M E T U f)epartment of Mathematics MATH Date Time : 260 FINAL EXAM Last Name May 26, 2015 Name Student No Signature : 17:00 Duration : 110 mzn. 4 Questions on 4 Pages. totally'80 points Keep your ID out during the exam SHOW YOUR WORK Q.1. (16 pts.) a) (S pts.) Let A. B, C,D, and Ebe 3 x 2 matrices such t* C and E -2R2:Rr n \\irite dou'n an invertible matrix P such that PA : -e as a product of four elementar-v A R:!$' 3 n':4R' C matrices (accordingl)' to the diagrams above). h Pb ?j'c ?DT* P: 97.3 E l?z lo* €r() €,ft)€,&) €,t)= Lou il Li:flE?AEn (n > Li-3?71 t t oJ b) (4 pts.) a sl la r t) Given't' ^"1sl lo a 2l9 t i q*3 I+ =Y Iz 0 ! q 9r Tx) Z {,' a -d ) Compute the de termrnant a*3 b 3r3l -t 7r' rt 5.ro l. 2 a 2ttl Etq 911 t rl i( r'/JiHq zl 8 zl " r lzq37P3x. (4 pts.) Let )3 +2^2 - ) - 5 be the characteristic poll-nomial of a matrix ,4. \\rrite the ") matrix ,4-1 as a linear combination of the ma,trices 1, A. and A2. Is the set {A, At , At , An} frL$r?u Jr 5+-, ptr.) Determine u'hether or not tire follou'ing matrix is diagonalizable. and if is so, fi.nd a diagonalizing matrix P and a diagonal matrix D such that P-r AP : D. Justif;,- your ans'frrers. Q.2. (24 it Io0 3 -8 I a) (12 pts.) .4: | -2 0 | Li 3 -3 . 1 = ()*C 63e ). * gu, cu[j + 4r.1 n) (1r, A3) 61p ), ) .b3 li-F = 5 l,*^ 'rfh*ffi o=-7"!Jrr&xffia Vqr,q2& ervwlal^.,o'^,s of egxu;trec+-'Ds oI d;u*\it" l&."& A .l;+ olrqBoua('ga-Ws i;'*rd b) (12 pts. u: l-z ' L1 I )+z o llLBl= | -t -":l o -I _lI ; )-51 &--^:s -roo o I t- I t-ir-el = L: ^o:ll L 4" \=5 a 6*z)(x* z)[x -s) I ),=l!-, , )r: r ?o=H ,?"-F] -> +8; Ln il 9 ,,Z'nnQ 4w : I sJ-BJ = L:l - 4- < o ol >+z-T f-r 0 otlts l-lt;iil'wT f-? Z 3J B q=I?] e B. (zflpts.) Let _: A: [ S I] a) (16 pts.) Find a diagonal matrix D and an orthogonal matrix lxtrAl= [i j?_,\ :6-r)./r*,):(r-,)(r*,)= eiyvva&*s: )r={- $?,=\r Q such Lhat Qr ) tr"=\g=-1 AQ : D. i. 6=) - =rfl q'=[] , ;l - fr\il,E=El F,i- {^' )=\1}, fj F.ro]= srr,,cR f r rs ...t b ( j :l-W:il D r,=El ,tF\ ",iq; ^r};fr:Yffi^utr) Q.= LH, Q,=lil q =)!,u,nJ u) (5ntg). rila n*h t - {tt\il a diagonal matrix D1 sucir that Qr(.43 matrlx u'hich is found in a). ahi>l)Q= ( + )Q: Ir 3A2 in'here Q is ttre rT ..Z ') q?qr2q;h=&)l q)* 3(q4E- = f- >;= H',:p,,fl,J o01 zo fto z) I Q.4. (18pts.) LetPs bethespaceof all polr'nomialsof degree(3,andietI:P3-+Ps be a linear transformation such that I(1 + *) : 2, L(l - 3t ) - -6, L(t + 2*) :4. and L(t3+2t):61. U9=hftrt')- r) = l(n+)-l1r)= z-tc : 2 L(l) =/u (Gru"i -zt):rbra)-zl(1)= +'?z= o L b) (3 pts.) Write a basis for J* (t l =="';;" il Jnrlr) : {r(p) i p e Pr} ^, ri,;lr) r' l'i;;,' qo a^r- *o/lor",q. {2, (4e\ .) (3 pt".) Find the dimension ;:ifi = ,^ eryu q (eere -t") of the linear transformation u-ith respect to the standard ordered basis of 23. S,,,cQ Kbh (lr\: T*r tr.) 4 o 0 o {7 # I {-Ilj=q of Ker(l) : {p e Pzl L(p) - 0}. Justify your answer. d) (6 pts.) Find the matrix representation Lrl = frr{= ^n g pcq, o-qo1 L o-l2l o 5 0l 0 o A) It[ : I -2L*3L2 Jt*r', ),'= Q G eurl- -l prl{l, *D qrFt+olJ=
© Copyright 2024