Modeling Coupled Fluid Flow, Heat and Mass Transfer with Thermo-Mechanical Process Application to Cracked Solid Oxide Fuel Cell Qian SHAO, L. Bouhala, A Makradi and S. Belouettar Background ü Coal around 100 years ü Natural gas around 60 years ü Oil around 50 years BP Statistical Review 2014 2 Solid Oxide Fuel Cell 3 Why SOFC? High energy conversion efficiency • Convention: thermo-mechanical based, 20%-30% • SOFC: electrochemical based, 45% or higher Fuel flexibility • Internal reforming • Hydrogen, natural gas, biomass, coal gas, etc. Low pollutant emission • No noise • Low greenhouse gas, no smog particulates 4 Why SOFC? CHP Propelling force APU Non-stationary Stationary 5 Why SOFC? Drawbacks: • High manufacturing costs • Low-reliability 6 How does SOFC work? Electric current Fuel in Air in ee- e- q Cathode/Electrolyte interface O2- e- 1 O2 +2e− → O 2− 2 H2 O2- O2 (Oxygen reduction) q Anode/Electrolyte interface H 2O Η 2 + Ο 2− → Η 2 Ο + 2e − (Hydrogen Oxidation) Anode Electrolyte Cathode 7 Problem statement High operating temperature Residual thermal stresses Enhance cell degradation rate Crack nucleation and propagation Affect the electrochemical performance of SOFC Penetrate into the electrolyte and allow for fuel leakage 8 State of the Art Experiments Modeling New materials Processing parameters Material processing Fuel conversion efficiency Porous microstructure Temperature distribution Supported configuration Thermo-mechanical response Lower temperature Fracture prediction 9 State of the Art 2006, Ruiz-Morales et al. • Novel technique to control the porosity • Homogeneous porous medium improves electrochemical performance 2007, Joulaee et al. • Pores concentration and distribution affect the resistance to fracture in porous material 2013, Mikdam et al. • Pores orientation direction influence the thermal and electrical conductivities, as well as the pores connectivity 10 State of the Art Ø Commercial codes Ø Simplified in-house codes • Porous zones neglected • Flow field neglected • Pure diffusive, isothermal Ø No consideration of cell degradation (failure) 11 Objective v Develop a general comprehensive numerical approach to model the multi-physics phenomenon in a SOFC unit. v Study the effect of porous material properties on SOFC fractures and electrochemical performance. 12 Multi-physics phenomenon Fluid flow Heat transfer Mass transfer Electrochemical reactions Thermomechanical response Crack propagation 13 Basic assumptions • Incompressible, laminar flow • Saturated porous media of constant porosity • Permeable and adiabatic cracks • Cracks affect heat conduction in the solid phase • Radiation effect neglected 14 Basic models DB model Fluid flow Heat transfer XFEM model Thermomechanical response Mass transfer Crack propagation Electrochemical reactions EC model 15 DB model Darcy-Brinkman ρf ⎧ ρ f ∂v µ µ + v + v . ∇ v − ∇. (∇v ) + ∇P = 0 ⎪ ( ) 2 ε ε ⎨ ε ∂t K ⎪∇.v = 0 ⎩ Nonconforming Crouzeix-Raviart Finite Element Method ∂C + ∇.(qC ) − ∇.( D.∇C ) = Qs ∂t Species conservation ε Energy conservation ∂ ( ( ρ c ) PM T ) ∂t + ∇.( ρ f c f qT ) − ∇.( kPM ∇T ) = QT Advective term -- Discontinuous Galerkin Diffusive term – Multipoint Flux Approximation 16 Double-diffusive natural convection Adiabatic, impermeable Porous medium T = Th C = Ch g T = Tc C = Cc Adiabatic, impermeable Boussinesq approximation ρ (T , C ) = ρ 0 ⎡⎣1 − βT (T − T0 ) − β C (C − C0 )⎤⎦ 17 Simulation results Streamlines Temperature Concentration 18 Sensitivity to mesh Level 1: 2500 Level 2: 10000 Temperature contours Level 3: 40000 Level 4: 160000 Concentration contours 19 Sensitivity to mesh Test case Relative errors of Nusselt and Sherwood numbers between different grid levels 20 Fourier-Galerkin Reformulate the governing equations Expand the unknowns in Fourier series Substitute the expansions in the equations Solve the system with Powell hybrid method 21 Comparison of results Da=10-1 Da=10-3 Da=10-5 Test case Relative errors of Nusselt and Sherwood numbers between FG and FEM solutions 22 XFEM model Heat conduction Mechanical equilibrium ( ρ c ) PM ∂T − ∇.( k s∇T ) = QTs ∂t ⎧ LT σ + b = 0 ⎪ ⎨ u = u ⎪ ⎩σ ⋅ n = t in Ω on Γ u on Γ t eXtended Finite Element Method Stress Intensity Factor Crack propagation criterion J-integral technique Maximum principle stress 23 Benchmark 1: Isotropic cruciform plate Boundary condition sets BC set 1 2 3 Temperature (°C) A 0 0 -5 B 10 0 10 C 0 0 -5 D -10 0 -10 A cracked cruciform plate (Bouhala et al. 2012) 24 Traction (Pa) B 0 10 10 Benchmark 1: Isotropic cruciform plate A cracked cruciform plate (Bouhala et al. 2012) Horizontal displacement 25 Benchmark 1: Isotropic cruciform plate BC set 5 BC set 1 BC set 2 Present study N.N.V. Prasad (1994) 26 Benchmark 2: Anisotropic rectangular plate W A rectangular plate made of glass/epoxy: θ=θ0 Ø Young’s modulus: E11=55GPa 4W a Q γ E22=21GPa Ø Thermal expansion coefficient: α11=6.3×10-6 K -1 P α22=2×10-5 K -1 E22 Ø Thermal conductivity ratio: E11 λ11 λ22= 3.45 0.35 θ=0 27 Benchmark 2: Anisotropic rectangular plate W θ=θ0 4W a Q γ P E22 E11 θ=0 Vertical displacement Vertical stress 28 Benchmark 2: Anisotropic rectangular plate * Crack tip P Crack tip Q *ETM – Exact Transformation Method; SUP – Superposition approach; BEM – Boundary Element Method References: Pasternak, 2012; Shiah et al., 2000 29 EC model Nernst equation Output voltage Heat generation Species consumption/ production OCP U TPB =U H0 2 ⎛ pH 2O,f RT ⎜ − ln 2 F ⎜ p p ⎝ H 2 ,f O2 ,a ( ⎞ ⎟ 1 2 ⎟ ⎠ ) OCP U=U TPB − ( ηOhm +ηconc +ηact ) T⋅j Q&T = 2 SH 2O − 2 SH 2 − SO2 + j (ηOhm + ηact ) 4F ( j Q&S ,H 2 = − 2F ) j Q&S ,O2 = − 4F j Q&S ,H2O = 2F Powell hybrid method 30 Validation P. Aguiar, 2004 Present study 31 Applications to SOFC DB model Fluid flow Heat transfer XFEM model Thermomechanical response Mass transfer Crack propagation Electrochemical reactions EC model 32 DB-XFEM model Ø Energy conservation in porous media: T n +1 − T n ( ρ c ) PM + ∇. ρ f c f qT − ∇. ( kPM ∇T ) = QT Δt ( ) Ø Time splitting: T n +1,* − T n ( ρ c ) PM + ∇. ρ f c f qT − ∇. k f ∇T = QTf Δt ( ) T n +1 − T n +1,* ( ρ c ) PM − ∇. k s∇T = QTs Δt ( ) ( ) (DG and MPFA) (XFEM) 33 DB-XFEM model Start DB model T* If K Ieq< K Ic XFEM model If K Ieq > K Ic No Extend the crack by one increment Threshold number Yes End 34 Heating process of SOFC 35 Simulation results Flow channel Porous anode Electrolyte Porous cathode Flow channel Pressure field Temperature field 36 Simulation results Enriched elements Horizontal stress 37 Parametric studies • Pores volume fraction • Porous material anisotropy 38 Isotropic porous media (a) Porosity ε=0.2 (c) Porosity ε=0.4 (b) Porosity ε=0.3 (d) Porosity ε=0.5 39 Study on onset of crack propagation 0.5 0.4 0.3 0.2 Evolution of SIFs on crack tip before the onset of crack propagation KIc: material fracture toughness 40 Effect of porosity on crack growth cathode/electrolyte interface Crack propagation paths for different isotropic porous media 41 (along the cell height) Anisotropic porous media y Anisotropy (a) Anisotropy (b) Anisotropy (c) Anisotropy (d) x (along the cell length ) 42 Study on the onset of crack growth (a) (b) (c) (d) Evolution of SIFs on crack tip before the onset of crack propagation 43 Effect of anisotropy on crack growth cathode/electrolyte interface Crack propagation paths for different anisotropic porous media 44 Parametric studies E1 • Young’s Modulus ratio (E1/E2) E2 • Permeability (K) • Thermal Conductivity (λ) 45 Young’s modulus ratio effect Porous/dense interface Crack tip position in a three-layered structure for different materials mismatch 46 Permeability and conductivity effect Porous/dense interface Different permeability values of the porous layer Porous/dense interface Different thermal conductivities of the solid 47 DB-EC model Species concentration, temperature DB model EC model Species, heat flux at boundaries 48 Simulation results Fuel channel (a) Temperature Anode-electrolyte-cathode Air channel (b) Molar fraction of H2 (c) Molar fraction of H2O (d) Molar fraction of O2 49 Validation Comparison of I-V curves between model predictions and experimental data (Fernández-González et al., 2014) 50 Temperature distribution anode/electrolyte 51 I-V curves Comparison of I-V curves between non-isothermal and isothermal cases 52 Conclusions Numerical approach • DB model, XFEM model, EC model • Flow field, species concentration, temperature field • Thermo-mechanical response, crack propagation • Electrochemical performance • Benchmarks and validations: accurate, efficient Study on SOFC • Porous material properties • Crack propagation path: complex dependence • Onset of crack propagation: anisotropy and porosity • Energy conversion performance: heat generation 53 Perspectives EC model • Charge transport with and without the presence of a crack DB-EC model • Material porosity and anisotropy effect on the electrochemical performance DB-XFEM model • Interfacial crack propagation; Crack across the interface • Fatigue crack growth due to the heating and cooling process DB-XFEM-EC model • Interaction between the crack and the energy conversion performance 54 More information Ø Q. Shao, R. Fernández-González, A. Mikdam, L. Bouhala, A. Younes, P. Núñez, S. Belouettar and A. Makradi (2014). “Influence of heat transfer and fluid flow on crack growth in multi-layered porous/dense materials using XFEM: Application to Solid Oxide Fuel Cell like material design”, International Journal of Solids and Structures, 51(21-22), pp.3557-3569. Ø Q. Shao, L. Bouhala, A. Younes, P. Núñez, A. Makradi and S. Belouettar (2014). “An XFEM model for cracked porous media: effects of fluid flow and heat transfer”. International Journal of Fracture. 185(1-2): 155-169. Ø A. Younes, A. Makradi, A. Zidane, Q. Shao, L. Bouhala (2014). “A combination of Crouzeix-Raviart, Discontinuous Galerkin and MPFA methods for buoyancy-driven flows”. International Journal of Numerical Methods for Heat and Fluid Flow. 24(3): 735-759. Ø L. Bouhala, Q. Shao, Y. Koutsawa, A. Younes, P. Núñez, A. Makradi, S. Belouettar (2013). “An XFEM crack-tip enrichment for a crack terminating at a bi-material interface”. Engineering Fracture Mechanics. 102: 51-64. Ø Q. Shao, L. Bouhala, D. Fiorelli, A. Younes, P. Núñez, S. Belouettar and A. Makradi (2015). “Influence of fluid flow and heat transfer on crack propagation in SOFC with anisotropic porous layers”, under review, International journal of Solids and Structures. Ø Q. Shao, R. Fernández-González, J.C. Ruiz-Morales, L. Bouhala, A. Younes, P. Núñez, S. Belouettar, A. Makradi (2015). “An advanced numerical model for energy conversion and crack growth predictions in Solid Oxide Fuel Cell units”, under review, Journal of Power Sources. 55
© Copyright 2025