "Solving Optimization Problems using the Matlab Optimization Toolbox-a Tutorial," TU-Ilmenau, Fakultät für Mathematik und Naturwissenschaften, 2007. Horn, R. A. Topics in matrix analysis: Cambridge University Press, 1986. Yi, S., Ulsoy, A. G. and Nelson, P. W. "Delay differential equations via the matrix Lambert W function and bifurcation analysis: application to machine tool chatter," Mathematical biosciences and engineering : MBE, vol. 4, pp. 355-368, 04/ 2007. Yi, S., Ulsoy, A. G. and Nelson, P. W. Time-Delay Systems: Analysis and Control Using the Lambert W Function: World Scientific, 2010. Yi, S. and Ulsoy, A. G. "Solution of a system of linear delay differential equations using the matrix Lambert function," in American Control Conference, 2006, 2006, p. 6 pp. Yi, S., Ulsoy, A. G. and Nelson, P. W. "Solution of systems of linear delay differential equations via Laplace transformation," in Decision and Control, 2006 45th IEEE Conference on, 2006, pp. 2535-2540. 33 14. Jarlebring, E. and Damm, T. "The Lambert W function and the spectrum of some multidimensional time-delay systems," Automatica, vol. 43, pp. 2124-2128, 12// 2007. 15. Leonaite, G. and Rimas, J. Investigation of a Multidimensional Automatic Control System with Delays and Chain Form Structure. Information Technology and Control, Kaunas, Technologija, 2006, Vol. 35, No. 1, 65 – 70. 16. Rimas, J. Analysis of multidimensional delay system: Heverlee : Katholieke Universiteit Leuven, 2004. 17. Shampine, L. F. and Thompson, S. "Solving DDEs in Matlab," Applied Numerical Mathematics, vol. 37, pp. 441-458, 6// 2001. 18. Tsitouras, C. "Runge–Kutta interpolants for high precision computations," Numerical Algorithms, vol. 44, pp. 291-307, 2007. INFORMATION ABOUT THE AUTHOR OF THE DISSERTATION Personal Information: Date of Birth: 2th July, 1984. Place of Birth: Kaunas. Education: 2003 – 2007 Bachelor in Sciences of Applied mathematics, Faculty of Fundamental science, Kaunas University of Technology. 2007 – 2009 Master in Sciences of Applied mathematics, Faculty of Fundamental science, Kaunas University of Technology. 2009 – 2014 Doctoral studies in Physical Sciences (Informatic 09P), Department of Applied Mathematics, Faculty of Mathematics and Natural Sciences, Kaunas University of Technology. Teaching experience: Since 2014 Assistant, Department of Applied Mathematics, Faculty of Mathematics and Natural Sciences, Kaunas University of Technology. Research interests: Research of multidimensional time delay systems and their dynamics; Analysis of the mathematical models of the linear time-delay systems using Lambert function and numerical methods. LIST OF PUBLICATIONS Papers in Master List Journals of the Institute of Scientific Information (ISI) 1. 34 Ivanovienė, Irma; Rimas, Jonas. The use of the Lambert function method for analysis of a control system with delays // Informacinės 2. technologijos ir valdymas = Information technology and control / Kauno technologijos universitetas. Kaunas : KTU. ISSN 1392-124X. 2013, T. 42, nr. 4, p. 325-332. [Science Citation Index Expanded (Web of Science); INSPEC]. [IF: 0,667, AIF: 1,688 (E, 2012)]. Ivanovienė, Irma; Rimas, Jonas. Complement to method of analysis of time delay systems via Lambert W function// Automatica, ISSN 00051098, Vol 54, 2015, p. 25-28, DOI: http://dx.doi.org/10.1016/j.automatica.2015.01.039. Papers in Proceedings List of the Institute of Scientific Information (ISI) 1. 2. 3. Ivanovienė, Irma; Rimas, Jonas. Analysis of control system with delay using the Lambert function // Information and Software Technologies : 19th international conference, ICIST 2013, Kaunas, Lithuania, October 10-11, 2013 : proceedings / Edited by Tomas Skersys, Rimantas Butleris, Rita Butkiene. Berlin, Heidelberg : Springer, 2013. (Communications in computer and information science, Vol. 403, ISSN 1865-0929). ISBN 9783642419461. p. [1-10]. [Conference Proceedings Citation Index]. [M.kr. 09P]. Ivanovienė, Irma; Rimas, Jonas. Analysis of a multidimensional control system with delays // Electrical and Control Technologies : proceedings of the 6th international conference on Electrical and Control Technologies ECT 2011 / Kaunas University of Technology, IFAC Committee of National Lithuanian Organisation, Lithuanian Electricity Association. Kaunas : Technologija. ISSN 1822-5934. 2011, p. 124129. [Conference Proceedings Citation Index]. [M.kr. 01P]. Ivanovienė, Irma; Rimas, Jonas. Investigation of the multidimensional automatic control system, having strucrure of the chain, applying Lambert W function // Electrical and Control Technologies : proceedings of the 7th International Conference on Electrical and Control Technologies ECT 2012 / Kaunas University of Technology, IFAC Committee of National Lithuanian Organisation, Lithuanian Electricity Association. Kaunas : Technologija. ISSN 1822-5934. 2012, p. 82-86. [M.kr. 01T]. Papers in Journals Referred in the Databases, Included in the List Approved by the Science Council of Lithuania 1. Ivanovienė, Irma. The use of Lambert function method for analysis of a multidimensional control system with delays and with structure of the complete graph // Lietuvos matematikos rinkinys : Lietuvos matematikų 35 2. 3. 4. draugijos darbai. Serija B / Lietuvos matematikų draugija, Vilniaus universitetas. Vilnius : Vilniaus universitetas. ISSN 0132-2818. 2012, t. 53, p. 30-35. [M.kr. 01P]. Ivanovienė, Irma; Rimas, Jonas. Finding of roots of the transcendental characteristic equation by a method of function Lambert W // Matematika ir matematinis modeliavimas = Mathematics and mathematical modelling / Kauno technologijos universitetas. Kaunas : Technologija. ISSN 1822-2757. 2012, T. 7-8, p. 7-14. [M.kr. 01P]. Ivanovienė, Irma; Rimas, Jonas. The use of the Lambert Function method for analysis of a multidimensional control system with delays and with structure having form of the star // International Journal of Information and Education Technology (IJIET). Singapore : IACSIT. ISSN 2010-3689. 2012, Vol. 2, no. 4, p. 360-363. [M.kr. 09P]. Ivanovienė, Irma; Rimas, Jonas. Finding of roots of the matrix transcendental characteristic equation using Lambert W function // Lietuvos matematikos rinkinys : Lietuvos matematikų draugijos darbai / Lietuvos matematikų draugija, Vilniaus universitetas. Vilnius : Vilniaus universitetas. ISSN 0132-2818. 2011, t. 52, p. 189-194. [M.kr. 09P]. VALDYMO SISTEMŲ DINAMIKOS TYRIMAS, TAIKANT LAMBERTO FUNKCIJĄ Reziumė Tyrimo objektas. Daugiamatės tiesinės valdymo sistemos su vėlavimais. Temos aktualumas. Automatinės valdymo sistemos plačiai yra naudojamos šiuolaikinės pramonės technologijose, kosminės technikos įrenginiuose, aviacijoje, karinėje pramonėje, transporte, energetikoje, elektronikoje ir buitinėje technikoje. Valdant technologinius procesus dažnai susiduriama su signalų vėlavimu, kuris įtakoja sistemos dinamines savybes. Daugiamatės valdymo sistemos su vėlavimais yra nepilnai ištirtos valdymo teorijoje. Daugiamatės valdymo sistemos su vėlavimais matematinis modelis yra matricinė difrencialinė lygtis su vėluojančiu argumentu. Tokios lygtys jau keli dešimtmečiai yra intensyviai studijuojamos. Tai rodo monografijų ir publikacijų mokslo žurnaluose gausa. Diferencialinės lygtys su vėluojančiu argumentu dažnai sprendžiamos naudojant skaitinius metodus, taikant įvairias aproksimacijas, bei analiziškai. Daugelis skaitinių metodų yra realizuota inžineriniuose paketuose, tokiuose kaip Matlab, Maple, Mathematica. Tačiau nevisada pakanka realiuose tyrimuose turėti apytikslius rezultatus, tad ieškoma tikslių tokių sistemų tyrimo metodų. Pagrindinis sunkumas sprendžiant tiesines diferencialines lygtis su vėluojančiu argumentu yra tai, kad jas atitinkanti transendentinė charakteristinė lygtis turi be galo daug šaknų. 36 Tyrimo tikslas ir uždaviniai. Pagrindinis disertacinio darbo tikslas – daugiamatėms valdymo sistemoms (aprašomoms tiesinėmis matricinėmis diferencialinėmis lygtimis su vėluojančiu argumentu) pasiūlyti tyrimo metodiką ir pritaikyti šią metodiką konkrečių valdymo sistemų pereinamųjų funkcijų matricų skaičiavimui, pereinamųjų procesų tyrimui bei stabilumo analizei. Darbo tikslą įgyvendinti formuluojami šie uždaviniai: 1. Išanalizuoti valdymo sistemų su vėlavimais tyrimo metodą, paremtą Lamberto W funkcijos taikymu. Išnagrinėti šio metodo panaudojimo galimybes, sprendžiant įvairias tiesines diferencialines lygtis su vėluojančiu argumentu: skaliarines, matricines, kai lygties koeficientų matricos yra komutuojančios, ir matricines, kai lygties koeficientų matricos yra nekomutuojančios. 2. Pasiūlyti naują tiesinių diferencialinių lygčių su vėluojančiu argumentu ir nekomutuojančiomis koeficientų matricomis sprendimo metodą, paremtą Lamberto W funkcijos taikymu bei specialios pagalbinės matricos panaudojimu. 3. Pasiūlyti tiesinių matricinių diferencialinių lygčių su vėluojančiu argumentu sprendinio radimo metodą tuo atveju, kai matricinės Lamberto W funkcijos argumentas (matrica) turi nulinių tikrinių reikšmių. 4. Atlikti konkrečių daugiamačių valdymo sistemų (tame tarpe ir ryšio tinklo sinchronizacijos sistemų), aprašomų tiesine matricine diferencialine lygtimi su vėluojančiu argumentu, analizinį tyrimą, taikant pasiūlytą metodiką (rasti pereinamųjų funkcijų matricas, ištirti pereinamuosius procesus sistemoje bei atlikti stabilumo analizę). Tyrimo metodai ir priemonės. Valdymo sistemą su vėlavimais aprašanti tiesinė matricinė diferencialinė lygtis sprendžiama metodu, paremtu Lamberto W funkcijos taikymu, specialios pagalbinės matricos panaudojimu bei Lamberto W funkcijos reikšmės, kai argumentas yra lygus nuliui, koregavimu. Matricinė Lamberto W funkcija apibrėžiama remiantis matricinėje analizėje naudojamu standartiniu matricinės funkcijos apibrėžimu. Pateikiami ginti darbo rezultatai. 1. Naujas tiesinių matricinių diferencialinių lygčių su vėluojančiu argumentu ir nekomutuojančiomis koeficientų matricomis sprendimo metodas, paremtas Lamberto W funkcijos taikymu bei specialios pagalbinės matricos panaudojimu. Ši matrica randama naudojant iteracinį procesą (taikant fsolve funkciją Matlab programoje). Pasiūlyto metodo privalumas tas, kad pagalbinę matricą apibrėžianti lygtis paprastesnė (lyginant su žinomu metodu), o pradinė matrica iteraciniame procese nusakoma ta pačia išraiška (nepriklausomai nuo matricinės diferencialinės lygties su vėluojančiu argumentu koeficientų matricų struktūros). 2. Naujas tiesinių matricinių diferencialinių lygčių su vėluojančiu argumentu sprendinio radimo metodas, taikomas tuo atveju, kai matricinės Lamberto W funkcijos argumentas (matrica) turi nulinių tikrinių reikšmių. 3. Daugiamačių valdymo sistemų su vėlavimais, aprašomų tiesine matricine diferencialine lygtimi su vėluojančiu argumentu, analizinio tyrimo (naudojant 37 Lamberto W funkciją) metodika bei konkrečių daugiamačių valdymo sistemų (tame tarpe ir ryšio tinklo sinchronizacijos sistemų su skirtingomis vidinių ryšių struktūromis) analizinio tyrimo rezultatai. Mokslinis naujumas ir praktinė svarba. Valdymo sistemų su vėlavimais tyrimas yra aktualus. Tai rodo publikacijų šia tematika gausa. Valdymo sistemoms tirti plačiai naudojami įvairūs skaitiniai metodai. Kai netenkina apytiksliai rezultatai, gauti skaitiniais metodais, siekiama naudoti metodus, kurie pateikia tikslius arba kiek norima artimus tiksliems rezultatus. Tokie yra nuoseklaus integravimo metodas, kuris bet kuriame baigtiniame intervale tikslų sprendinį pateikia baigtine funkcijų suma, ir metodas, pagrįstas Lamberto W funkcijos taikymu, kuris bet kuriame intervale tikslų sprendinį pateikia begalinės funkcijų eilutės pavidalu. Disertaciniame darbe valdymo sistemos su vėlavimais, aprašomos tiesine matricine diferencialine lygtimi su vėluojančiu argumentu ir nekomutuojančiomis koeficientų matricomis, tiriamos naudojant darbe pasiūlytą naują metodiką. Šios metodikos pagrindiniai akcentai yra šie: 1. Orginali pagalbinės matricos radimo procedūra, įgalinanti tirti sistemas su nekomutuojančiomis koeficientų matricomis, turinčiomis bet kokias struktūras. 2. Naujas sprendinio radimo metodas, taikytinas tada, kai matricinės Lamberto W funkcijos argumentas (matrica) turi nulinių tikrinių reikšmių. Taikant darbe pasiūlytą metodiką, buvo išnagrinėtos įvairios daugiamatės valdymo sistemos su vėlavimais. Daugelio iš jų tyrimas, taikant žinomą metodiką, nebuvo galimas. Pasiūlyta metodika gali būti panaudota analizuojant matematinius modelius, aprašomus tiesinėmis matricinėmis diferencialinėmis lygtimis su vėluojančiu argumentu, su kuriais susiduriama fizikoje, biochemijoje, ekonomikoje ir kitur. Darbo rezultatų aprobavimas, publikacijos Disertacijos tema paskelbti 9 moksliniai straipsniai, iš jų 2 straipsniai leidinyje, įrašytame į Mokslinės informacijos instituto (ISI) pagrindinių žurnalų sąrašą, 3 straipsniai leidiniuose, įrašytuose į Mokslinės informacijos instituto ISI Proceedings leidinių sąrašą, 2 straipsniai Lietuvos mokslo tarybos patvirtinto sąrašo tarptautinėse duomenų bazėse referuojamose leidiniuose, 2 straipsniai recenzuojamoje konferencijų pranešimų medžiagoje. Pagrindiniai darbo rezultatai pristatyti 3 respublikinėse ir 6 tarptautinėse konferencijose. Darbo struktūra Daktaro disertaciją sudaro įvadas, 5 pagrindiniai skyriai, išvados, literatūros sąrašas, publikacijų sąrašas. Disertacijos apimtis 148 puslapiai, yra 53 paveikslai ir 94 šaltinių cituojamos literatūros aprašas. Pirmajame skyriuje pateikiamas tyrimo objektas, pagrindinis darbo tikslas ir darbo tikslo realizavimo uždaviniai bei metodika, taikoma tyrimuose. 38 Antrajame skyriuje supažindinama su Lamberto funkcija, jos naudojimu įvairių valdymo sistemų tyrimuose; apžvelgiama sistemas aprašančių matematinių modelių – diferencialinių lygčių su vėluojančiu argumentu – sprendimas Lamberto funkcijos metodu, kai turime tiesines homogenines ir nehomogenines, skaliarines ir matricines diferencialines lygtis su vėluojančiu argumentu. Pateikiami skaitiniai tokių lygčių sprendimo metodai, pseudo atvirkštinės matricos skaičiavimo metodika (ji bus naudojama tolimesniuose skyriuose). Apžvelgiama valdymo sistemų tyrimo, taikant Lamberto funkcijos metodą, pavyzdžiai. Trečiame skyriuje pateiktas modifikuotas Lamberto funkcijos metodas įvairioms daugiamatėms valdymo sistemoms tirti, kai jas aprašantys matematiniai modeliai – matricinės diferencialinės lygtys su vėluojančiu argumentu – turi nekomutuojančias koeficientų matricas. Pateikiami metodo taikymą iliustruojantys pavyzdžiai, kai sistemas aprašančių diferencialinių lygčių su vėluojančiu argumentu tyrime būtina koreguoti Lamberto funkcijos reikšmę prie nulinio argumento (naudojamas naujas sprendinio radimo metodas, kai Lamberto W funkcijos argumentas (matrica) turi nulinių tikrinių reikšmių). Pateikiama valdymo sistemų su vėlavimais pereinamųjų funkcijų skaičiavimo metodika, paremta nuoseklaus integravimo metodo taikymu. Ketvirtajame skyriuje ištirtos daugiamatės valdymo sistemos (ryšio tinklo sinchronizacijos sistemos), aprašomos tiesinėmis nehomogeninėmis matricinėmis diferencialinėmis lygtimis su vėluojančiu argumentu ir komutuojančiomis koeficientų matricomis. Pereinamųjų funkcijų radimui taikomas Lamberto funkcijos metodas: pirmajame etape tiesinė nehomogeninė diferencialinė lygtis su vėluojančiu argumentu pertvarkoma į pereinamųjų funkcijų vektoriaus atžvilgiu tiesinę homogeninę diferencialinę lygtį ir tolimesniam tyrimui taikoma Lamberto funkcija. Tiriamos sinchronizacijos sistemos su įvairiomis vidinių ryšių struktūromis. Sinchronizacijos sistemų, turinčių tam tikrą vidinių ryšių struktūrą, analizei naudojamas naujas sprendinio radimo metodas, kai matricinės Lamberto funkcijos argumentas (matrica) turi nulinių tikrinių reikšmių. Bendrojo sprendinio koeficientų paskaičiavimui taikoma pseudo atvirkštinė matrica. Rezultatai lyginami su rezultatais, gautais nuoseklaus integravimo („žingsnių“) metodu (tiksliu metodu) ir skaitiniu metodu, paremtu dde23 funkcijos, aprašytos Matlab pakete, taikymu. Taip pat analizuoti sinchronizacijos sistemų su įvairiomis vidinių ryšių struktūromis generatorių fazių skirtumai, naudojant tris metodus: Lamberto funkcijos, skaitinį – dde23 funkcijos ir nuoseklaus integravimo. Įvertintos paklaidos, gaunamos naudojant Lamberto funkcijos metodą ir skaitinį metodą, paremtą dde23 funkcijos taikymu. Tiriamos sistemos, aprašomos nehomogeninėmis diferencialinėmis lygtimis su vėluojančiu argumentu ir komutuojančiomis koeficientų matricomis. 39 Penktajame skyriuje pateiktas stabilumo tyrimas, atliktas naudojant modifikuotą Lamberto funkcijos metodą, kai sistemos koeficientų matricos yra nekomutuojančios, ir paprastą Lamberto funkcijos metodą, kai sistemos koeficientų matricos yra komutuojančios. Stabilumo tyrimo rezultatai lyginami su rezultatais, gautais skaitiniu metodu. Toliau pateikiamos bendrosios išvados, literatūros sąrašas, disertacijos tema skelbtų publikacijų sąrašas. UDK 517.935 + 519.711 (043.3) SL344. 2015-05-05, 2,5 leidyb. apsk. l. Tiražas 70 egz. Užsakymas 150157. Išleido leidykla „Technologija“, Studentų g. 54, 51424 Kaunas Spausdino leidyklos „Technologija“ spaustuvė, Studentų g. 54, 51424 Kaunas 40
© Copyright 2024