Basic Math Guide - Maine Academic Decathlon

Academic Decathlon™
The premier scholastic competition for high school students.
Mathematics
BASIC GUIDE
United States Academic Decathlon®
Toll Free: 866-511-USAD (8723)
Direct: 712-366-3700
Fax: 712-366-3701
Email: [email protected]
Website: www.usad.org
This material may not be reproduced or transmitted, in whole or in part, by any means,
including but not limited to print and electronic, without prior written permission from USAD.
© 2005 by United States Academic Decathlon. All rights reserved.
Table of Contents
Introduction . . . . . . . . . . . . 3 Trigonometry. . . . . . . . . . . 33
Algebra . . . . . . . . . . . . . . . . 4 Calculus . . . . . . . . . . . . . . 36
Properties of Real Numbers. . . . . . . . . . . . . . 4
Polynomials . . . . . . . . . . . . . . . . . . . . . . . . 10
Linear Equations . . . . . . . . . . . . . . . . . . . . . 11
Statistics . . . . . . . . . . . . . . 38
Descriptive Statistics . . . . . . . . . . . . . . . . . .38
Quadratic Equations . . . . . . . . . . . . . . . . . . 11
Measures of Central Tendencies. . . . . . . . . . 39
Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Rational Expressions. . . . . . . . . . . . . . . . . . 15
Linear Inequalities . . . . . . . . . . . . . . . . . . . 17
Inferential Statistics . . . . . . . . . . . . . . . . . . 40
Binomial Experiments. . . . . . . . . . . . . . . . . 41
Linear Equations in Two Variables . . . . . . . . 18
Normal Probability Distributions . . . . . . . . . 42
Parabolas . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Writing Equations of Lines. . . . . . . . . . . . . . 21
Normal as Approximation to Binomial . . . . . 42
Systems of Equations . . . . . . . . . . . . . . . . . 22
Estimates and Sample Sizes . . . . . . . . . . . . 42
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Estimates and Sample Sizes of Proportions . . 43
Complex Numbers . . . . . . . . . . . . . . . . . . . 24
Testing Hypotheses . . . . . . . . . . . . . . . . . . . 43
Geometry. . . . . . . . . . . . . 26
Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
General Testing Procedure . . . . . . . . . . . . . . 43
Testing a Claim about a Mean . . . . . . . . . . . 44
Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Tests of Proportion . . . . . . . . . . . . . . . . . . . 44
Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Similar Triangles . . . . . . . . . . . . . . . . . . . . . 29
Correlation and Regression . . . . . . . . . . . . . 44
Measures for Polygonal Regions. . . . . . . . . . 30
Polyhedrons . . . . . . . . . . . . . . . . . . . . . . . . 31
2
Bibliography. . . . . . . . . . . 46
Mathematics Basic Guide
Introduction
,WLVEHQHILFLDOWRNQRZWKHVWUXFWXUHDQGQDWXUHRIPDWKHPDWLFVZKLOHOHDUQLQJLW)URPDPDWKHPDWLFLDQ¶VSRLQWRIYLHZ
PDWKHPDWLFVLVDOOWKDWFDQEHSURYHGIURPVHWWKHRU\6HWWKHRU\FRQVLVWVRIDFROOHFWLRQRID[LRPV±±DVVXPHGSURSHUWLHV±±RI
VHWVZKLFKDUHVWDWHGLQDYHU\SUHFLVHODQJXDJHFDOOHGILUVWRUGHUODQJXDJH1RWHYHU\PDWKHPDWLFLDQXVHVWKHVDPHD[LRP
V\VWHPEXWRQHRIWKHPRVWZLGHO\XVHGV\VWHPVLVFDOOHGZermello-Fraenkel2ULJLQDOO\WKHJRDORIDQD[LRPV\VWHPIRUVHW
WKHRU\ZDVWRVWDWHDVPDOOQXPEHURIDVVXPSWLRQV±±DVVHOIHYLGHQWDVSRVVLEOH±±DERXWVHWVIURPZKLFKDOOIXQGDPHQWDO
SURSHUWLHVRIVHWVDQGWKHUHDOQXPEHUVFRXOGEHSURYHQ
+RZHYHULQ.XUW*|GHO±VWDUWOHGWKHPDWKHPDWLFDOFRPPXQLW\E\VKRZLQJWKDWQRVXFKD[LRPV\VWHP
H[LVWVEHFDXVHDQ\FRQVLVWHQWD[LRPV\VWHPVWDWHGLQWKHWKHRU\RIILUVWRUGHUODQJXDJHWKDWLPSOLHVDULWKPHWLFRQWKHQDWXUDO
QXPEHUVDOZD\VFRQWDLQVVWDWHPHQWVWKDWWKHWKHRU\FDQQHLWKHUSURYHQRUGLVSURYH+HDOVRVKRZHGWKDWVXFKD[LRPV\VWHPV
FRXOGQRWSURYHWKHLURZQFRQVLVWHQF\7KLVZDVGLVDSSRLQWLQJEHFDXVHLWLPSOLHGWKDWQRWDOOWUXWKVDERXWPDWKHPDWLFVFRXOG
EHREWDLQHGIURPVHWWKHRU\DQGWKDWWKHUHLVQRDVVXUDQFHWKDWWKHD[LRPVRIVHWWKHRU\DUHFRQVLVWHQW'HVSLWHKDYLQJDOO
WKHVHVKRUWFRPLQJVVHWWKHRUHWLFGHYHORSPHQWVRIPDWKHPDWLFVDUHQRQHWKHOHVVVWLOOWKHGHYHORSPHQWVRIFKRLFH
Mathematics Basic Guide
3
Algebra
Properties of Real Numbers
0RVWVWXGHQWVZLOOQHYHUVHHPDWKHPDWLFVGHYHORSHGIURPVHWWKHRU\7KHLUVWXG\RIPDWKHPDWLFVZLOOEHJLQZLWKDPRUH
GHYHORSHGFROOHFWLRQRISURSHUWLHVRIUHDOQXPEHUVIDUUHPRYHGIURPWKHD[LRPVRIVHWWKHRU\7KHVHSURSHUWLHVRIUHDO
QXPEHUVDUHXVXDOO\FRQFHUQHGZLWKWKHFRPSXWDWLRQDOSURSHUWLHVRIDGGLWLRQDQGPXOWLSOLFDWLRQWKHH[LVWHQFHRIFHUWDLQUHDO
QXPEHUVDQGRUGHUSURSHUWLHVRIWKHUHDOQXPEHUV3URSHUWLHVRIUHDOQXPEHUVDUHVWDWHGLQWHUPVRIvariables9DULDEOHVDUH
V\PEROVXVHGWRUHSUHVHQWDQ\HOHPHQWZLWKLQDVSHFLILHGVHW
7KHVHWRIUHDOQXPEHUVKDVDVVRFLDWHGZLWKLWWZREDVLFRSHUDWLRQVDGGLWLRQDQGPXOWLSOLFDWLRQZKLFKDUHGHQRWHGE\
+ DQG ⋅ UHVSHFWLYHO\7KHVHWRIUHDOQXPEHUVLVVDLGWREHFORVHGZLWKUHVSHFWWRWKHVHRSHUDWLRQVEHFDXVHWKHVXPDQG
SURGXFWRIDQ\WZRUHDOQXPEHUVLVDJDLQDUHDOQXPEHUPDNLQJLWLPSRVVLEOHWR³HVFDSH´IURPWKHUHDOQXPEHUVE\XVLQJ
HLWKHUDGGLWLRQRUPXOWLSOLFDWLRQ
7ZRQXPEHUVWKDWGHVHUYHVSHFLDOPHQWLRQDUHDQGZKLFKDUHFDOOHGWKHDGGLWLYHDQGPXOWLSOLFDWLYHLGHQWLWLHV
UHVSHFWLYHO\7KHVHQDPHVDUHVXJJHVWHGE\WKHSURSHUWLHVa aDQGa ⋅ =aIRUDOOUHDOQXPEHUVaZKLFKLPSO\WKDW
DQGSUHVHUYHWKHYDOXHVLGHQWLWLHVRIDOOUHDOQXPEHUVZLWKUHVSHFWWRDGGLWLRQDQGPXOWLSOLFDWLRQ
(DFKUHDOQXPEHUaLVDVVRFLDWHGZLWKDXQLTXHUHDOQXPEHUGHQRWHGE\±aFDOOHGLWVDGGLWLYHLQYHUVHZKLFKVDWLVILHVa ±a
= 6LPLODUO\HDFKQRQ]HURUHDOQXPEHULVDVVRFLDWHGZLWKDXQLTXHUHDOQXPEHUGHQRWHGE\aFDOOHGLWVPXOWLSOLFDWLYH
LQYHUVHZKLFKVDWLVILHVa ⋅a = 7KHQDPHLQYHUVHLVXVHGLQERWKVLWXDWLRQVEHFDXVHWKHFRPSXWDWLRQVEULQJWKHJLYHQ
QXPEHUaEDFNWRLWVUHVSHFWLYHLGHQWLW\
6XEWUDFWLRQDQGGLYLVLRQGHQRWHGE\±DQGUHVSHFWLYHO\DUHWZRRWKHURSHUDWLRQVFRPPRQO\XVHGRQSDLUVRIUHDO
QXPEHUV7KHVHRSHUDWLRQVDUHGHILQHGLQWHUPVRIDGGLWLRQDQGPXOWLSOLFDWLRQ,IaDQGbDUHUHDOQXPEHUVWKHQa±b a
±bDQGLIbab a ⋅ b.7RVWDWHWKLVLQZRUGVa±bLVaSOXVWKHDGGLWLYHLQYHUVHRIbDQGaGLYLGHGE\bLVa
WLPHVWKHPXOWLSOLFDWLYHLQYHUVHRIb
&RPSXWDWLRQVLQYROYLQJUHDOQXPEHUVFDQFRQWDLQVHYHUDOQXPEHUVDQGRSHUDWLRQV2QHRIWKHVLPSOHVWVLWXDWLRQVLVRQHLQ
ZKLFKDUHDOQXPEHULVPXOWLSOLHGE\LWVHOIDJLYHQQXPEHURIWLPHV,QWKHVHFDVHVZHFDQXVHH[SRQHQWLDOQRWDWLRQWR
DEEUHYLDWHWKHFRPSXWDWLRQ,InLVDFRXQWLQJQXPEHUDQGaLVDQ\UHDOQXPEHUWKHQ an LVaWLPHVLWVHOInWLPHV
,IaLVQRW]HURDQGnLVDFRXQWLQJQXPEHU a−n LV n )RUH[DPSOH = ⋅ ⋅ = DQG − = = a
1RWHWKDW LVWKHPXOWLSOLFDWLYHLQYHUVHRI ,QJHQHUDO a n LVWKHPXOWLSOLFDWLYHLQYHUVHRI an SURYLGHGWKDWaLV
−
QRQ]HUR7KHH[SUHVVLRQV an DQG a n DUHH[DPSOHVRIH[SRQHQWLDOH[SUHVVLRQV7KHQXPEHUaLVFDOOHGWKHbaseDQGWKH
−
−
QXPEHUVnDQG±nDUHFDOOHGe[ponents6LPSOHH[DPSOHVVXFKDV a ⋅ a = a DQG a ⋅ a = = a VXJJHVWWKDW
a
am ⋅ an = a m+ n IRUDOOLQWHJHUVmDQGnDQGa)URPWKLVSURSHUW\RIH[SRQHQWVLWIROORZVWKDW = am ⋅ a− m = a m+ − m = a +HQFHa = SURYLGHGWKDWa7KHIROORZLQJSURSHUWLHVRIH[SRQHQWLDOH[SUHVVLRQVDUHXVHGIUHTXHQWO\
−
4
−
Mathematics Basic Guide
am
$a m m
a
$a m n a m⋅n
$a m am
a m n n m
an
a
$a m ⋅ a n a m n
$
m
am
a
$   m
b
b
$ab m a m b m
$a a ≠ 2SHUDWLRQVHQFORVHGE\SDUHQWKHVHVDUHWREHSHUIRUPHGEHIRUHRWKHURSHUDWLRQV+DGWKHH[SUHVVLRQEHHQZULWWHQZLWKRXW
SDUHQWKHVHVWKDWLV ⋅ − WKHUHZRXOGH[LVWWZRSRVVLEOHZD\VWRHYDOXDWHWKHH[SUHVVLRQ:HFRXOGSHUIRUPWKH
PXOWLSOLFDWLRQILUVWDQGZULWH − = RUZHFRXOGSHUIRUPWKHVXEWUDFWLRQILUVWDQGZULWH ⋅ − = − DGLIIHUHQWUHVXOW
$OWKRXJKSDUHQWKHVHVDUHDXVHIXOZD\WRLQGLFDWHWKHRUGHURIRSHUDWLRQVWKH\FDQDOVRGHFUHDVHWKHUHDGDELOLW\RIDQ
H[SUHVVLRQ7RPLQLPL]HWKHQXPEHURIVHWVRISDUHQWKHVHVDQGHOLPLQDWHDQ\DPELJXLW\LQDQH[SUHVVLRQZHXVHWKHOrder
of Operations Rule2SHUDWLRQVLQDQH[SUHVVLRQDUHSHUIRUPHGLQWKHIROORZLQJRUGHU
$Q\H[SUHVVLRQVZLWKLQJURXSLQJV\PEROV
([SRQHQWLDOV
0XOWLSOLFDWLRQVDQGGLYLVLRQVLQWKHRUGHUWKH\RFFXUZRUNLQJIURPOHIWWRULJKW
$GGLWLRQVDQGVXEWUDFWLRQVLQWKHRUGHUWKH\RFFXUZRUNLQJIURPOHIWWRULJKW
)XUWKHUPRUHZHKDYHWKHXQGHUVWDQGLQJWKDWQHJDWLRQVKDYHWKHVDPHOHYHORISULRULW\DVPXOWLSOLFDWLRQVRUGLYLVLRQDQGLWLV
LPSRUWDQWWRQRWHWKDWWKHQHJDWLRQV\PEROKDVDORZHUSULRULW\WKDQH[SRQHQWLDWLRQ
(
)


(YDOXDWLQJ − +  + ⋅ −  XVLQJWKLVUXOHZHJHW


− +  + ⋅ − 
− + + ⋅ − Division in the parentheses
− + + ⋅ Grouping Symbol
− + + Multiplication in grouping symbol
− + Grouping Symbol
Exponentiation
− + Addition
(
)
(
(
( ))
( ))
( )
:HFDQPDNHH[SUHVVLRQVHYHQHDVLHUWRFRPSXWHLIZHDUHDZDUHRIWKHIROORZLQJSURSHUWLHVRIDGGLWLRQDQGPXOWLSOLFDWLRQ
(The commutative law of addition)
%ab ba
%a bc a bc (The associative law of addition)
% a ⋅ b = b ⋅ a (The commutative law of multiplication)
% a ⋅ b ⋅ c = a ⋅ b ⋅ c
(The associative law of multiplication)
( )
% a ⋅ b ± c = a ⋅ b ± a ⋅ c DQG b ± c ⋅ a = b ⋅ a ± c ⋅ a (The distributive laws)
(The zero factor property)
%a ⋅ b = LIDQGRQO\LIa RUb Mathematics Basic Guide
5
%\%WKHH[SUHVVLRQVa bcDQGabcFDQEHZULWWHQDVabcVLQFHHLWKHULQWHUSUHWDWLRQRIabcZLOO
UHVXOWLQWKHVDPHYDOXH6LPLODUO\E\%WKHH[SUHVVLRQV a ⋅ b ⋅ c DQG a ⋅ b ⋅ c FDQEHZULWWHQDV a ⋅ b ⋅ c 7KHVH
( )
( )
SURSHUWLHVZKLOHYHU\LPSRUWDQWLQSHUIRUPLQJDULWKPHWLFKDYHHYHQPRUHYDOXHZKHQZRUNLQJZLWKDOJHEUDLFH[SUHVVLRQV
:KHQSHUIRUPLQJDULWKPHWLFZHJHQHUDOO\KDYHQXPHULFDOQDPHVIRUWKHUHVXOWVRILQWHUPHGLDWHFDOFXODWLRQV)RUH[DPSOH
:KHQZRUNLQJZLWKDOJHEUDLFH[SUHVVLRQVZHGRQRWKDYHWKLVOX[XU\DQGZHQHHGWRUHO\PRUHRQWKH
SURSHUWLHVDERYHWRREWDLQVLPSOHUH[SUHVVLRQVZLWKWKHVDPHPHDQLQJ)RUH[DPSOHE\SURSHUW\%
⋅ x + ⋅ x = + ⋅ x = ⋅ x ( )
7KHLQVWUXFWLRQ³VLPSOLI\´LVXVHGIUHTXHQWO\LQPDWKHPDWLFVDQGLWJHQHUDOO\PHDQVWRUHGXFHWKHQXPEHURIRSHUDWLRQVLQDQ
H[SUHVVLRQDVPXFKDVSRVVLEOH,QWKHSUHYLRXVH[DPSOHWKHH[SUHVVLRQRQWKHOHIWVLGHRIWKHHTXDOVLJQLQFOXGHVWKUHH
RSHUDWLRQVV\PEROVZKLOHWKHH[SUHVVLRQWRWKHULJKWVLGHRIWKHHTXDOVLJQRQO\LQFOXGHVRQH$VDUHVXOWZHKDYHUHGXFHG
WKHZRUNORDGLQFDOFXODWLQJWKHJLYHQH[SUHVVLRQ:HFDQDOVRLPSURYHWKHUHDGDELOLW\RIDQH[SUHVVLRQE\ZULWLQJabIRU a ⋅ b
ZKHQQRDPELJXLW\ZLOODULVH7KHSUHYLRXVH[DPSOHWKHQEHFRPHVxx x7KLVHTXDWLRQLPSOLHVWKDWLWLVSRVVLEOHIRU
WZRH[SUHVVLRQVWREHHTXDO\HWORRNGLIIHUHQW
:HQHHGWRWDNHDFORVHUORRNDWZKDWLWPHDQVIRUWZRDOJHEUDLFH[SUHVVLRQVWREHHTXDO%\GHILQLWLRQWZRH[SUHVVLRQVLQ
WKHYDULDEOHxDUHHTXDOLIWKH\FDQEHFRPSXWHGIRUWKHVDPHYDOXHVRIxKDYHWKHVDPHGRPDLQDQGFRPSXWHWKHVDPH
YDOXHVIRUDOOUHSODFHPHQWVRIxLQWKHLUFRPPRQGRPDLQ$VLPLODUGHILQLWLRQH[LVWVLIxLVUHSODFHGZLWKDQ\RWKHUYDULDEOH
&RQYHUVHO\WRVKRZWKDWWZRH[SUHVVLRQVLQxDUHQRWHTXDOZHQHHGRQO\VKRZWKDWWKHUHLVDQXPEHUIRUZKLFKRQO\RQHRI
WKHH[SUHVVLRQVFDQEHFRPSXWHGRUDQXPEHUIRUZKLFKWKHWZRH[SUHVVLRQVFRPSXWHGLIIHUHQWYDOXHV
$UHWKHH[SUHVVLRQV x + DQGx + HTXDO"7KHDQVZHULVQRDVWKH\FRPSXWHGLIIHUHQWYDOXHVZKHQxLV±,Ix = − ( )
WKHQ (x + ) ((−)+ ) = = DQG x + = (−) + = + = 1RWHWKDWxZDVUHSODFHGZLWK±UDWKHUWKDQ±
,QJHQHUDOLIxLVWREHUHSODFHGZLWKDQH[SUHVVLRQFRQWDLQLQJPRUHWKDQRQHV\PERO\RXVKRXOGUHSODFHxZLWKWKDW
H[SUHVVLRQHQFORVHGLQSDUHQWKHVHV$FRPELQDWLRQRISURSHUWLHV$WKURXJK$LVIUHTXHQWO\XVHGWRVKRZWKDWWZR
H[SUHVVLRQVDUHHTXDO
(DFKUHDOQXPEHUFDQEHUHSUHVHQWHGLQPDQ\GLIIHUHQWZD\VWKDWLVHDFKUHDOQXPEHUKDVPDQ\GLIIHUHQWQDPHV2QWKHRQH
KDQGWKLVFDQPDNHUHFRJQL]LQJQXPEHUVKDUGHUEXWRQWKHRWKHUKDQGWKLVIDFWHQGVXSEHLQJRQHRIWKHJUHDWHVWVWUHQJWKV
RIPDWKHPDWLFV$JRRGGHDORIPDWKHPDWLFVFRQVLVWVRIH[FKDQJLQJRQHQDPHIRUDQRWKHUXQWLOZHUHDFKDQDPHWKDWVXLWV
RXUQHHGV
7KHUHDOQXPEHUVFDQEHFKDUDFWHUL]HGDVWKRVHQXPEHUVWKDWFDQEHZULWWHQLQGHFLPDOIRUP7KHGHFLPDOQXPEHULVDQ
−
−
DEEUHYLDWLRQIRUWKHH[SUHVVLRQ ⋅ + ⋅ + ⋅ + ⋅ $UHDOQXPEHUWKDWKDVDGHFLPDOUHSUHVHQWDWLRQWKDWHLWKHU
WHUPLQDWHVRUUHSHDWVLVFDOOHGDrational number)RUH[DPSOHLVDUDWLRQDOQXPEHUDQGVRLV $UHDOQXPEHU
WKDWLVQRWUDWLRQDOLVFDOOHGDQirrational number
7KHEXVLQHVVFRPPXQLW\RIWHQUHSUHVHQWVQXPEHUVLQSHUFHQW7KHpercent of a numberLVWKHQXPEHURISDUWVRIWKDWQXPEHU
SHU7RFKDQJHDGHFLPDOQXPEHUWRSHUFHQWPXOWLSO\LWE\7RFKDQJHIURPSHUFHQWWRGHFLPDOGLYLGHLWE\
7KHQXPEHU 7KHintegersDUHWKHVHWRIQXPEHUV^“““n`ZKHUHnLVDQDWXUDOFRXQWLQJQXPEHU7KHVHWRILQWHJHUVFDQ
EHXVHGWRJLYHDQRWKHUGHVFULSWLRQRIWKHUDWLRQDOQXPEHUV$UHDOQXPEHULVDUDWLRQDOQXPEHULIDQGRQO\LILWFDQEH
ZULWWHQLQWKHIRUPpqZKHUHpDQGqDUHLQWHJHUVZLWKqQRWHTXDOWR]HUR
&DOFXODWRUVKDYHDILQLWHDPRXQWRIPHPRU\DQGDVDUHVXOWWKHQXPEHUVWKDWWKH\FDQVWRUHDQGFRPSXWHZLWKPXVWEH
UDWLRQDO)XUWKHUPRUHWKHUHVXOWVRIFDOFXODWLRQVPXVWEHUDWLRQDO)RUWXQDWHO\WKHSURGXFWTXRWLHQWZKHUHGHILQHGVXP
DQGGLIIHUHQFHRIWZRUDWLRQDOQXPEHUVLVDQRWKHUUDWLRQDOQXPEHU6RLWLVEHQHILFLDODQGQHFHVVDU\WRNQRZKRZWRZULWHWKH
UHVXOWRIDJLYHQFRPSXWDWLRQLQYROYLQJUDWLRQDOQXPEHUVDVDUDWLRQDOQXPEHU7KHIRUPXODVEHORZDUHKHOSIXO7KH\DUH
YDOLGIRUDOOUHDOQXPEHUVH[FHSWIRUWKRVHUHVWULFWLRQVQRWHG6LQFHDOOLQWHJHUVDUHUHDOQXPEHUVWKH\DUHYDOLGIRULQWHJHU
YDOXHVRIWKHYDULDEOHV
6
Mathematics Basic Guide
a c a±c
± =
b≠
b
b b
a c ac
⋅ =
b≠
d≠
b d bd
a c a d
÷ = ⋅
b≠ c
b d b c
a −a a
=
− =
b≠
b −b
b
ad a
=
b≠
d≠
bd b
a
a=
a
d≠
b
( )
− −a = a
− ⋅ a = −a
− a ⋅ − b = ab
( )( )
(−a)⋅ b = a ⋅(−b)= −(a ⋅ b)
− a + b = −a + −b
 a  −a
a
a
−  =
=
=−
b −b
b
 b

−
x −  + x


Mathematics Basic Guide
7

 −
x − 
+ x

  −

= x + − 
+ x 

 −
= x + −   + − x
 
− −
+ − ⋅ x
= x +
− ⋅ −
+ − x
= x +
⋅
⋅ = x +
+ − x
⋅ = x + + − x
= x + −x +
= + − x +
= − x +
( )
( )
(
( )( )
(
)
( )( )
)
'HILQLWLRQRIVXEWUDFWLRQ
%
'DQG%
&
'DQG%
&
%
%
$UHDOQXPEHUOLQHLVDXVHIXOZD\RISLFWXULQJWKHUHDOQXPEHUVLQDQRUJDQL]HGZD\$UHDOQXPEHUOLQHH[KLELWVWKHRQHWR
RQHFRUUHVSRQGHQFHEHWZHHQWKHVHWRIUHDOQXPEHUVDQGWKHVHWRISRLQWVRIDOLQH7KHQXPEHUWKDWLVDVVRFLDWHGZLWKD
JLYHQSRLQWLVFDOOHGLWVcoordinate7KHUHDOQXPEHUOLQHDOVRJLYHVXVDRQHWRRQHFRUUHVSRQGHQFHEHWZHHQQXPEHUVDQG
DUURZV7KHDUURZDVVRFLDWHGZLWKDQXPEHULVWKHDUURZGUDZQIURPWRWKDWQXPEHU)ROORZLQJDUHDQXPEHUOLQHDQGWKH
DUURZDVVRFLDWHGZLWK±
,WLVXVHIXOWRXVHKHDGWRWDLOFRQVWUXFWLRQLQYLVXDOL]LQJVXEWUDFWLRQDQGDGGLWLRQ7RILQGabILUVWGUDZWKHVWDQGDUG
DUURZIRU³ a ´7KHQGUDZDQDUURZIRU³ b ´ZKLFKEHJLQVDWWKHSRLQWZKHUHWKHDUURZIRU³ a ´HQGV:KHQWKHDUURZIRU
³ b ´LVGUDZQLQWKLVPDQQHULWZLOOHQGDWWKHVXP a + b 7RILQGa±bZHILUVWZULWHa±bDVa±bWKHQSURFHHGDVZH
ZRXOGIRUDGGLWLRQ7KHIROORZLQJGLDJUDPLOOXVWUDWHVFRPSXWLQJ±DVEHLQJHTXDOWR
,IZHUHPRYHIURPWKHQXPEHUOLQHDERYHZKDWUHPDLQVDUHWZRQRQLQWHUVHFWLQJVHWV7KHVHWFRQWDLQLQJLVFDOOHGWKH
SRVLWLYHQXPEHUVDQGWKHRWKHUVHWLVFDOOHGWKHQHJDWLYHQXPEHUV1RWLFHWKDWLVQRWDPHPEHURIHLWKHUVHWVRLWLVQHLWKHU
SRVLWLYHQRUQHJDWLYH8VLQJKHDGWRWDLOFRQVWUXFWLRQLWLVHDV\WRVHHWKDWWKHVXPRIWZRSRVLWLYHQXPEHUVLVDQRWKHU
SRVLWLYHQXPEHUDQGWKDWWKHVXPRIDQ\WZRQHJDWLYHQXPEHUVLVDQHJDWLYHQXPEHU2QHFDQDOVRVKRZ±±XVLQJRWKHU
PHDQV±±WKDWWKHSURGXFWRIWZRSRVLWLYHQXPEHUVLVSRVLWLYHWKHSURGXFWRIWZRQHJDWLYHQXPEHUVLVSRVLWLYHDQGWKHSURGXFW
RIDSRVLWLYHQXPEHUDQGDQHJDWLYHQXPEHULVQHJDWLYH
8
Mathematics Basic Guide
7KHQRWLRQRIDSRVLWLYHQXPEHULVXVHGWRGHILQHZKHQRQHQXPEHULVJUHDWHUWKDQDQRWKHU,IcDQGdDUHUHDOQXPEHUVZH
VD\WKDWdLVJUHDWHUWKDQcLId cpIRUVRPHSRVLWLYHQXPEHUp,QWHUPVRIKHDGWRWDLOFRQVWUXFWLRQRQWKHQXPEHUOLQH
DERYHWKLVLVHTXLYDOHQWWRVWDWLQJWKDWdOLHVWRWKHULJKWRIc$VDQH[DPSOH±LVJUHDWHUWKDQ±VLQFH± ±DQG
LVSRVLWLYH
:HZULWHd !cWRLQGLFDWHWKDWdLVJUHDWHUWKDQcDQGd•cWRLQGLFDWHWKDWd!cRUd c:HDOVRZULWHcdcLVOHVVWKDQ
dIRUd!cDQGc”dcLVOHVVWKDQRUHTXDOWRdIRUd•c7KHVWDWHPHQWVd!FDQGc dPD\VXEVWLWXWHIRURQHDQRWKHU
DQGVLPLODUO\d•cDQGc”dPD\VXEVWLWXWHIRURQHDQRWKHU7KHV\PEROVDQG!DUHFDOOHGWKHstrict inequalitiesDQG”
DQG•DUHFDOOHGWKHnonstrict inequalities
7KHH[SUHVVLRQabcLVDQH[DPSOHRIDGRXEOHLQHTXDOLW\,WLVDQDEEUHYLDWLRQIRUWKHVWDWHPHQWabDQGbc2WKHU
GRXEOHLQHTXDOLWLHVFDQEHIRUPHGE\XVLQJDFRPELQDWLRQRIVWULFWDQGQRQVWULFWLQHTXDOLWLHVSURYLGLQJWKH\SRLQWLQWKHVDPH
GLUHFWLRQ
,QHTXDOLWLHVKDYHPDQ\XVHIXOSURSHUWLHVZKHQFRPELQHGZLWKWKHEDVLFRSHUDWLRQVRIDULWKPHWLF/LVWHGEHORZDUHWKHEDVLF
SURSHUWLHVRIDQG!6LPLODUUHVXOWVKROGVZKHQLVUHSODFHGZLWK”DQGZKHQ!LVUHSODFHGZLWK•)RUDOOUHDOQXPEHUVa
bDQGc
(a!bLPSOLHVa “c!b“c,DQGabLPSOLHVa“cb“c.
(,Ic!a!bLPSOLHVac!bc,DQGabLPSOLHVacbc.
(,Ica!bLPSOLHVacbc,DQGa bLPSOLHVac!bc.
(a•bLPSOLHVa “c•b“c, DQGa”bLPSOLHVa“c”b“c.
(,Ic !a•bLPSOLHVac•bc,DQGa”bLPSOLHVac”bc.
(,Ica•bLPSOLHVac”bc,DQGa ”bLPSOLHVac•bc.
7ZRVWDWHPHQWVDUHVDLGWRKDYHWKHVDPHtruth valueLIERWKVWDWHPHQWVDUHWUXHRUERWKDUHIDOVH(LPSOLHVWKHWUXWKYDOXH
RIa!bLVWUDQVPLWWHGWRac!bcIRUHYHU\UHDOQXPEHUc)RUH[DPSOH!LVDWUXHVWDWHPHQWVR!RU!
LVDWUXHVWDWHPHQW(DOVRLPSOLHVIDOVHVWDWHPHQWVDUHWUDQVIRUPHGLQWRIDOVHVWDWHPHQWV)RUH[DPSOH!LVIDOVHVR
!RU!LVIDOVH,QVXPPDU\(WKURXJK(LPSO\WKDWJLYHQDQLQHTXDOLW\ZHFDQSURGXFHDQRWKHULQHTXDOLW\
ZLWKWKHVDPHWUXWKYDOXHE\DGGLQJVXEWUDFWLQJWKHVDPHQXPEHUWRERWKVLGHVE\PXOWLSO\LQJGLYLGLQJERWKVLGHVE\D
SRVLWLYHQXPEHURUE\PXOWLSO\LQJGLYLGLQJERWKVLGHVE\DQHJDWLYHQXPEHUSURYLGLQJZHUHYHUVHWKHGLUHFWLRQRIWKH
LQHTXDOLW\
7ZRHTXDWLRQVRULQHTXDOLWLHVLQxDUHHTXLYDOHQWLIWKH\DUHGHILQHGIRUWKHVDPHYDOXHVRIxDQGWKH\KDYHWKHVDPHWUXWK
YDOXHIRUDOOUHSODFHPHQWVRIx$VLPLODUGHILQLWLRQH[LVWVIRURWKHUYDULDEOHV3URSHUWLHV(WKURXJK(GHVFULEHYDULRXV
DFWLRQVZHFDQWDNHWRSURGXFHDQLQHTXDOLW\HTXLYDOHQWWRDJLYHQRQH3URSHUWLHV))DQG)ZKLFKIROORZGHVFULEH
ZD\VZHFDQSURGXFHDQHTXDWLRQHTXLYDOHQWWRDJLYHQRQH)RUDOOUHDOQXPEHUVabDQGc
) a = b LVHTXLYDOHQWWR a ± c = b ± c ) a = b LVHTXLYDOHQWWR ac = bc LIc ≠ a b
) a = b LVHTXLYDOHQWWR = LIc ≠ c c
,QZRUGV)WKURXJK)LPSO\WKDWWKHWUXWKYDOXHRIDQHTXDWLRQLVXQFKDQJHGE\HLWKHUDGGLQJVXEWUDFWLQJWKHVDPH
QXPEHUIURPERWKVLGHVRUE\PXOWLSO\LQJRUGLYLGLQJERWKVLGHVE\WKHVDPHQRQ]HURQXPEHU)RUH[DPSOH LVDIDOVH
VWDWHPHQWVRE\) RU LVDIDOVHVWDWHPHQW
'RHVVTXDULQJERWKVLGHVRIDQHTXDWLRQDOZD\VSURGXFHDQHTXLYDOHQWHTXDWLRQ"/HW¶VORRNDWDQH[DPSOH:HNQRZWKDW±
LVDIDOVHVWDWHPHQWEXW − = RU LVDWUXHVWDWHPHQW%HFDXVHWKHWUXWKYDOXHVDUHGLIIHUHQWVTXDULQJERWKVLGHV
RIDQHTXDWLRQGRHVQRWDOZD\VJHQHUDWHDQHTXLYDOHQWHTXDWLRQ7KLVLVDQLPSRUWDQWIDFWWRNQRZZKHQVROYLQJHTXDWLRQV
( )
$YDULDEOHZKRVHUHSODFHPHQWVDUHUHDOQXPEHUVLVFDOOHGDreal variable$UHDOQXPEHUsLVDVROXWLRQWRDQHTXDWLRQLQWKH
UHDOYDULDEOHxLIWKHUHSODFHPHQWRIxE\sUHVXOWVLQDWUXHVWDWHPHQW2WKHUOHWWHUVPD\DOVREHXVHGDVUHDOYDULDEOHV7KH
QXPEHULVDVROXWLRQWRWKHHTXDWLRQ x + = x − VLQFH ±RU LVWUXH7KHVHWRIVROXWLRQVWRDQ
HTXDWLRQLVFDOOHGLWVsolution set7KHLQVWUXFWLRQ³VROYHWKHHTXDWLRQ´PHDQV³ILQGWKHHTXDWLRQ¶VVROXWLRQVHW´
Mathematics Basic Guide
9
)LQGLQJWKHVROXWLRQVHWWRDJLYHQHTXDWLRQFDQEHDGLIILFXOWWDVN+RZHYHULWLVZRUWKQRWLQJWKDWWKHUHLVDFODVVRI
HTXDWLRQVWKDWDUHTXLWHHDV\WRVROYH7KHVROXWLRQVHWWRWKHHTXDWLRQx aLV^a`ZKHQxLVWKHYDULDEOH7KLVREVHUYDWLRQ
ZLOOSURYHWREHXVHIXOLQVROYLQJPRUHFRPSOLFDWHGHTXDWLRQV6LQFHHTXLYDOHQWHTXDWLRQVLQxDUHWUXHIRUSUHFLVHO\WKHVDPH
UHSODFHPHQWVRIxLWIROORZVWKDWHTXLYDOHQWHTXDWLRQVKDYHWKHVDPHVROXWLRQVHW7KLVIDFWLVIXQGDPHQWDOWRPHWKRGVIRU
VROYLQJHTXDWLRQV
Polynomials
$PRQRPLDOLQWKHYDULDEOHxLVDQH[SUHVVLRQRIWKHIRUP ax n ZKHUHaLVDIL[HGFRQVWDQWUHDOQXPEHUFDOOHGWKH
FRHIILFLHQWDQGnLVDQRQQHJDWLYHLQWHJHU7KHGHJUHHRIDPRQRPLDOLVXQGHILQHGLIaLV]HURDQGLVnZKHQaLVQRW]HUR$
SRO\QRPLDOLQxLVDILQLWHVXPRIPRQRPLDOVLQx(DFKPRQRPLDOLVFDOOHGDtermRIWKHSRO\QRPLDO
(YHU\SRO\QRPLDOLQxFDQEHZULWWHQLQWKHIRUPan x n + + a x + a ZKHUH an a a DUHFRQVWDQWVDQG an ≠ 7KLVLV
FDOOHGLWVVWDQGDUGIRUP,IDSRO\QRPLDOLQVWDQGDUGIRUPFRQWDLQVDQRQ]HURWHUPWKHQWKHGHJUHHRIWKHSRO\QRPLDOLVWKH
PD[LPXPGHJUHHRIDQ\PRQRPLDOFRPSULVLQJWKHSRO\QRPLDO2WKHUZLVHLWLVXQGHILQHG)RUH[DPSOHx + x + LVD
SRO\QRPLDOLQx,WVWHUPVDUHx x DQG7KHGHJUHHVRIWKHVHWHUPVDUHDQGUHVSHFWLYHO\7KHGHJUHHRIWKH
SRO\QRPLDOx + x + WKHQLV
7HFKQLFDOO\x − x + LVQRWDSRO\QRPLDOEHFDXVHLWLVQRWZULWWHQDVDVXPRIPRQRPLDOV+RZHYHULWLVHTXLYDOHQWWR
x + − x + ZKLFKLVDSRO\QRPLDO:HJHQHUDOO\RYHUORRNWKLVWHFKQLFDOLW\EXWZHUHTXLUHWKDWWKHSRO\QRPLDO¶VWHUPVEH
GHWHUPLQHGIURPWKHVHFRQGH[SUHVVLRQ6RWKHWHUPVRIx − x + DUHx − x DQG0RQRPLDOVDQGSRO\QRPLDOVLQ
RWKHUYDULDEOHVDUHGHILQHGVLPLODUO\,WLVZRUWKQRWLQJWKDWHYHU\UHDOQXPEHUaLVDSRO\QRPLDOLQxVLQFHa = ax 3RO\QRPLDOVKDYHPDQ\LQWHUHVWLQJSURSHUWLHVRQHRIZKLFKLVWKHIDFWWKDWWKHVXPGLIIHUHQFHDQGSURGXFWRIWZR
SRO\QRPLDOVLVDQRWKHUSRO\QRPLDO:HJHQHUDOO\ZULWHWKHUHVXOWRIHDFKRIWKHVHFRPSXWDWLRQVDVDSRO\QRPLDOLQVWDQGDUG
IRUP
2SHUDWLRQVRQSRO\QRPLDOVFDQEHVLPSOLILHGE\JHQHUDOL]LQJWKHGLVWULEXWLYHODZVVWDWHGLQ%,QZRUGVWKHSURGXFWRIWZR
VXPVLVHTXDOWRWKHVXPRIDOOWHUPVWKDWFDQEHIRUPHGE\VHOHFWLQJDWHUPIURPHDFKVXPDQGPXOWLSO\LQJWKHP
(
)(
)
)RUH[DPSOHXVLQJ% a + b + c d + e = a d + e + bd + e + c d + e = ad + ae + bd + be + cd + ce 8VXDOO\ZHSURFHHG
LQVRPHRUJDQL]HGZD\VXFKDVPXOWLSO\LQJHDFKWHUPRIWKHILUVWH[SUHVVLRQE\HYHU\WHUPLQWKHVHFRQGH[SUHVVLRQZRUNLQJ
IURPOHIWWRULJKWDVZDVGRQHDERYH7KHQXPEHURIWHUPVLQWKHUHVXOWLQJH[SUHVVLRQLVDOZD\VHTXDOWRWKHSURGXFWRIWKH
QXPEHURIWHUPVLQWKHWZRIDFWRUV)RUH[DPSOHWKHQXPEHURIWHUPVIRU a + b + c d + e LV ⋅ RU7KHSURGXFW
(ax )(bx )LVVLPSOLILHGE\ZULWLQJ (ab)x
m
n
m+ n
7ZRPRQRPLDOVLQxRIWKHVDPHGHJUHHDUHFDOOHGlike terms:HFDQFRPELQHOLNHWHUPVXVLQJWKHGLVWULEXWLYHODZV)RU
H[DPSOH x − x = − x = − x 7KHRUGHURIRSHUDWLRQVUXOHLVXVHGZKHQSHUIRUPLQJRSHUDWLRQVLQYROYLQJ
SRO\QRPLDOV
(
)
7KHIROORZLQJYHUWLFDOVWDFNRIHTXLYDOHQWH[SUHVVLRQVLOOXVWUDWHVKRZZHFDQVLPSOLI\DGLIIHUHQFHRISRO\QRPLDOV
( x − x + )− ( x + )
= (x − x + )+ (−)(x + )
= x + − x + + − x + −
= x + − x + −x + + −
= x + − + − x + + −
= x + − x + −
= x − x − (
10
) (
)
Mathematics Basic Guide
7KHIROORZLQJVHTXHQFHRIH[SUHVVLRQVLOOXVWUDWHVKRZZHFDQVLPSOLI\DSURGXFWRISRO\QRPLDOV
( x − x + )( x + )
= (x + − x + )( x + )
= x
( x + ) + ( − x )( x + ) + ( x + )
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
= x x + x + − x x + −x + x + = x + x + − x + − x + x + = x + x − x + Linear Equations
$QHTXDWLRQLQWKHUHDOYDULDEOHxLVFDOOHGDlinear equation in x LILWLVHTXLYDOHQWWRDQHTXDWLRQRIWKHIRUP ax + b = ZKHUHaDQGbDUHUHDOQXPEHUFRQVWDQWVZLWKa ≠ /LQHDUHTXDWLRQVLQRWKHUYDULDEOHVDUHGHILQHGVLPLODUO\8VLQJD
FRPELQDWLRQRISURSHUWLHV))DQG)DQGEDVLFSURSHUWLHVRIUHDOQXPEHUVRQHFDQVKRZWKDWERWK x + = x − DQG
w − = − w DUHOLQHDUHTXDWLRQV
(
)
2QHRIWKHLQWHUHVWLQJWKLQJVDERXWOLQHDUHTXDWLRQVLQxLVWKDWWKH\DUHDOOHTXLYDOHQWWRDOLQHDUHTXDWLRQRIWKHIRUP x = c IRUVRPHFRQVWDQWc$VDUHVXOWHDFKOLQHDUHTXDWLRQKDVH[DFWO\RQHVROXWLRQ:HVROYHOLQHDUHTXDWLRQVE\XVLQJD
FRPELQDWLRQRI))DQG)DQGEDVLFSURSHUWLHVRIWKHUHDOQXPEHUVWRSURGXFHDQHTXLYDOHQWHTXDWLRQRIWKHIRUP x = c DQGWKHQFODLPWKHVROXWLRQVHWWRWKHRULJLQDOHTXDWLRQLV^c`
2QHVWUDWHJ\IRUVROYLQJDOLQHDUHTXDWLRQFRQVLVWVRISURGXFLQJHTXLYDOHQWHTXDWLRQVLQWKHVXFFHVVLYHIRUPV ax + b = cx + d ex = f DQG x = g EXWQRWQHFHVVDULO\VWHSE\VWHS/HW¶VVROYH x − = − x IRUxXVLQJWKLVVWUDWHJ\
(
(
)
)
x − = − x
x − = − x
x − + x = − x + x
x + x − = − x + x
x − = x − + = + x = x=
:HFDQVXPPDUL]HRXUZRUNE\VD\LQJWKHVROXWLRQRIHDFKHTXDWLRQWKDWKDVEHHQFUHDWHGLV
 
RUWKHVROXWLRQVHWLV    
Quadratic Equations
,IaLVDUHDOQXPEHUWKHQ a = a LID•DQG a = − a LIa ≤ 7KHQXPEHU a LVUHDG³WKHDEVROXWHYDOXHRIa´7KH
QRWLRQRIDEVROXWHYDOXHLVXVHGIRUDYDULHW\RISXUSRVHV:HVKDOOXVHLWVKRUWO\WRVROYHTXDGUDWLFHTXDWLRQV
/HW¶VILQG − 7KHGHILQLWLRQRIDEVROXWHYDOXHUHTXLUHVWKDWZHILUVWGHWHUPLQHWKHVLJQRIWKHQXPEHUEHWZHHQWKHDEVROXWH
YDOXHEDUVDQGWKHQDSSO\WKHGHILQLWLRQRIDEVROXWHYDOXH6LQFH− ≤ ZHZULWH = − ( − ) = 7KHGHILQLWLRQRIDEVROXWHYDOXHLPSOLHVWKDWWKHDEVROXWHYDOXHRIDQXPEHULVQHYHUQHJDWLYHZKLFKZRXOGWKXVLPSO\WKDW
WKHHTXDWLRQ x = − KDVQRVROXWLRQV,WDOVRLPSOLHVWKDWLIcLVDQRQQHJDWLYHUHDOQXPEHUWKHQWKHVROXWLRQVWR x = c DUH
Mathematics Basic Guide
11
SUHFLVHO\ ± c :HPXVWDYRLGWKHWHPSWDWLRQWRVLPSOLI\ x DVxRUDV ± x ,WVFRUUHFWVLPSOLILFDWLRQLV x 7KH
H[SUHVVLRQV x DQGxDUHXQHTXDOEHFDXVHWKH\FRPSXWHGLIIHUHQWYDOXHVZKHQxLVQHJDWLYH
$QHTXDWLRQLQxWKDWLVHTXLYDOHQWWRDQHTXDWLRQRIWKHIRUPax + bx + c = IRUa ≠ LVFDOOHGDquadratic equation in x
7KHH[SUHVVLRQax + bx + c = IRUa ≠ LVFDOOHGWKHstandard form of a quadratic equation in x(TXDWLRQVLQRWKHU
YDULDEOHVKDYHVLPLODUGHILQLWLRQV7KHHTXDWLRQV x − x + = x = y = − y DUHH[DPSOHVRITXDGUDWLFHTXDWLRQV
%HIRUHGLVFXVVLQJPHWKRGVIRUVROYLQJTXDGUDWLFHTXDWLRQVOHW¶VUHYLHZWKHGHILQLWLRQRIWKHVTXDUHURRWRIDQRQQHJDWLYHUHDO
QXPEHU,IbLVDQRQQHJDWLYHUHDOQXPEHUDQGaLVDQRQQHJDWLYHUHDOQXPEHUWKHQ b = a DQGb = a $VDUHVXOW =
( ) = ,WLVLPSRUWDQWWRNQRZ
VLQFHLVQRQQHJDWLYHDQG = 1RWHWKDW− ≠ VLQFH±LVQHJDWLYHHYHQWKRXJK −
WKDWHYHU\QRQQHJDWLYHUHDOQXPEHUKDVH[DFWO\RQHUHDOVTXDUHURRW
7KHVWUDWHJ\WKDWZHXVHGWRVROYHOLQHDUHTXDWLRQVGRHVQRWDSSO\WRTXDGUDWLFHTXDWLRQV+RZHYHUWKHUHLVVRPHVLPLODULW\
LQWKHZD\ZHDSSURDFKILQGLQJDPHWKRGIRUVROYLQJWKHP:HEHJLQE\QRWLQJWKDWVRPHIRUPVRITXDGUDWLFHTXDWLRQVDUH
TXLWHHDV\WRVROYH:KHQIDFHGZLWKPRUHFRPSOLFDWHGHTXDWLRQVZHZLOOWU\WRUHGXFHWKHPWRRQHRIWKHVHVLPSOHUIRUPV
6XSSRVHkLVDQRQQHJDWLYHUHDOQXPEHUWKHQERWKVLGHVRIx = k KDYHDUHDOVTXDUHURRW%\WDNLQJWKHVTXDUHURRWRIERWK
VLGHVDQGVLPSOLI\LQJZHJHW x =
k HTXLYDOHQWO\ x = ± k 7KXVWKHVROXWLRQVDUH x = ± k 6OLJKWO\PRUHJHQHUDO
HTXDWLRQVFDQDOVREHVROYHGXVLQJWKLVIRUPXOD)RUH[DPSOHWKHVROXWLRQVWRx − = FDQEHIRXQGE\ZULWLQJ
x − = )
x = )
x = x = ± x = ±
.QRZLQJKRZWRVROYHx = k OHDGVWRDJHQHUDOVROXWLRQIRUTXDGUDWLFHTXDWLRQVZKHQZHFRXSOHLWZLWKWKHQRWLRQRI
completing the square
8VLQJWKLVIDFWDJHQHUDOIRUPXODIRUVROYLQJTXDGUDWLFHTXDWLRQVFDQEHREWDLQHG7KHIRUPXODLVFDOOHGWKHquadratic
formulaDQGVWDWHVWKDWSURYLGLQJa ≠ WKHVROXWLRQVWRax + bx + c = DUH
x=
− b ± b − ac
a
7KHH[SUHVVLRQb − ac LVFDOOHGWKHGLVFULPLQDQWDQGLWPXVWEHQRQQHJDWLYHLQRUGHUIRUWKHHTXDWLRQWRKDYHUHDOQXPEHU
VROXWLRQV7KHTXDGUDWLFIRUPXODGRHVQRWDOZD\VJLYHWKHVROXWLRQVLQVLPSOLILHGIRUP:HFDQXVHWKHGLVWULEXWLYHODZVDQG
WKHSURSHUW\ ab = a b ZKHQaDQGbDUHQRQQHJDWLYHWRVLPSOLI\WKHP
/HW¶VVROYH x = x − XVLQJWKHTXDGUDWLFIRUPXOD:HEHJLQE\UHZULWLQJWKLVHTXDWLRQLQVWDQGDUGIRUPWRJHW
x + − x + = %\)ZHFDQGLYLGHERWKVLGHVRIWKHHTXDWLRQE\WRJHWx + − x + = :HLGHQWLI\abDQGcDV
±DQGUHVSHFWLYHO\$SSO\LQJWKHTXDGUDWLFIRUPXODWRWKHVHYDOXHVZHJHW
12
Mathematics Basic Guide
x=
±
()
(−) − ()
()
± − ± x=
± ⋅ x=
± x=
⋅ ± x=
⋅
± x=
x=
(
(
)
)
x = ± x = − RUx = + 7KHTXDGUDWLFIRUPXODFDQEHXVHGWRVROYHDQ\TXDGUDWLFHTXDWLRQ+RZHYHULWVRQHGHILFLHQF\LVWKDWLWFDQVRPHWLPHVEH
FRPSOH[7KH]HURIDFWRUSURSHUW\%LVDQRWKHUWRROIRUVROYLQJHTXDWLRQV,WDOORZVXVWRUHSODFHDJLYHQHTXDWLRQLQ
ZKLFKRQHVLGHLV]HURDQGWKHRWKHULVDSURGXFWZLWKVLPSOHUHTXDWLRQV7KHVROXWLRQVHWWRWKHJLYHQHTXDWLRQLVWKHXQLRQ
RIWKHVROXWLRQVHWVRIWKHVLPSOHUHTXDWLRQV
(
)(
)
$SSO\LQJWKH]HURIDFWRUSURSHUW\WR x − x − = ZHJHW
(x − )(x − )= { }
6RWKHVROXWLRQVHWLV x − = RUx − = %
x = RUx = 7KH]HURIDFWRUSURSHUW\FDQEHH[WHQGHGWRDQ\QXPEHURIIDFWRUVRQRQHVLGHRIWKHHTXDWLRQ
Factoring
$VVHHQLQWKHODVWH[DPSOHLWLVLQRXULQWHUHVWWRNQRZKRZWRZULWHDOJHEUDLFH[SUHVVLRQVDVSURGXFWV,QSUDFWLFHWKLVFDQ
EHYHU\GLIILFXOWRULPSRVVLEOHEXWWKHUHDUHVRPHH[SUHVVLRQVWKDWZHFDQIDFWRUTXLWHHDVLO\,QDOJHEUDZHJHQHUDOO\
FRQFHQWUDWHRQIDFWRULQJSRO\QRPLDOVZKRVHFRHIILFLHQWVDUHLQWHJHUV)DFWRULQJRXWWKHgreatest common factor JFILVDQ
LPSRUWDQWIDFWRULQJWHFKQLTXH7KHJUHDWHVWFRPPRQIDFWRURIWZRRUPRUHLQWHJHUVLVWKHODUJHVWLQWHJHUWKDWGLYLGHVHYHQO\
LQWRDOOWKHLQWHJHUV7KHJUHDWHVWFRPPRQIDFWRURIWKHWHUPVRIDSRO\QRPLDOLQxLVWKHJUHDWHVWFRPPRQIDFWRURIWKH
FRHIILFLHQWVWLPHVxUDLVHGWRLWVVPDOOHVWSRZHU
&RQVLGHUWKHSRO\QRPLDOx − x − x 7KHFRHIILFLHQWVDUH±±7KHODUJHVWGLYLVRURIWKHVHQXPEHUVLV7KH
VPDOOHVWH[SRQHQWRQxLV6RWKHJFILVx RUx :HFDQDOZD\VZULWHDSRO\QRPLDOZLWKLQWHJHUFRHIILFLHQWVDVDSURGXFWRILWVJFIDQGDQRWKHUSRO\QRPLDO)RUH[DPSOH
(
)
x − x − x = ( x ) x − x − :HFDQYHULI\WKLVHTXDWLRQE\H[SDQGLQJWKHULJKWKDQGVLGHRIWKHHTXDWLRQXVLQJWKH
GLVWULEXWLYHODZV([SDQGLQJWKHULJKWVLGHZHJHW
( )(
) ( )( ) ( )( ) ( )( )
x x − x − = x x + x − x + x − = xx + − xx + − x = x +− x + −x = x − x − x
Mathematics Basic Guide
()( )
( )
13
7KHGLVWULEXWLYHODZLVDXVHIXOWRROIRUIDFWRULQJRXWFRPPRQIDFWRUV7KHH[SUHVVLRQ x + LVDFRPPRQIDFWRURI
x + x + x + x − :HFDQYLHZWKLVH[SUHVVLRQDVKDYLQJWKHIRUP ab + ac ZKHUHa = x + b = x DQG
(
)( ) (
)(
)
(
)
c = x − $SSO\LQJWKHGLVWULEXWLYHODZ ab + ac = a b + c ZHJHW
( )( ) ( )(
= (x + )[x + ( x − )]
= (x + )[ x − ]
= (x + )( x − )
x + x + x + x − )
:HIUHTXHQWO\QHHGWRIDFWRUH[SUHVVLRQVRIWKHIRUP ax + bx + c ZKHUHa ≠ bDQGcDUHLQWHJHUV,IWKHJFIRIWKHWHUPV
RIWKLVSRO\QRPLDOLVDQGLILWFDQEHZULWWHQDVDSURGXFWRISRO\QRPLDOVZLWKLQWHJHUFRHIILFLHQWVWKHQWKHIDFWRUL]DWLRQ
PXVWEHRIWKHIRUP ax + bx + c = dx + e fx + g %\H[SDQGLQJWKHULJKWVLGHDQGHTXDWLQJOLNHWHUPVZHILQGWKDW
a = df
c = eg DQG
b = dg + ef
(
)(
)
7KHVHWKUHHHTXDWLRQVDUHHDV\WRUHPHPEHUaLVWKHSURGXFWRIWKH³fLUVW´FRHIILFLHQWVRIWKHIDFWRUVbLVWKHVXPRIWKH
SURGXFWVRIWKH³oXWHU´DQG³iQQHU´FRHIILFLHQWVRIWKHIDFWRUVDQGcLVWKHSURGXFWRIWKH³lDVW´FRHIILFLHQWVRIWKHIDFWRUV
7KHOHWWHUVLQEROGVSHOOWKHZRUG³foil´±±WKLVFDQEHXVHGDVDGHYLFHIRUUHPHPEHULQJWKHVHIRUPXODV
,WLVHDVLHUWRJXHVVYDOXHVIRUdefDQGgUDWKHUWKDQWRWU\WRV\VWHPDWLFDOO\VROYHIRUWKHP:HXVXDOO\JXHVVLQRUGHU
YDOXHVIRU d DQGfeDQGgDQGWKHQVHHLIWKH\ZRUN±±LIWKH\ZLOOJLYHDWUXHVWDWHPHQW±±LQWKHHTXDWLRQIRU b 5HPHPEHU
ZHRQO\XVHLQWHJHUUHSODFHPHQWVIRUdefDQGg,IWKHUHDUHQRLQWHJHUUHSODFHPHQWVIRUdefDQGgWKDWPDNHDOOWKUHH
HTXDWLRQVWUXHZHVD\WKDWax + bx + c LVQRWIDFWRUDEOHRYHUWKHLQWHJHUV,Ia > ZHPD\DOZD\VDVVXPHdDQGfDUH
SRVLWLYH,IcLVSRVLWLYHZHFDQVKRZWKDWe DQGgPXVWKDYHWKHVDPHVLJQDQGWKDWWKLVFRPPRQVLJQPXVWEHWKHVLJQRIb
,IcLVQHJDWLYHWKHQeDQGgPXVWKDYHRSSRVLWHVLJQV:HXVXDOO\³SHQFLOLQ´RXUJXHVVHVIRUdefDQGgRQWKHULJKWKDQG
VLGHDQGWKHQVHHLIWKHODVWHTXDWLRQIRU b LVWUXH
/HW¶VIDFWRU x − x + :HILUVWQRWHWKDWWKHJFILVa = b = − DQGc = ,ILWIDFWRUVRYHUWKHLQWHJHUVLWV
IDFWRUL]DWLRQPXVWKDYHWKHIRUP
x − x + = BB x − BB BB x − BB (
)(
)
:HZLOOSHQFLOLQRXUJXHVVHVLQWKHEODQNV:HNQRZWRZULWH³±´LQERWKIDFWRUVVLQFHcLVSRVLWLYHDQGbLVQHJDWLYH:H
NQRZWKDW ⋅ DQG ⋅ 6XEVWLWXWLQJLQWRWKHEODQNVDERYHZHJHW x − x + = x − x − 1RZZHFDOFXODWH
WKHVXPRIWKHSURGXFWRIWKHLQQHUFRHIILFLHQWVDQGWKHSURGXFWRIWKHRXWHUFRHIILFLHQWVWRJHW ⋅ − + − ⋅ = − 6LQFH
(
)( )
( ) ( )
±LVQRWWKHFRHIILFLHQWRQxPLGGOHWHUPZHKDYHQRWIDFWRUHGWKLVH[SUHVVLRQFRUUHFWO\/HW¶VWU\DQRWKHUSRVVLELOLW\
2QRXUVHFRQGWU\VXEVWLWXWLQJLQWRWKHEODQNVDERYHZHJHW x − x + = x − x − 1RZZHFDOFXODWHWKHVXPRIWKH
SURGXFWRIWKHLQQHUFRHIILFLHQWVDQGWKHSURGXFWRIWKHRXWHUFRHIILFLHQWVWRJHW ⋅ − + − ⋅ = − 6LQFH±LVWKH
(
)( )
( ) ( )
FRHIILFLHQWRIxPLGGOHWHUPZHNQRZZHKDYHIDFWRUHGWKLVH[SUHVVLRQFRUUHFWO\
1RZOHW¶VVROYH x + = x XVLQJWKH]HURIDFWRUSURSHUW\7KH]HURIDFWRUSURSHUW\FDQRQO\EHDSSOLHGWRHTXDWLRQVLQ
ZKLFKRQHVLGHRIWKHHTXDWLRQLV]HUR%\VXEWUDFWLQJxIURPERWKVLGHVZHJHW x − x + = )DFWRULQJDQG
DSSO\LQJWKH]HURIDFWRUSURSHUW\ZHKDYH
14
Mathematics Basic Guide
x − x + = ( x − )( x − ) = x − = RUx − = x = RU x = x = RU x =
 
$QGWKHUHIRUHWKHVROXWLRQVHWLV   

7KH]HURIDFWRUSURSHUW\FDQEHH[WHQGHGWRDQ\ILQLWHQXPEHURIIDFWRUV,WVH[WHQVLRQWRWKUHHIDFWRUVLVabc LIDQGRQO\
LIa = RUb = RUc = 7KLVIRUPRIWKH]HURIDFWRUSURSHUW\FDQEHXVHGWRVROYHHTXDWLRQVLQZKLFKRQHVLGHLVDQG
WKHRWKHUVLGHKDVDQ\ILQLWHQXPEHURIIDFWRUV7KH]HURIDFWRUSURSHUW\LVFOXPV\WRXVHZKHQRQHRIWKHIDFWRUVLVD
FRQVWDQWVRDVDUXOHRIWKXPEGLYLGHERWKVLGHVRIWKHHTXDWLRQE\WKHQRQ]HURIDFWRUVEHIRUHDSSO\LQJLW7KXVWRVROYH
x ( x + )( x − ) = ZHZRXOGILUVWGLYLGHERWKVLGHVE\WRREWDLQ x ( x + )( x − ) = DQGWKHQZULWH
x = RU x + = RU x − = x = RU x = − RU x = x = RU x = − RU x =


6RWKHVROXWLRQVHWLV  −  

7KHIROORZLQJIRUPXODVFDQEHYHULILHGXVLQJWKHGLVWULEXWLYHODZV
* a − b = a − b a + b
(
)(
)(
)
'LIIHUHQFHRI6TXDUHV)RUPXOD
)
* a − b = a − b a + ab + b 'LIIHUHQFHRI&XEHV)RUPXOD
(
* a + b = ( a + b ) ( a − ab + b ) 6XPRI&XEHV)RUPXOD
7KHVHIRUPXODVFDQDOVREHXVHGLQFRQMXQFWLRQZLWKWKH]HURIDFWRUSURSHUW\,WLVLPSRUWDQWWRNQRZWKDWLIaDQGbDUH
SRO\QRPLDOVZLWKLQWHJHUFRHIILFLHQWVDQGWKHJFIRIaDQGbLVWKHQQHLWKHURIWKHVHFRQGIDFWRUVRQWKHULJKWLQ*DQG*
VHWHTXDOWRKDYHDUHDOVROXWLRQ
( )(
)
/HW¶VILQGDOOWKHUHDOVROXWLRQVWRx − = 6LQFHx − = x − LWLVHTXLYDOHQWWR x − x + x + = E\*%\WKH
]HURIDFWRUSURSHUW\x − = RU x + x + = $VZHPHQWLRQHGDERYH x + x + = KDVQRUHDOVROXWLRQV7KHUHIRUHWKH
RQO\UHDOVROXWLRQVFRPHIURPWKHHTXDWLRQx − = +HQFHx = DQGWKHVROXWLRQVHWLV {}
Rational Expressions
7KHQRWLRQRIIDFWRULQJLVDOVRXVHGIRUUHGXFLQJWKHQXPEHURIRSHUDWLRQVLQDQH[SUHVVLRQ,WLVRIWHQXVHGLQFRQMXQFWLRQ
x − ZLWKWKHFDQFHOODWLRQODZRIGLYLVLRQ&)RULQVWDQFHZHFDQUHGXFHWKHQXPEHURIRSHUDWLRQVLQ E\ZULWLQJ
x − x + Mathematics Basic Guide
15
x − x − x + x − x − x + x− x+ ( )( )
x − )(x − )
(
x +
IRUx ≠ x − 7KHGLVFODLPHU³IRUx ≠ ´UHPLQGVWKHUHDGHUWKDWWKHQHZH[SUHVVLRQLVHTXLYDOHQWWRWKHRULJLQDOH[SUHVVLRQIRUDOOYDOXHV
RIxH[FHSWx = 7KHH[SUHVVLRQVLQWKHSUHYLRXVH[DPSOHDUHH[DPSOHVRIUDWLRQDOH[SUHVVLRQV(YHU\UDWLRRISRO\QRPLDOVLVFDOOHGDUDWLRQDO
H[SUHVVLRQ2SHUDWLRQVRQUDWLRQDOH[SUHVVLRQVDUHSHUIRUPHGXVLQJWKHVDPHUXOHVWKDWDUHXVHGIRUUDWLRQDOQXPEHUV)RU
H[DPSOH
x+ x +
÷
x
− x − x+ x− ⋅
x− x+ x+ x− =
x− x+
x+
=
IRU x ≠ −
x+
(
(
(
(
)(
)(
)
)
)
)
LOOXVWUDWHVWKDWDTXRWLHQWRIUDWLRQDOH[SUHVVLRQVLVFRPSXWHGDQGVLPSOLILHGE\WXUQLQJLWLQWRDSURGXFWRIUDWLRQDO
H[SUHVVLRQVXVLQJWKH³LQYHUWDQGPXOWLSO\UXOH´RUWKH³PXOWLSO\E\WKHUHFLSURFDOUXOH´DQG
x
−
x
x
−
+
x+ x−
x
=
−
x− x+ x+ x−
( )
( )
( ) ( ) ( )( )
x(x + )
(x − )
=
−
(x − )(x + ) (x + )(x − )
x − x + x
−
=
x+ x −
x− x+
x + x − x − =
x− x+ x + x − x + =
x − x +
x + x + =
x− x+
(
)(
(
(
(
) ( )(
)( )
( )( )
)(
)(
)
)
)
LOOXVWUDWHVKRZZHILQGDFRPPRQGHQRPLQDWRUZKHQDGGLQJRUVXEWUDFWLQJWZRUDWLRQDOH[SUHVVLRQVZLWKGLIIHUHQW
GHQRPLQDWRUV$VDPDWWHURISUDFWLFHZHZRXOGVLPSOLI\WKHODVWH[SUHVVLRQE\GLYLGLQJIDFWRUVFRPPRQWRWKHGHQRPLQDWRU
DQGQXPHUDWRULIWKHUHZHUHDQ\
16
Mathematics Basic Guide
Linear Inequalities
x− >
ax + b ≤
ax + b >
ax + b <
x
x
⋅ − >
⋅ − >
ax + b ≥
a≠
x
linear inequality in the
variable x
x>c x≥c x<c
fx < k
(x − )≤
x< j
x> j
x−
x
x≤c
ax + b < cx + d fx + g < h
f
(x − )≤
x−
x− ≤ x−
− x− ≤ −
− x≤ −
x≥
−
−
(x − ) <
−
( ( ))<
x+ ≤ x−
x+ ≤ x −
x+
(x − ) <
(x − ) <
x+ ≤ x −
x+
− x+ −
x+
− x + (−
)( − ) <
− x+
< x+
− x+
<
− x+ ≤−
x+
− x≤−
x≥
− x<−
x >7/5
Mathematics Basic Guide
17
7KHVROXWLRQRIWKHLQHTXDOLW\WKHQLVWKRVHYDOXHVRI x WKDWVDWLVI\ERWKRIWKHVLQJOHLQHTXDOLWLHVVLPXOWDQHRXVO\7KDWLV
6RWKHVROXWLRQLVWKHVHWRIYDOXHV
WKRVHYDOXHVWKDWDUHDWWKHVDPHWLPHJUHDWHUWKDQ DQGJUHDWHUWKDQRUHTXDOWR
WKDWDUHODUJHUWKDQ
Linear Equations in Two Variables
1H[WZHZLOOZDQWWRH[DPLQHOLQHDUHTXDWLRQVLQWZRYDULDEOHV$Q\HTXDWLRQHTXLYDOHQWWRDQHTXDWLRQRIWKHIRUP
ax + by = c ZKHUHHLWKHUaRUbLVQRQ]HURLVFDOOHGa linear equation in x and y7KHH[SUHVVLRQ ax + by = c IRUa ≠ RU
b ≠ LVFDOOHGthe standard form of a linear equation/LQHDUHTXDWLRQVLQRWKHUYDULDEOHVDUHGHILQHGVLPLODUO\7KH
H[SUHVVLRQV x + y = − x = DQG y = DUHH[DPSOHVRIOLQHDUHTXDWLRQVLQxDQGy
7KHH[SUHVVLRQabZKHUHaDQGbDUHUHDOQXPEHUVLVFDOOHGDQ ordered pair of real numbers7KHOHIWDQGULJKWSRVLWLRQV
DUHFDOOHGWKHILUVWDQGVHFRQGFRRUGLQDWHVUHVSHFWLYHO\7ZRRUGHUHGSDLUVDUHHTXDOLIDQGRQO\LIWKHLUILUVWFRRUGLQDWHVDUH
HTXDODQGWKHLUVHFRQGFRRUGLQDWHVDUHHTXDO2UGHUHGSDLUVKDYHDYDULHW\RIXVHVLQPDWKHPDWLFVDQGRQHRIWKHPLVWR
UHSUHVHQWVROXWLRQVWRHTXDWLRQVLQxDQGy7KHRUGHUHGSDLUabLVFDOOHGDVROXWLRQWRDQHTXDWLRQLQxDQGyLIWKH
VXEVWLWXWLRQRIaIRUxDQGbIRUyUHVXOWVLQDWUXHVWDWHPHQW)RUH[DPSOHLVDVROXWLRQWR x + y = VLQFH
RU LVDWUXHVWDWHPHQW
/LQHDUHTXDWLRQVLQxDQGyDOZD\VKDYHDQLQILQLWHQXPEHURIVROXWLRQV7KHVROXWLRQVWR y = DUHRIWKHIRUPxZKHUHx
FDQEHUHSODFHGZLWKDQ\UHDOQXPEHUDQGWKHVROXWLRQVWRx = DUHRIWKHIRUPyZKHUHyFDQEHUHSODFHGZLWKDQ\UHDO
QXPEHU6ROXWLRQVWRHTXDWLRQVRIWKHIRUP ax + by = c ZKHUHQHLWKHUaQRUbLV]HURFDQEHJHQHUDWHGE\VROYLQJWKH
HTXDWLRQIRUyFKRRVLQJDYDOXHRIxFDOFXODWLQJWKHFRUUHVSRQGLQJYDOXHRIyDQGWKHQIRUPLQJWKHRUGHUHGSDLUxy$
VLPLODUSURFHGXUHLQYROYHVVROYLQJWKHHTXDWLRQIRUxDQGFKRRVLQJYDOXHVIRUy
/HW¶VFRQVLGHUWKHHTXDWLRQ x + y = 6ROYLQJWKLVHTXDWLRQIRUyZHREWDLQ
x + y = y = − x
− x
y=
5HSODFLQJxZLWK±DQGZHREWDLQ y = DQG y = UHVSHFWLYHO\6RWKHRUGHUHGSDLUV±DQGDUHVROXWLRQVWR
WKHHTXDWLRQ7KHIDFWWKDWxFDQEHUHSODFHGZLWKDQ\UHDOQXPEHULPSOLHVWKDWWKHHTXDWLRQKDVDQLQILQLWHQXPEHURI
VROXWLRQV:KHQDQHTXDWLRQRULQHTXDOLW\KDVDQLQILQLWHQXPEHURIVROXWLRQVZHRIWHQUHSUHVHQWWKHVROXWLRQVHWE\PHDQV
RIDJUDSK:HDOUHDG\XVHGWKLVLGHDDOUHDG\LQUHSUHVHQWLQJWKHVROXWLRQVHWWRDOLQHDULQHTXDOLW\
7KHxy±SODQHLVDFRQVWUXFWLRQIRUGUDZLQJWKHVROXWLRQVHWVWRHTXDWLRQVDQGLQHTXDOLWLHVLQxDQGy,WFRQVLVWVRIWZR
PXWXDOO\SHUSHQGLFXODUQXPEHUOLQHVRQHLVKRUL]RQWDOWKDWLQWHUVHFWDWWKHLURULJLQV7KHKRUL]RQWDOQXPEHUOLQHLVFDOOHG
WKHx±D[LVWKHRWKHUQXPEHUOLQHLVFDOOHGWKHy±D[LV,IpLVDSRLQWLQDQxy±SODQHDQGWKHYHUWLFDOOLQHWKURXJKpLQWHUVHFWV
WKHx±D[LVDWaDQGWKHKRUL]RQWDOOLQHWKURXJKpLQWHUVHFWVWKHy±D[LVDWbWKHQabLVFDOOHGWKHFRRUGLQDWHRUGHUHGSDLURI
pDQGWKHQXPEHUVaDQGbDUHWKHxDQGyFRRUGLQDWHVRIpUHVSHFWLYHO\
7KHH[SUHVVLRQpabLVXVHGWRLQGLFDWHWKDWpLVWKHSRLQWDVVRFLDWHGZLWKWKHRUGHUHGSDLUab7KHIROORZLQJGLDJUDPLV
DQxy±SODQHLOOXVWUDWLQJWKHSRLQWpZKRVHFRRUGLQDWHRUGHUHGSDLULVab
18
Mathematics Basic Guide
y
b
. p(a,b)
x
a
7KHJUDSKRIDQHTXDWLRQLQ x DQG yLVWKHSORWRIDOORILWVVROXWLRQVLQDQxy±SODQH6LQFHWKHJUDSKRIDQHTXDWLRQLQxDQGy
LVRIWHQLQILQLWHLWLVLPSRVVLEOHWRSORWDOORILWVVROXWLRQVRQDSRLQWE\SRLQWEDVLV7KLVGLIILFXOW\FDQEHRYHUFRPHE\
NQRZLQJWKHVKDSHRIWKHJUDSKRIWKHHTXDWLRQLQDGYDQFH,IWKLVFDQEHGRQHWKHQDOORQHKDVWRGRLVSORWHQRXJKSRLQWVRI
WKHJUDSKVRWKDWWKHUHLVRQO\RQHJUDSKRIWKHJLYHQVKDSHWKURXJKWKRVHSRLQWVDQGWKHQGUDZWKDWVKDSHWKURXJKWKRVH
SRLQWV)RUH[DPSOHLWFDQEHVKRZQWKDWWKHJUDSKRIDOLQHDUHTXDWLRQLVDVWUDLJKWOLQHVRLWVJUDSKFDQEHREWDLQHGE\
GUDZLQJWKHXQLTXHOLQHWKURXJKDQ\WZRRILWVVROXWLRQV
/HW¶VJUDSKWKHHTXDWLRQ x + y = 7KLVLVDOLQHDUHTXDWLRQVRLWVJUDSKLVDVWUDLJKWOLQH(DUOLHUZHVKRZHGWKDW±
DQGDUHVROXWLRQV6LQFHWKHUHLVRQO\RQHOLQHLQWKHxy±SODQHWKURXJKWZRGLVWLQFWSRLQWVWKHJUDSKLV
y
x
,IDJUDSKLQWKHxy±SODQHFURVVHVWKHx±D[LVDWWKHSRLQW a WKHQaLVFDOOHGDQx±LQWHUFHSWRIWKHJUDSK6LPLODUO\LID
JUDSKFURVVHVWKHy±D[LVDWWKHSRLQW b WKHQbLVFDOOHGDy±LQWHUFHSWRIWKHJUDSK&OHDUO\WKHx±LQWHUFHSWRIWKH
SUHFHGLQJJUDSKLV,QJHQHUDOWKHx±LQWHUFHSWVRIWKHJUDSKRIDQHTXDWLRQFDQEHIRXQGE\UHSODFLQJyZLWKDQG
VROYLQJIRUx6LPLODUO\WKHy±LQWHUFHSWVFDQEHIRXQGE\UHSODFLQJxZLWKDQGVROYLQJIRUy6ROYLQJIRUWKHy±LQWHUFHSW
RIWKHJUDSKRIWKHSUHYLRXVHTXDWLRQZHJHW
()
+ y = y = y=
Parabolas
,IabDQGcDUHFRQVWDQWVDQGa ≠ WKHJUDSKRIy = ax + bx + c LVFDOOHGDSDUDEROD7KLVHTXDWLRQLVQDPHGIRUWKH
VKDSHRILWVJUDSKPXFKOLNHWKHQDPHIRUDOLQHDUHTXDWLRQ$SDUDERODLVRQHRIWKHFRQLFVHFWLRQV²VKDSHVIRUPHGE\WKH
LQWHUVHFWLRQRIDGRXEOHQDSSHGFRQHDQGDSODQH7KH*UHHNPDWKHPDWLFLDQ0HQDHFKPXVF±F%&(LQYHQWHGWKH
FRQLFVHFWLRQVLQWKHSURFHVVRILQYHVWLJDWLQJWKHSUREOHPRIGRXEOLQJWKHFXEHWKDWLVILQGLQJWKHOHQJWKRIWKHHGJHRID
FXEHZKRVHYROXPHLVH[DFWO\GRXEOHWKHYROXPHRIDJLYHQFXEH
Mathematics Basic Guide
19
(
)
8VLQJWKHFRPSOHWLQJWKHVTXDUHSURFHVVHYHU\SDUDEROLFHTXDWLRQFDQEHZULWWHQLQWKHIRUP y = a x − h + k ZKHUH
b
b
h=−
DQG k = c −
$VDUHVXOWWKHJUDSKRIy = ax + bx + c FDQEHREWDLQHGE\WUDQVODWLQJWKHJUDSKRIy = ax h
a
a
XQLWVKRUL]RQWDOO\DQGkXQLWVYHUWLFDOO\
8VLQJUHVXOWVDERXWV\VWHPVRIHTXDWLRQVRQHFDQVKRZWKDWWKHUHLVRQO\RQHSDUDERODRIWKHIRUPy = ax + bx + c WKURXJK
WKUHHSRLQWVZLWKGLVWLQFWILUVWFRRUGLQDWHV6RWKHJUDSKRIDSDUDEROLFHTXDWLRQFDQEHREWDLQHGVLPSO\E\GUDZLQJWKH
XQLTXHSDUDERODWKURXJKWKUHHSRLQWVRIWKHJUDSK
/HW¶VFRQVLGHUWKHHTXDWLRQ y = ax %\OHWWLQJxHTXDO±DQGZHREWDLQyHTXDOVaDQGaUHVSHFWLYHO\6RWKH
SRLQWV±aDQGaDUHRQWKHJUDSKRI y = ax ,I a > WKHJUDSKRI y = ax KDVWKHIROORZLQJIRUP
y
a
x
6LPLODUO\WKHSRLQWV − a − − a OLHRQWKHJUDSKRIy = − ax 6RWKHJUDSKRIy = − ax FDQEHREWDLQHGE\
UHIOHFWLQJWKHDERYHJUDSKRYHUWKHx±D[LV7KHSRLQWhkLVFDOOHGWKHYHUWH[RIWKHJUDSKDQGWKHYHUWLFDOOLQH x = h LV
FDOOHGLWVD[LVRIV\PPHWU\,Ia > WKHQXPEHUkLVFDOOHGLWVPLQLPXPYDOXHEHFDXVHLWUHSUHVHQWVWKHVPDOOHVWYDOXHRIy
IRUDQ\SRLQWRIWKHJUDSK,I a < WKHQXPEHUkLVFDOOHGWKHPD[LPXPYDOXHEHFDXVHLWUHSUHVHQWVWKHODUJHVWYDOXHRIyIRU
DQ\SRLQWRIWKHJUDSK
/HW¶VJUDSKy = − x − x +HUHa = − b = − DQGc = 8VLQJWKHIRUPXODVDERYHIRUhDQGk ZHKDYHh = − DQG
k = 7KHSRLQWV±±DQG±EHORQJWRWKHJUDSKRIy = − x %\DGGLQJhDQGkWRWKHILUVWDQGVHFRQG
FRRUGLQDWHVRIWKHVHSRLQWVUHVSHFWLYHO\ZHILQGWKDWSRLQWV±±DQGDUHRQWKHJUDSKRIy = − x − x 7KHVHWKUHHSRLQWVSOD\WKHVDPHUROHLQWKHJUDSKRIy = − x − x DVWKHRULJLQDOWKUHHSRLQWVGRLQWKHJUDSKRIy = − x 3ORWWLQJWKHVHSRLQWVDQGFRQQHFWLQJWKHPZLWKDSDUDEROLFVKDSHZHJHW
y
x
20
Mathematics Basic Guide
:HFDQJHQHUDOO\LPSURYHRQWKHJUDSKE\SORWWLQJLWVx–DQGy±LQWHUFHSWV,QWKLVFDVHWKHx–DQGy±LQWHUFHSWVDUHFOHDUIURP
WKHSRLQWVWKDWZHUHSORWWHG1RWHWKDWWKHYHUWH[LV±WKHD[LVRIV\PPHWU\LV x = − DQGWKHPD[LPXPYDOXH
LV
Writing Equations of Lines
(
)
(
)
/HW/EHDQRQYHUWLFDOOLQHLQDQxy±SODQHDQGOHW x y DQG x y EHDQ\WZRGLVWLQFWSRLQWVRQ/7KHslope of L
y −y
GHQRWHGE\ m LVGHILQHGDV m = 7KLVIRUPXODLVFDOOHGWKHslope formula
x − x
,QRUGHUIRUWKLVGHILQLWLRQWRPDNHVHQVHmPXVWEHWKHVDPHIRUDQ\SDLURIGLVWLQFWSRLQWVRI/7KLVLVLQGHHGWKHFDVHDQG
LWFDQEHSURYHQXVLQJWKHQRWLRQRIVLPLODUWULDQJOHVIURPSODQHJHRPHWU\,WFDQDOVREHVKRZQWKDWWKHYDOXHRImLV
XQDIIHFWHGE\LQWHUFKDQJLQJKRZWKHWZRVHOHFWHGSRLQWVDUHODEHOHG
7KHVORSHRIDOLQH\LHOGVWZRSLHFHVRILQIRUPDWLRQWKHVWHHSQHVVRIWKHOLQHDQGZKHWKHULWULVHVRUIDOOV$V m
EHFRPHVODUJHUWKHOLQHEHFRPHVPRUHYHUWLFDO/LQHVZLWKSRVLWLYHVORSHULVHLQWKHGLUHFWLRQRILQFUHDVLQJxDQGOLQHVZLWK
QHJDWLYHVORSHIDOOLQWKHGLUHFWLRQRILQFUHDVLQJx,IWKHVORSHRIDOLQHLVWKHQLWLVKRUL]RQWDO
7RILQGWKHVORSHRIWKHOLQHWKURXJKWKHSRLQWV±DQG±OHW ( x y ) = ( − ) DQG ( x y ) = ( −) %\WKH
VORSHIRUPXOD m =
( )= = 6LQFHWKHVORSHLVSRVLWLYHWKHOLQHULVHVLQWKHGLUHFWLRQRILQFUHDVLQJx
− − −
−
(
)
7KHHTXDWLRQ y − y = m x − x LVFDOOHGWKHpoint-slope formulaDQGFDQEHXVHGWRZULWHDQHTXDWLRQRIDQ\QRQYHUWLFDOOLQH
IRUZKLFKWKHVORSHDQGDSRLQWRIWKHOLQHFDQEHGHWHUPLQHG7KLVIRUPXODLVDOPRVWWKHVORSHIRUPXODLQGLVJXLVH0XOWLSO\
ERWKVLGHVRIWKHVORSHIRUPXODE\ x − x WKHQUHSODFH x ZLWKxDQG y ZLWKy
/HW¶VZULWHDQHTXDWLRQRIWKHOLQHWKURXJK±DQG±(DUOLHUZHIRXQGLWVVORSHWREHDQGZHNQRZWKDW
( x y ) = ( − ) LVDSRLQWRIWKHOLQH6XEVWLWXWLQJLQWRWKHSRLQWVORSHIRUPXODZHJHW y − ( − ) = ()( x − ) RU
y + = x − 7KHSRLQWVORSHIRUPLVJHQHUDOO\UHZULWWHQLQRQHRIWZRIRUPV ax + by = c RU y = mx + b 7KHILUVWIRUPLVWKHstandard
formDQGWKHVHFRQGLVFDOOHGWKHslope-intercept form(YHU\HTXDWLRQRIHYHU\OLQHFDQEHZULWWHQLQVWDQGDUGIRUPEXW
RQO\HTXDWLRQVRIQRQYHUWLFDOOLQHVFDQEHZULWWHQLQVORSHLQWHUFHSWIRUP$QHTXDWLRQRIDOLQHFDQEHZULWWHQLQVWDQGDUG
IRUPLQLQILQLWHO\PDQ\ZD\VEXWHDFKHTXDWLRQKDVDWPRVWRQHVORSHLQWHUFHSWIRUP
%\VXEWUDFWLQJxDQGIURPERWKVLGHVRI y + = x − ZHJHW − x + y = − 7KLVLVDVWDQGDUGIRUPRIWKHOLQH+RZHYHU
E\PXOWLSO\LQJERWKVLGHVRIWKLVHTXDWLRQE\±ZHFDQJHWWKHVLPSOHUVWDQGDUGIRUPIHZHURSHUDWLRQV x − y = %\
VXEWUDFWLQJIURPERWKVLGHVRI y + = x − ZHJHW y = x − = x + − ZKLFKLVWKHVORSHLQWHUFHSWIRUPRIWKHOLQH
7KHVORSHLQWHUFHSWIRUPRIDQRQYHUWLFDOOLQHUHYHDOVDORWRILQIRUPDWLRQDERXWWKHOLQH7KHFRHIILFLHQWRIxLVWKHVORSHDQG
WKHQXPEHUbLVWKHy±LQWHUFHSW$VDUHVXOWWKHVORSHDQGy±LQWHUFHSWRIDQRQYHUWLFDOOLQHFDQEHGHWHUPLQHGVLPSO\E\
UHZULWLQJDQ\HTXDWLRQRIWKHOLQHLQVORSHLQWHUFHSWIRUP
7RILQGWKHVORSHDQGy±LQWHUFHSWRIWKHJUDSKRI x + y = ZHZULWH
x + y = y = − x + −
x+
y=
)URPWKLVZHFDQFRQFOXGHWKDWWKHVORSHLV
Mathematics Basic Guide
−
DQGWKHy±LQWHUFHSWLV 21
7KHVORSHLQWHUFHSWIRUPRIDOLQHLVDOVRXVHIXOIRUKHOSLQJWRVNHWFKWKHJUDSKRIDOLQHDUHTXDWLRQ6LQFHWKHyLQWHUFHSWLVD
SRLQWWKDWOLHVRQWKHOLQHLWSURYLGHVXVZLWKDSRLQWDWZKLFKWREHJLQVNHWFKLQJWKHOLQH$VWKHVORSHLVDPHDVXUHRIWKH
VWHHSQHVVRIWKHOLQHLWFDQEHXVHGWRGHWHUPLQHDQRWKHUSRLQWRQWKHOLQH,QWKHFDVHRIRXUH[DPSOHWKHVORSHLQGLFDWHVWKDW
IRUHYHU\±XQLWFKDQJHLQWKHyGLUHFWLRQWKHUHLVDFRUUHVSRQGLQJXQLWFKDQJHLQWKHxGLUHFWLRQ
1HLWKHUWKHSRLQWVORSHIRUPXODQRUWKHVORSHIRUPXODFDQEHXVHGIRUYHUWLFDOOLQHV)RUWXQDWHO\LWLVYHU\HDV\WRVHHZKHQD
OLQHWKURXJKWZRSRLQWVLVYHUWLFDODQGWRZULWHDQHTXDWLRQIRUDYHUWLFDOOLQH7KHOLQHWKURXJKWZRSRLQWVLVYHUWLFDOLIDQG
RQO\LIWKHILUVWFRRUGLQDWHVRIERWKSRLQWVDUHHTXDODQGLIWKLVLVWKHFDVHDQGWKHILUVWFRRUGLQDWHVHTXDOaWKHQ x = a LVDQ
HTXDWLRQRIWKHOLQH)RUH[DPSOHDQHTXDWLRQRIWKHOLQHWKURXJKWKHSRLQWVDQG±LV x = Systems of Equations
6RPHSUREOHPVDUHPRUHHDVLO\GHVFULEHGXVLQJDFROOHFWLRQRIHTXDWLRQVUDWKHUWKDQMXVWRQH(DFKHTXDWLRQRIWKHFROOHFWLRQ
FDQEHYLHZHGDVDSDUWLDOGHVFULSWLRQRIWKHVROXWLRQVHW:KHQDVHWRISRLQWVLQWKHxy±SODQHLVGHVFULEHGXVLQJWZRRUPRUH
HTXDWLRQVLQxDQGyWKHVHWRIHTXDWLRQVLVFDOOHGDsystem of equations in x and y$solution to a system of equations in x
and yLVDQRUGHUHGSDLUWKDWVLPXOWDQHRXVO\VDWLVILHVHYHU\HTXDWLRQLQWKHV\VWHP
*HRPHWULFDOO\DVROXWLRQWRDV\VWHPRIHTXDWLRQVLQxDQGyLVDQRUGHUHGSDLUWKDWOLHVRQWKHJUDSKRIHDFKHTXDWLRQRIWKH
V\VWHP$VDUHVXOWWKHVROXWLRQVHWLVWKHLQWHUVHFWLRQRIDOOWKHJUDSKVRIWKHHTXDWLRQVRIWKHV\VWHP7KHVHIDFWVDUHQRW
YHU\XVHIXOIRUVROYLQJV\VWHPVRIHTXDWLRQVEXWDUHXVHIXOIRUSUHGLFWLQJWKHQXPEHURIVROXWLRQVDQGZKHQWRXVHV\VWHPV
RIHTXDWLRQVWRVROYHDSUREOHP
)RUH[DPSOHLIDV\VWHPFRQVLVWVRIWZROLQHDUHTXDWLRQVLQxDQGyWKHQWKHJUDSKRIHDFKHTXDWLRQRIWKHV\VWHPLVDOLQH
(LWKHUWKHOLQHVDUHWKHVDPHRUDUHGLIIHUHQWDQGLIWKH\DUHGLIIHUHQWHLWKHUWKH\DUHSDUDOOHORUWKH\DUHQRWSDUDOOHO,IWKH
OLQHVDUHWKHVDPHWKHQWKHVROXWLRQVHWRIWKHV\VWHPLVWKHVHWRISRLQWVRQWKDWOLQH,IWKHOLQHVDUHGLIIHUHQWDQGSDUDOOHO
WKH\GRQRWLQWHUVHFWVRQRVROXWLRQH[LVWVDQGWKHVROXWLRQVHWLVHPSW\,IWKHOLQHVDUHGLIIHUHQWDQGDUHQRWSDUDOOHOWKHQ
WKHWZROLQHVLQWHUVHFWDWDXQLTXHSRLQWDQGWKHVROXWLRQVHWLVWKHVHWFRQWDLQLQJWKDWSRLQW1RZVXSSRVHZHZLVKWRILQGWKH
SRLQWVRILQWHUVHFWLRQRIWZRRUPRUHJUDSKVLQDQxy±SODQH7RGRWKLVZHVLPSO\IRUPDV\VWHPRIHTXDWLRQVFRQVLVWLQJRI
RQHHTXDWLRQIRUHDFKJUDSKDQGWKHQVROYHWKHV\VWHP
1RZOHW¶VWDONDERXWVROYLQJV\VWHPVLQxDQGy:HEHJLQE\REVHUYLQJWKDWVRPHV\VWHPVDUHYHU\HDV\WRVROYH&RQVLGHU
WKHIROORZLQJV\VWHP
x + y = y= $VVXPHxyLVDVROXWLRQWRWKHV\VWHP)URPWKHERWWRPHTXDWLRQZHFRQFOXGHWKDWy LV6XEVWLWXWLQJLQIRUyLQWKH
WRSHTXDWLRQZHJHW x + = 6ROYLQJWKLVHTXDWLRQIRUxZHJHW x = − 6R±LVWKHRQO\VROXWLRQDQGWKHVROXWLRQ
VHWLV^±`
:KDWPDGHWKLVV\VWHPVRHDV\WRVROYHZDVLWVIRUP±±WKHWRSHTXDWLRQKDVDYDULDEOHWKDWGRHVQRWRFFXULQDQ\HTXDWLRQ
EHORZLW/HW¶VFDOOVXFKDV\VWHPtriangular7KHHDVLHVWW\SHRIWULDQJXODUV\VWHPWRVROYHLVRQHLQZKLFKHDFKHTXDWLRQ
KDVH[DFWO\RQHYDULDEOHWKDWGRHVQRWRFFXULQDQ\RIWKHHTXDWLRQVEHORZLWDQGWKHODVWHTXDWLRQFRQWDLQVH[DFWO\RQH
YDULDEOH$V\VWHPRIWKLVIRUPLVFDOOHGDQHOHPHQWDU\WULDQJXODUV\VWHP
2QHVWUDWHJ\XVHGWRVROYHDV\VWHPRIHTXDWLRQVLVWRH[FKDQJHLWIRUDV\VWHPWKDWKDVWKHVDPHVROXWLRQVHWDQGLVLQ
WULDQJXODUIRUP:KHQWZRV\VWHPVRIHTXDWLRQVKDYHWKHVDPHVROXWLRQVHWWKH\DUHVDLGWREHequivalent systems
/HW¶VDJUHHWRUHIHUWRWKHWRSHTXDWLRQDVHTXDWLRQWKHRQHEHORZLWDVHTXDWLRQHWF7KHPRVWVWUDLJKWIRUZDUGZD\RI
ZULWLQJDJLYHQV\VWHPLQHOHPHQWDU\WULDQJXODUIRUPLISRVVLEOHLVWRILUVWVROYHHTXDWLRQIRURQHRILWVYDULDEOHVVD\ v WR
REWDLQHTXDWLRQ$RIWKHIRUP v = H[S1RZIRUPDQHZV\VWHPREWDLQHGIURPWKHRULJLQDOE\UHSODFLQJHTXDWLRQZLWK
$DQGWKHQVXEVWLWXWLQJH[SIRUHDFKLQVWDQFHRI v LQWKHUHPDLQLQJHTXDWLRQV1RZUHSHDWWKLVSURFHVVZLWKHTXDWLRQ
DQGWKHHTXDWLRQVEHORZLW7KDWLVVROYHHTXDWLRQRIWKHQHZV\VWHPIRURQHRILWVYDULDEOHVVD\ v WRJHWDQHTXDWLRQ$
22
Mathematics Basic Guide
RIWKHIRUP v = H[S1RZIRUPDQHZV\VWHPE\UHSODFLQJWKHHTXDWLRQZLWK$DQGUHSODFLQJHDFKLQVWDQFHRI v ZLWK
H[SLQWKHHTXDWLRQVEHORZLW
7KHILUVWWZRHTXDWLRQVRIWKHFXUUHQWV\VWHPDUH$DQG$UHVSHFWLYHO\,IZHDUHOXFN\ZHFDQFRQWLQXHWKLVSURFHVVXQWLO
ZHUHDFKDV\VWHPLQWULDQJXODUIRUP7KHUHDUHVRPHVWXPEOLQJEORFNVWKDWFDQRFFXUDORQJWKHZD\)RUH[DPSOHZH
PLJKWDWVRPHSRLQWJHQHUDWHDXQLYHUVDOO\IDOVHVWDWHPHQWVXFKDV = LPSO\LQJWKDWQRVROXWLRQH[LVWV:HPLJKW
JHQHUDWHDQHTXDWLRQWKDWLVHLWKHULGHQWLFDORUHTXLYDOHQWWRRQHEHORZLWLQZKLFKFDVHWKHORZHURQHFDQEHHOLPLQDWHG:H
PLJKWQRWEHDEOHWRVROYHIRUDYDULDEOHLQDQHTXDWLRQRUHYHQLIZHFDQLWPD\KDYHPRUHWKDQRQHYDOXH,WDOVRPLJKWEH
DGYDQWDJHRXVRUQHFHVVDU\WRUHRUGHUWKHHTXDWLRQVDWVRPHSRLQWRIWKHSURFHVV7KHIROORZLQJH[DPSOHZLOOLOOXVWUDWHWKLV
WULDQJXODWLRQSURFHVV
/HW¶VVROYHWKHIROORZLQJV\VWHP
x + y = x + y = :HEHJLQE\VROYLQJHTXDWLRQIRURQHRILWVYDULDEOHV±±HLWKHUYDULDEOHZLOOGR/HW¶VVROYHIRUx6ROYLQJILUVWIRUxZHJHW
x = − y 0XOWLSO\LQJERWKVLGHVE\ DQGVLPSOLI\LQJZHJHW x = − y 7KLVLVHTXDWLRQ$DVGHVFULEHGDERYH
6XEVWLWXWLQJ − y LQIRUxLQWRWKHVHFRQGHTXDWLRQZHJHW − y + y = ([SDQGLQJDQGFROOHFWLQJOLNHWHUPVRQWKH
(
)
OHIWVLGHZHJHW − y = 6ROYLQJIRU − y E\VXEWUDFWLQJIURPERWKVLGHVZHJHW − y = 6ROYLQJIRUyE\GLYLGLQJ
ERWKVLGHVE\±ZHJHW y = − 7KLVLV$DVGHVFULEHGDERYH7KXVRXUQHZV\VWHPLVDVIROORZV
x = − y
y= −
1RWHWKDWWKLVV\VWHPLVLQWKHWULDQJXODUIRUPGHVFULEHGDERYH
6RWKH
+HQFHLIxyLVDVROXWLRQWKHQ y = − DQGE\VXEVWLWXWLQJWKLVYDOXHIRUyLQWKHWRSHTXDWLRQZHJHW x =
  
VROXWLRQVHWLV  −    
 
1RZOHW¶VFRQVLGHUDQH[DPSOHRIDV\VWHPLQZKLFKWKHQXPEHURIYDULDEOHVLVWKUHHEXWWKHUHDUHRQO\WZRHTXDWLRQV,Q
WKLVFDVHWKHUHLVDQLQILQLWHVHWRIVROXWLRQVDQGWKHH[DPSOHZLOOVKRZKRZZHFDQUHDFKDSRLQWZKHUHZHFDQHDVLO\ZULWH
DVPDQ\RIWKHVHVROXWLRQVDVZHPLJKWQHHG1RWHWKDWLQWKHH[DPSOH³ z ´LVWUHDWHGDVDFRQVWDQW/HW¶VVROYHWKHIROORZLQJ
V\VWHP
x + y + z = x + z = 6ROYLQJIRUyLQWKHILUVWHTXDWLRQZHJHW y = − x − z 7KLVLV$DQG v LVy1RWHWKDWyGRHVQRWRFFXULQWKHVHFRQG
HTXDWLRQVRWKHUHLVQRQHHGWRVXEVWLWXWH:HFDQGHVLJQDWHHLWKHUxRUzDV v /HWxEH v VLQFHLWLVHDVLHUWRVROYHIRU
6ROYLQJIRU v LQWKHVHFRQGHTXDWLRQZHJHWx = − z 2XUQHZV\VWHPLVDVIROORZV
y = − x − z
x = − z
6LQFHzRFFXUVLQERWKH[SUHVVLRQVZHFDOOLWDQarbitrary variable DQGSURFHHGDVLQWKHHOHPHQWDU\WULDQJXODUFDVH
6XEVWLWXWLQJWKHULJKWVLGHRIWKHVHFRQGHTXDWLRQIRUxLQWKHILUVWZHJHW y = − − z − z = z − :HWKHQZULWH
x = − z y = z − DQG z = z IRURXUVROXWLRQ:HFDQJHQHUDWHDVROXWLRQE\FKRRVLQJDQ\DUELWUDU\YDOXHIRUz,IZHOHW
z = ZHJHWx = − DQG y = 6Rx = − y = DQGz = LVDVROXWLRQ
Mathematics Basic Guide
23
:KHQHDFKHTXDWLRQRIDV\VWHPRIHTXDWLRQVLVDOLQHDUHTXDWLRQWKHPHWKRGRIHOLPLQDWLRQFDQDOVREHXVHG7KHJRDORI
WKLVPHWKRGLVWRSURGXFHDQHTXLYDOHQWWULDQJXODUV\VWHP7KHelimination methodHOLPLQDWHVYDULDEOHVIURPDQHTXDWLRQE\
UHSODFLQJWKHHTXDWLRQZLWKWKHVXPRIWKHHTXDWLRQZLWKDPXOWLSOHRIDQRWKHUHTXDWLRQRIWKHV\VWHP$OWKRXJKWKH
HOLPLQDWLRQPHWKRGLVVLPSOHUWRXVHLWFDQQRWEHXVHGDVZLGHO\DVWKHsubstitution methodZHGHVFULEHGDERYH
Functions
8SWRWKLVSRLQWZHKDYHXVHGRUGHUHGSDLUVWRUHSUHVHQWVROXWLRQVWRHTXDWLRQVLQxDQGy2UGHUHGSDLUVLQPDWKHPDWLFVDUH
DOVRXVHGWRDVVLJQRQHQXPEHUWRDQRWKHURUIRUWKDWPDWWHUDQ\PDWKHPDWLFDOREMHFWWRDQRWKHU)RUH[DPSOHWKHRUGHUHG
SDLUabZKHQYLHZHGDVDQDVVLJQPHQWDVVLJQVaWRb$function from a set A to a set BLVDVHWRIDVVLJQPHQWVLQZKLFK
HDFKHOHPHQWRIALVDVVLJQHGWRDXQLTXHHOHPHQWRIB)RUH[DPSOHLIA ^`DQGB ^`7KHQg ^
`LVDIXQFWLRQIURPAWRB7KHQXPEHULVDVVLJQHGWRLVDVVLJQHGWRDQGLVDVVLJQHGWR1RWH
WKDWQRQXPEHULQALVDVVLJQHGWRLQBVRQRWHYHU\HOHPHQWLQBQHHGEHDVVLJQHGWRWKHYDOXHRIVRPHHOHPHQWLQA
7KHVHWRIDVVLJQPHQWV^`LVQRWDIXQFWLRQIURPAWRBVLQFHLVDVVLJQHGWRPRUHWKDQRQH
HOHPHQWRIB
)XQFWLRQVDUHJHQHUDOO\GHQRWHGE\ORZHUFDVHOHWWHUVWKDWFRPHDIWHUWKHOHWWHU³e´LQWKHDOSKDEHW,QWKHSUHFHGLQJH[DPSOH
ZHXVHGgIRUWKHQDPHRIRXUIXQFWLRQDQGfLVDOVRFRPPRQO\XVHG,If LVDIXQFWLRQIURPAWRBWKHQADQGBDUHFDOOHG
WKHdomain DQGco-domain RIfUHVSHFWLYHO\
*LYHQDIXQFWLRQZHIUHTXHQWO\OHWxGHQRWHDQDUELWUDU\HOHPHQWRIWKHGRPDLQDQGyDQDUELWUDU\HOHPHQWRIWKHFRGRPDLQ
,IWKHIXQFWLRQ¶VQDPHLVfWKHQfxGHQRWHVWKHQXPEHURUREMHFWWKDW x LVDVVLJQHGWRE\ f 6LQFHEHORQJVWRWKH
IXQFWLRQgDERYHg 7KHVHWRIVHFRQGFRRUGLQDWHVRIDIXQFWLRQLVFDOOHGLWVrange7KHUDQJHRIWKHIXQFWLRQgDERYH
LV^`
()
:HFDQVRPHWLPHVUHSUHVHQWIXQFWLRQVZLWKUXOHV7KHIXQFWLRQg DERYHFDQEHH[SUHVVHGDV g x = x + x IRUxLQҏ^`
DQGE\y = x + x IRUxLQ^`(LWKHURIWKHVHH[SUHVVLRQVFDQEHXVHGWRFRQVWUXFWWKHRUGHUHGSDLUVLQgE\SDLULQJ
HDFKxLQ^`ZLWKLWVYDOXHy = x + x 7KHJHQHUDOIRUPRIDIXQFWLRQfLVH[SUHVVHGLQWKHPDQQHUfx UXOHIRUx
LQWKHGRPDLQRIf
:KHQWKHGRPDLQDQGFRGRPDLQRIDIXQFWLRQDUHVXEVHWVRIWKHUHDOQXPEHUVDQGWKHGRPDLQRIDIXQFWLRQLVQRWLQGLFDWHG
DVDERYHWKHQWKHGRPDLQLVXQGHUVWRRGWREHWKHODUJHVWVXEVHWRIUHDOQXPEHUVLQZKLFKHYHU\FDOFXODWLRQLQWKHUXOHLV
x
LVWKHVHWRIUHDOQXPEHUVQRWHTXDOWRVLQFH
GHILQHGDQGFRPSXWHVDUHDOQXPEHU)RUH[DPSOHWKHGRPDLQRI f x =
x
−
WKHUXOHFDQQRWEHXVHGWRFDOFXODWHDQDVVLJQHGQXPEHUZKHQx = EXWDQDVVLJQHGQXPEHUFDQEHFDOFXODWHGZKHQ x LV
HTXDOWRDQ\RIWKHUHPDLQLQJUHDOQXPEHUV
7KHJUDSKRIDIXQFWLRQLVWKHSORWRILWVDVVLJQPHQWVLQDQxy±SODQH,QSDUWLFXODUWKHJUDSKRIDIXQFWLRQJLYHQE\DUXOHLV
− x
WKHJUDSKRIWKHHTXDWLRQy UXOHIRUxLQWKHGRPDLQ)RUH[DPSOHWKHJUDSKRI f x =
LVWKHJUDSKRIWKHHTXDWLRQ
− x
y=
ZKLFKZHJUDSKHGHDUOLHU
Complex Numbers
6ROYLQJWKHHTXDWLRQx + = XVLQJWKHPHWKRGVGHVFULEHGDERYHVHHPLQJO\OHDGVWRDSUREOHP
x + = x = −
x = ± − 24
Mathematics Basic Guide
ZKHUH − VLJQLILHVWKHQXPEHUZKRVHVTXDUHLV− &OHDUO\QRVXFKUHDOQXPEHUH[LVWV%HFDXVHWKLVH[SUHVVLRQRFFXUV
IUHTXHQWO\LQDSSOLHGSUREOHPVPDWKHPDWLFLDQVKDYHGHILQHGDQHZV\PEROIRUWKLVQXPEHU i:HGHILQHi = − DQGFDOO i
WKHLPDJLQDU\XQLW2QHSURSHUW\RI iLVi⋅ i = − ,IaDQGbDUHUHDOQXPEHUVWKHQWKHH[SUHVVLRQ a + bi LVFDOOHGDcomple[ number7KHZRUGFRPSOH[LVXVHGEHFDXVH
a + bi KDVWZRFRPSRQHQWVQDPHO\aDQGbi7KHQXPEHUVaDQGbDUHFDOOHGWKHUHDODQGLPDJLQDU\SDUWVUHVSHFWLYHO\7KH
H[SUHVVLRQ a + bi LVFDOOHGWKHstandard form of a comple[ number,IbLV]HUR a + bi LVDEEUHYLDWHGDVaDQGLIa LV
a + bi LVDEEUHYLDWHGDVbi7KHFRPSOH[QXPEHU a + − b i LVDEEUHYLDWHGDV a − bi ,I a + bi DQG c + di DUHFRPSOH[QXPEHUV a + bi + c + di = a + c + b + d i DQG a + bi − c + di = a − c + b − d i )XUWKHUPRUH a + bi ⋅ c + di = ac − bd + ad + bc i 7KHUHLVQRQHHGWRPHPRUL]HWKLVODVWIRUPXODEHFDXVHE\DVVXPLQJ
DULWKPHWLFSURSHUWLHVQRUPDOO\DVVRFLDWHGZLWKUHDOQXPEHUVDQGXVLQJWKHIDFWWKDWi = − ZHFDQDUULYHDWWKHVDPHUHVXOW
)RUH[DPSOH
− i⋅ − + i
= − + i + −i− + −i i
= − + i + i + − i
= − + i + −−
= − + i
&DOFXODWLRQVVXFKDViFDQEHSHUIRUPHGVLPLODUO\E\ZULWLQJ + i = + i = + i 7KLVODVWH[DPSOHVKRZVWKDWLVWKHPXOWLSOLFDWLYHLGHQWLW\IRUPXOWLSO\LQJFRPSOH[QXPEHUVMXVWDVLWLVIRUPXOWLSO\LQJUHDO
QXPEHUVDQG a + bi = a + bi $FRPSOH[QXPEHU a + bi LVVDLGWREHQRQ]HURLIHLWKHUaRUbLVQRQ]HUR(YHU\QRQ]HUR
(
)
FRPSOH[QXPEHUKDVDPXOWLSOLFDWLYHLQYHUVH7KHPXOWLSOLFDWLYHLQYHUVHRI a + bi LV
,I a + bi LVQRQ]HURDQG c + di
a + bi
c + di
c + di
= c + di ⋅
:HFDQUHZULWH
LQVWDQGDUGIRUPE\PXOWLSO\LQJLWVQXPHUDWRUDQG
a
bi
a + bi
a
bi
+
+
GHQRPLQDWRUE\ a − bi ZKLFKLVFDOOHGWKHconjugate of a + bi
LVDFRPSOH[QXPEHU
,IxDQGyDUHFRPSOH[QXPEHUVWKHQx LVD2nd rootRIyLIx = y $PDMRUVKRUWFRPLQJRIWKHUHDOQXPEHUVLVWKDWVRPH
UHDOQXPEHUVQDPHO\WKHQHJDWLYHQXPEHUVGRQRWKDYHDUHDOVHFRQGURRW7KHFRPSOH[QXPEHUVGRQRWKDYHWKLV
GHILFLHQF\DVHYHU\QRQ]HURFRPSOH[QXPEHUKDVWZRVHFRQGURRWV,IbLVDQHJDWLYHUHDOQXPEHU ± b i DUHWKHVHFRQG
b i )RUH[DPSOH − = − i = i 7KHFRPSOH[VROXWLRQVWRDTXDGUDWLFHTXDWLRQFDQEHIRXQGE\DSSO\LQJWKLVIRUPXODWRWKHGLVFULPLQDQWRIWKHTXDGUDWLF
IRUPXODZKHQLWLVQHJDWLYH
URRWVRIb7KHQXPEHU
b i LVFDOOHGLWVSULQFLSDOVTXDUHURRWDQGZHZULWH b =
Mathematics Basic Guide
25
Geometry
(XFOLGRI$OH[DQGULDF%&(LVRQHRIWKHPRVWZLGHO\NQRZQ*UHHNPDWKHPDWLFLDQVDQGLVSHUKDSVWKHEHVWNQRZQ
PDWKHPDWLFLDQRIDQWLTXLW\.QRZQDVDWHDFKHURIPDWKHPDWLFVKHDXWKRUHGPDQ\ERRNVRQDYDULHW\RIWRSLFVEXWLV
SHUKDSVPRVWIDPRXVIRUKLVLQWURGXFWRU\WH[WERRNRQPDWKHPDWLFVFDOOHGWKHElementsLQZKLFKKHDWWHPSWHGWRJLYHDQ
D[LRPDWLFGHYHORSPHQWRISODQHJHRPHWU\+HEHJDQZLWKILYHD[LRPV±±FRPPRQQRWLRQVWUDQVFHQGLQJJHRPHWU\±±DQGILYH
SRVWXODWHV±±DVVXPSWLRQVVSHFLILFWRJHRPHWU\±±DQGDWWHPSWHGWRGHGXFHZKDWLVWUXHRIJHRPHWU\IURPWKHVHDVVXPSWLRQV
)RURYHU\HDUVJHRPHWU\ZDVWDXJKWXVLQJ(XFOLG¶VGHYHORSPHQWDQGLWVHUYHGDVWKHEHQFKPDUNRIPDWKHPDWLFDO
ULJRU
%\WRGD\¶VVWDQGDUGVKRZHYHU(XFOLG¶VGHYHORSPHQWLVLQDGHTXDWH6RPHRIKLVGHILQLWLRQVZHUHFLUFXODUDQGVRPHRIKLV
SURRIVPDGHXVHRIKLGGHQDVVXPSWLRQVLQYROYLQJWKHQRWLRQVRIEHWZHHQHVVDQGFRQWLQXLW\2QO\UHPQDQWVRI(XFOLG¶V
GHYHORSPHQWDUHXVHGWRGD\EXWWKHD[LRPDWLFPHWKRGWKDWKHXVHGLVQRZHPSOR\HGLQHYHU\EUDQFKRIPDWKHPDWLFV
,Q'DYLG+LOEHUW±SXEOLVKHGFoundations of GeometryZKLFKUHFWLILHGWKHVKRUWFRPLQJVRI(XFOLG¶V
GHYHORSPHQW2QHRIWKHVWULNLQJGLIIHUHQFHVEHWZHHQ+LOEHUW¶VGHYHORSPHQWDQGWKDWQRUPDOO\IRXQGLQDKLJKVFKRRO
JHRPHWU\FRXUVHLVWKDW+LOEHUW¶VGLGQRWUHO\GLUHFWO\RQWKHQRWLRQVRIGLVWDQFHDQGDQJOHPHDVXUH5HODWLRQVGHVFULELQJ
EHWZHHQQHVVDQGFRQJUXHQFHDUHXVHGLQWKHLUSODFH6XFKDQDSSURDFKLVVDLGWREHsynthetic'HYHORSPHQWVRIJHRPHWU\
WKDWXVHWKHQRWLRQVRIGLVWDQFHDQGDQJOHPHDVXUHDUHFDOOHGmetric DSSURDFKHV'HYHORSPHQWVRIJHRPHWU\QRUPDOO\IRXQG
LQKLJKVFKRRODUHPHWULFDQGDUHEDVHGRQWKHPRGHOSUHVHQWHGLQE\*HRUJH'DYLG%LUNKRIIDQG5DOSK%HDWOH\
7KHILJXUHVWKDWDUHQRUPDOO\VWXGLHGLQDILUVWFRXUVHLQJHRPHWU\LQFOXGHVHJPHQWVUD\VDQJOHVSRO\JRQVSRO\KHGUD
SULVPVS\UDPLGVDQGVKDSHVWKDWFDQEHDUELWUDULO\DSSUR[LPDWHGE\WKHPVXFKDVFLUFOHVDQGFRQHV7KHVHILJXUHVDUH
GHILQHGLQWHUPVRISRLQWVOLQHVDQGSODQHVZKLFKVHUYHDVXQGHILQHGWHUPV(YHQWKRXJKWKHUHLVQRGLUHFWDWWHPSWWR
GHVFULEHZKDWHDFKRIWKHVHREMHFWVLVPDQ\DVVXPSWLRQVSRVWXODWHVDUHVWDWHGFRQFHUQLQJWKHH[LVWHQFHRIFHUWDLQSRLQWV
OLQHVDQGSODQHVDQGWKHUHODWLRQVWKHVHREMHFWVKDYHWRRQHDQRWKHU1RWDOOGHYHORSPHQWVRIJHRPHWU\XVHWKHVDPHVHWRI
SRVWXODWHV
Lines
,WLVFRPPRQWRGHQRWHSRLQWVE\FDSLWDOOHWWHUVDQGWKHXQLTXHOLQHFRQWDLQLQJGLVWLQFWSRLQWVADQGBDV AB 6HJPHQWVUD\V
DQGDQJOHVSOD\DFHQWUDOUROHLQWKHGHYHORSPHQWRISODQHJHRPHWU\6HJPHQWVDQGUD\VDUHGHILQHGXVLQJDSRVWXODWHG
GLVWDQFHIXQFWLRQdZKLFKDVVLJQVDSRVLWLYHQXPEHUWRHDFKSDLURIGLVWLQFWSRLQWVA DQGB7KLVQXPEHULVJHQHUDOO\
GHQRWHGE\AB7KHRuler PostulateVWDWHVWKDWIRUHDFKOLQHWKHUHH[LVWVDRQHWRRQHFRUUHVSRQGHQFHf, IURPWKHOLQHWRD
UHDOQXPEHUOLQHWKDWVDWLVILHV AB = f A − f B IRUDOOABRIWKHOLQH,QIRUPDOO\LWHQVXUHVWKDWGLVWDQFHEHWZHHQSRLQWV
RIDOLQHLVVLPLODUWRGLVWDQFHEHWZHHQSRLQWVRIDUHDOQXPEHUOLQHDQGOLQHVDUHFRQWLQXRXV
*LYHQGLVWLQFWSRLQWVABCRIDOLQHWKHSRLQWBLVVDLGWROLHEHWZHHQACLI AB + BC = AC 7KHQRWDWLRQVABCDQG
A*B*CDUHRIWHQXVHGWRLQGLFDWHWKDWSRLQWBLVEHWZHHQSRLQWVADQGC*LYHQGLVWLQFWSRLQWVADQGBWKHsegment AB
FRQVLVWVRIWKHSRLQWVADQGBDQGWKHSRLQWVEHWZHHQADQGB,WVOHQJWKLVGHILQHGDVAB,QDGGLWLRQLIADQGBDUH
HJJG
GLVWLQFWSRLQWVWKHQWKHVHWRIDOOSRLQWVCRQ AB VXFKWKDWALVQRWEHWZHHQC DQGBLVFDOOHGWKHrayfrom A through BDQG
LWLVGHQRWHGE\ AB 3RLQWALVFDOOHGWKHendpointRIWKHUD\*LYHQWKUHHQRQFROOLQHDUSRLQWVABDQGCWKHangle ∠ BAC
LVWKHXQLRQRIUD\V AB DQG AC 7KHSRLQWALVFDOOHGWKHverte[DQGWKHUD\V AB DQG AC DUHFDOOHGLWVsides
Angles
0DQ\LPSRUWDQWDQJOHSURSHUWLHVLQYROYHSDLUVRIDQJOHV2IEDVLFLPSRUWDQFHDUHOLQHDUSDLUVDGMDFHQWDQJOHVDQGYHUWLFDO
HJJG
DQJOHV,IEFDQGGDUHQRQFROOLQHDUSRLQWVDQG EF FRQWDLQVWKHSRLQWHDQGHLVQRWRQUD\ EF WKHQ ∠ FEG DQG
∠ HEG IRUPDlinear pair$QJOHV ∠ BAD DQG ∠ CAD DUHadjacent anglesLIWKH\IRUPDOLQHDUSDLURULIDEHORQJVWRWKH
LQWHULRURI ∠ BAC 7KHDQJOHV ∠ BAD DQG ∠ CAD SLFWXUHGEHORZDUHDGMDFHQWDQJOHV
26
Mathematics Basic Guide
%
'
&
$
,IWKH\DUHQRWDGMDFHQWDQJOHVIRUPHGE\WZRGLVWLQFWLQWHUVHFWLQJOLQHVDUHWHUPHGvertical angles,QWKHGLDJUDPEHORZ
DQJOHV ∠ GEH DQG ∠ IEF DUHYHUWLFDODQJOHV ∠ GEF DQG ∠ IEH DUHYHUWLFDODQJOHVDQG ∠ FEG DQG ∠ HEG IRUPDlinear
pair
*
+ ( )
,
7KHAngle Measure PostulateDVVLJQVHDFKDQJOHDQXPEHUEHWZHHQDQGZKLFKLVFDOOHGLWVdegree measure7KH
H[SUHVVLRQ m∠ABC LVXVHGWRGHQRWHWKHGHJUHHPHDVXUHRIҏ ∠ ABC 7KHDQJOHPHDVXUHIXQFWLRQKDVPDQ\SURSHUWLHVJXDUDQWHHGE\WKHDQJOHSRVWXODWHV)RUH[DPSOHWKHVXPRIWKHDQJOH
PHDVXUHVRIOLQHDUSDLUVLVDQGLI ∠ BAD DQG ∠ CAD DUHDGMDFHQWDQJOHVZLWKDLQWKHLQWHULRURIҏҏ ∠ BAC WKHQ
m∠BAC = m∠ BAD + m∠ CAD ,IWKHVXPRIWKHPHDVXUHVRIWZRDQJOHVLVWKH\DUHcomplementary angles, DQGLILW LVWKH\DUHsupplementary
angles,IWKHPHDVXUHRIDQDQJOHLVOHVVWKDQLWLVDQacute angleDQGLILWLVJUHDWHUWKDQLWLVDQobtuse angle
7KHProtractor PostulateDPRQJRWKHUWKLQJVHQVXUHVWKDWJLYHQDUD\ AB RQDQHGJHRIDKDOISODQHDQGDQXPEHUEHWZHHQ
DQGZHFDQFKRRVHDXQLTXHUD\ AC ZLWKCLQWKHKDOISODQHVXFKWKDW m∠ABC LVWKHJLYHQQXPEHU7KLVLVRXU
PRVWSRZHUIXOWRROIRUFRQVWUXFWLQJDQJOHV
2IXWPRVWLPSRUWDQFHLQWKHGHYHORSPHQWRIJHRPHWU\LVWKHQRWLRQRIcongruence&RQJUXHQFLHVDOORZXVWRGHILQHZKHQ
WZRREMHFWVRIWKHVDPHW\SHKDYHWKHVDPHVKDSHDQGVL]HLQGHSHQGHQWRIORFDWLRQTwo segments are congruentLIDQGRQO\
LIWKH\KDYHHTXDOOHQJWKV6LPLODUO\two angles are congruentLIDQGRQO\LIWKH\KDYHHTXDOPHDVXUHV8VLQJIDFWVDERXW
OLQHDUSDLUVLWFDQEHVKRZQWKDWYHUWLFDODQJOHVDUHFRQJUXHQW7KHSKUDVH³LVFRQJUXHQWWR´LVGHQRWHGE\ ≅ 7KHDQJOH ∠ BAC LVFDOOHGDright angleLI m∠BAC m∠DAC IRUDRQ AB VXFKWKDWALVEHWZHHQBDQGD,IWKLVLVWKH
FDVH ∠ BAC DQG ∠ DAC IRUPDOLQHDUSDLUVRm∠BAC + m∠DAC = m∠ BAC = +HQFH m∠BAC ZKLFK
LPSOLHVWKDWWKHPHDVXUHRIDULJKWDQJOHLV
,QDGGLWLRQOLQHV AB DQG AC DUHperpendicularLIDQGRQO\LI ∠ BAC LVDULJKWDQJOH)XQGDPHQWDOWRWKHGHYHORSPHQWRI
JHRPHWU\LVWKHIDFWWKDWJLYHQDSRLQWDQGDOLQHWKHUHH[LVWVDXQLTXHOLQHWKURXJKWKHSRLQWWKDWLVSHUSHQGLFXODUWRWKHJLYHQ
OLQH
Mathematics Basic Guide
27
,IWZROLQHVLQDSODQHGRQRWLQWHUVHFWWKHQWKH\DUHVDLGWREHSDUDOOHO7KHParallel PostulateVWDWHVWKDWJLYHQDOLQHLDQGD
SRLQWPQRWRQWKHOLQHWKHUHH[LVWVDXQLTXHOLQHWKURXJKPSDUDOOHOWRWKHJLYHQOLQH,WLVLQWHUHVWLQJWRQRWHWKDWWKHUHDUH
JHRPHWULFDOV\VWHPVQRWXVXDOO\SUHVHQWHGLQKLJKVFKRROFRXUVHVLQZKLFKWKHUHFDQEHPRUHWKDQRQHOLQHSDUDOOHOWRDJLYHQ
OLQHWKURXJKDSRLQWQRWRQWKDWOLQH
$OLQHLVDWUDQVYHUVDORIWZRRUPRUHFRSODQDUOLQHVLIDQGRQO\LILWLQWHUVHFWVWKHPDWGLIIHUHQWSRLQWV$VVRFLDWHGZLWKD
WUDQVYHUVDORIWZRFRSODQDUOLQHVDUHWKHQRWLRQVRIFRUUHVSRQGLQJDQJOHVLQWHULRUDQJOHH[WHULRUDQJOHDOWHUQDWHLQWHULRU
DQJOHDQGDOWHUQDWHH[WHULRUDQJOH7KHVHDQJOHVDUHXVHGWRVWDWHVXIILFLHQWDQGQHFHVVDU\FRQGLWLRQVIRUWZROLQHVWREH
SDUDOOHO*LYHQDWUDQVYHUVDORIWZRFRSODQDUOLQHVWKHOLQHVDUHSDUDOOHOLIDQGRQO\LIFRUUHVSRQGLQJDQJOHVDUHFRQJUXHQWLI
DQGRQO\LIDOWHUQDWHLQWHULRUDQJOHVDUHFRQJUXHQWDQGLIDQGRQO\LIDOWHUQDWHH[WHULRUDQJOHVDUHFRQJUXHQW,QDGGLWLRQWZR
FRSODQDUOLQHVDUHSDUDOOHOLIWKH\DUHERWKSDUDOOHOWRDWKLUGOLQH
Triangles
,IABDQGCDUHWKUHHQRQFROOLQHDUSRLQWVWKHQWKHXQLRQRI AB BC DQG CA LVFDOOHGDtriangle7KHSRLQWVABDQGC
DUHFDOOHGWKHvertices of the triangleWKHVHJPHQWV AB, BC , DQG CA DUHLWVedgesDQG ∠ BAC ∠ ABC DQG ∠ BCA DUHLWV
DQJOHV7KHSDUDOOHOSRVWXODWHSOD\VDQLQWHJUDOUROHLQVKRZLQJWKDWWKHVXPRIWKHPHDVXUHVRIWKHDQJOHVRIDWULDQJOHLV
7ULDQJOHVRIVSHFLDOLQWHUHVWDUHisosceles trianglesWZRHGJHVDUHFRQJUXHQWequilateral trianglesDOOHGJHVDUHFRQJUXHQW
DQGequiangular trianglesDOODQJOHVDUHFRQJUXHQW). Two triangles are congruentLIDQGRQO\LIWKHUHLVDRQHWRRQH
FRUUHVSRQGHQFHEHWZHHQWKHYHUWLFHVVXFKWKDWFRUUHVSRQGLQJHGJHVDQGDQJOHVDUHFRQJUXHQW7KHGHILQLWLRQRIFRQJUXHQFH
UHTXLUHVWKDWVL[FRQGLWLRQVEHPHWLQRUGHUIRUWZRWULDQJOHVWREHFRQJUXHQWWKUHHSDLUVRIVLGHVDQGWKUHHSDLUVRIDQJOHV
7KHSide-Angle-Side(SAS) PostulateUHGXFHVWKHQXPEHURIFRQGLWLRQVWRWKUHH,WVWDWHVWKDWWZRWULDQJOHVDUHFRQJUXHQWLI
WKHUHLVDRQHWRRQHFRUUHVSRQGHQFHEHWZHHQWKHYHUWLFHVRIWKHWULDQJOHVVXFKWKDWWZRVLGHVDQGWKHLQFOXGHGDQJOHRIRQH
DUHFRQJUXHQWWRWKHFRUUHVSRQGLQJVLGHVDQGDQJOHRIWKHRWKHU7KH6$63RVWXODWHFDQEHXVHGWRSURYHRWKHUXVHIXOWHVWVIRU
FRQJUXHQFH*LYHQDRQHWRRQHFRUUHVSRQGHQFHEHWZHHQWKHYHUWLFHVRIWZRWULDQJOHVWKHWZRWULDQJOHVDUHFRQJUXHQWLI
WKHVLGHVRIRQHDUHFRQJUXHQWWRWKHFRUUHVSRQGLQJVLGHVRIWKHRWKHU666WZRDQJOHVDQGDVLGHRSSRVLWHRQHRIWKHP
DUHFRQJUXHQWWRWKHFRUUHVSRQGLQJSDUWVRIWKHRWKHU$$6RUWZRDQJOHVDQGDQLQFOXGHGVLGHRIRQHDUHFRQJUXHQWWRWKH
FRUUHVSRQGLQJSDUWVRIWKHRWKHU$6$
7KHVHWHVWVIRUFRQJUXHQFHFDQEHXVHGWRSURYHPDQ\XVHIXOIDFWVDERXWWULDQJOHV)RUH[DPSOHDQJOHVRSSRVLWHFRQJUXHQW
VLGHVRILVRVFHOHVWULDQJOHVDUHFRQJUXHQWDQGWKHDQJOHELVHFWRURIWKHLQFOXGHGDQJOHRIWKHFRQJUXHQWVLGHVELVHFWVWKH
RSSRVLWHVLGH6LQFHHTXLODWHUDOWULDQJOHVDUHLVRVFHOHVWULDQJOHVHTXLODWHUDOWULDQJOHVDUHLQIDFWHTXLDQJXODU
$right triangleLVDWULDQJOHWKDWFRQWDLQVDULJKWDQJOH7KHVLGHRSSRVLWHWKHULJKWDQJOHLVFDOOHGWKHhypotenuseDQGWKH
RWKHUVLGHVDUHFDOOHGLWVlegs7KHVXPRIWKHPHDVXUHVRIWKHRWKHUWZRDQJOHVLVVRHDFKRIWKHPLVDQDFXWHDQJOH
7HVWVIRUFRQJUXHQFHDPRQJULJKWWULDQJOHVXVXDOO\UHGXFHWRWZRFRQGLWLRQVVLQFHWKH\DUHDOUHDG\DVVXPHGWRKDYHRQHSDLU
RIFRQJUXHQWDQJOHV)RUH[DPSOHJLYHQDRQHWRRQHFRUUHVSRQGHQFHEHWZHHQWKHYHUWLFHVRIWZRULJKWWULDQJOHVLIDOHJDQG
DFXWHDQJOHRIRQHDUHFRQJUXHQWWRWKHFRUUHVSRQGLQJSDUWVRIWKHRWKHUWKHQ$6$LVVDWLVILHGZKHQWKHDQJOHLVDGMDFHQWWR
WKHVLGHDQGFDQEHUHVWDWHGLQWKLVIRUPXVLQJWKHRWKHUDFXWHDQJOH$QDGGLWLRQDOPHWKRGIRUVKRZLQJWKDWWZRULJKW
WULDQJOHVDUHFRQJUXHQWLVFDOOHG+/±±WZRULJKWWULDQJOHVDUHFRQJUXHQWLIWKHK\SRWHQXVHDQGRQHOHJRIRQHWULDQJOHDUH
FRQJUXHQWWRWKHFRUUHVSRQGLQJVLGHVRIDVHFRQGWULDQJOH
Polygons
*LYHQGLVWLQFWFRSODQDUSRLQWV P Pn ZLWKn ≥ PP ∪ ∪ Pn −Pn ∪ PnP LVDpolygonLIWKHRQO\SRLQWVRILQWHUVHFWLRQ
DPRQJWKHVHVHJPHQWVDUH P Pn DQGQRWZRVHJPHQWVZLWKDFRPPRQSRLQWDUHFROOLQHDU7KHVHJPHQWVDERYHDUHLWV
HGJHVDQGWKHSRLQWV P Pn DUHLWVYHUWLFHV7KHSUHFHGLQJSRO\JRQLVGHQRWHGE\ P Pn 5HJXODUSRO\JRQVDUHWKRVHZLWKFRQJUXHQWHGJHVDQGFRQJUXHQWFRUUHVSRQGLQJDQJOHV6TXDUHVIRUH[DPSOHDUHUHJXODU
SRO\JRQV2IVSHFLDOLQWHUHVWDUHIRXUVLGHGSRO\JRQVZKLFKDUHFDOOHGTXDGULODWHUDOV$TXDGULODWHUDOLVDSDUDOOHORJUDPLI
DQGRQO\LIERWKSDLUVRIRSSRVLWHVLGHVDUHSDUDOOHO$SDUDOOHORJUDPLVDUHFWDQJOHLIDOORILWVLQWHULRUDQJOHVDUHULJKWDQJOHV
28
Mathematics Basic Guide
DQGDUHFWDQJOHLVDVTXDUHLIDOORILWVHGJHVDUHFRQJUXHQW$UKRPEXVLVDSDUDOOHORJUDPZKRVHHGJHVDUHDOOFRQJUXHQW$
TXDGULODWHUDOLVDWUDSH]RLGLIDSDLURIRSSRVLWHHGJHVDUHSDUDOOHO7HVWVIRUFRQJUXHQFHIRUWULDQJOHVFDQEHXVHGWRSURYH
VWDWHPHQWVDERXWSRO\JRQV)RUH[DPSOHOHW¶VVKRZWKDWRSSRVLWHDQJOHVDQGRSSRVLWHVLGHVRIDSDUDOOHORJUDPDUHFRQJUXHQW
&RQVLGHUWKHSDUDOOHORJUDPABCDEHORZZLWKDX[LOLDU\VHJPHQW CB AB
CD
7KHFRUUHVSRQGHQFH C → B A → D DQG B → C LVDRQHWRRQHFRUUHVSRQGHQFHIURP¨CABWR¨BDC6LQFH AB DQG
CD DUHSDUDOOHODQG CB LVDWUDQVYHUVDORIWKHVHOLQHV∠ ≅ ∠ DQGOLNHZLVH AC DQG BD DUHSDUDOOHODQG CB LVDOVRD
WUDQVYHUVDORIWKHVHOLQHVVR∠ ≅ ∠ EHFDXVHWKH\DUHDOWHUQDWHLQWHULRUDQJOHV,QDGGLWLRQ BC ≅ BC %\$6$¨CAB ≅
¨BDC7KXV ∠ BDC ≅ ∠ CAB CD ≅ AB DQG BD ≅ AC 8VLQJDVLPLODUDUJXPHQWZLWKWKHDX[LOLDU\OLQH AD ZHFDQ
VKRZWKDW ∠ ACD ≅ ∠ABD 6LQFH ∠ ACBDQG ∠ BCDDUHDGMDFHQWDQG ∠ ABCDQG ∠ DBCDUHDGMDFHQW
m∠ACD = m ∠ + m∠ = m∠ + m∠ = m∠ ABD a a
a
=
= = n 7ZRSRO\JRQVDUH
b b
bn
similar LIWKHUHH[LVWVDRQHWRRQHFRUUHVSRQGHQFHEHWZHHQWKHYHUWLFHVVXFKWKDWWKHVHTXHQFHRIOHQJWKVRIFRUUHVSRQGLQJ
HGJHVDUHSURSRUWLRQDODQGFRUUHVSRQGLQJDQJOHVDUHFRQJUXHQW7KHSKUDVH³LVVLPLODUWR´LVGHQRWHGE\a7KHFRPPRQ
YDOXHRIWKHUDWLRVLVFDOOHGWKHscale factor
7ZRILQLWHVHTXHQFHVRIUHDOQXPEHUV a a an DQG bb bn DUHSURSRUWLRQDOLI
Similar Triangles
2ISDUWLFXODULQWHUHVWLVWKHQRWLRQRIVLPLODUWULDQJOHV&DQWKHVL[FRQGLWLRQVIRUWZRWULDQJOHVWREHVLPLODUEHUHGXFHGWR
FHUWDLQVXEVHWVRIWKUHHDVZLWKFRQJUXHQFH"7KHDQVZHULV\HV7KHIXQGDPHQWDOQRWLRQEHKLQGWKHVHUHGXFWLRQVLVWKH
FRQFHSWRISDUDOOHOSURMHFWLRQ*LYHQDFRUUHVSRQGHQFHEHWZHHQWKHYHUWLFHVRIWZRWULDQJOHVLIHLWKHUWZRSDLUVRI
FRUUHVSRQGLQJDQJOHVDUHFRQJUXHQW$$FRUUHVSRQGLQJVLGHVDUHSURSRUWLRQDO666RUWZRSDLUVRIFRUUHVSRQGLQJVLGHV
DUHSURSRUWLRQDODQGWKHLQFOXGHGDQJOHVDUHFRQJUXHQW6$6WKHQWKHWULDQJOHVDUHVLPLODU
7KHQRWLRQRIVLPLODULW\FDQEHXVHGWRSURYHWKH3\WKDJRUHDQWKHRUHP%\LQWURGXFLQJWKHDOWLWXGHIURPWKHULJKWDQJOHRID
ULJKWWULDQJOHDVDQDX[LOLDU\OLQHWKUHHVLPLODUWULDQJOHVDUHIRUPHGIURPZKLFKDUHODWLRQEHWZHHQWKHOHQJWKVRIWKHVLGHV
FDQEHREWDLQHG,IWKHOHQJWKRIWKHK\SRWHQXVHLV c DQGWKHOHQJWKVRIWKHOHJVDUH a DQG b WKHQWKHPythagorean theorem
VWDWHVWKDWa + b = c 7KHFRQYHUVHLVDOVRWUXHLIabDQGcDUHWKHOHQJWKVRIWKHHGJHVRIDWULDQJOHVXFKWKDW
a + b = c WKHQWKHWULDQJOHLVDULJKWWULDQJOH
*LYHQWKHOHQJWKVRIDQ\WZRHGJHVRIDULJKWWULDQJOHWKH3\WKDJRUHDQWKHRUHPFDQEHXVHGWRILQGWKHOHQJWKRIWKH
UHPDLQLQJHGJH/HW¶VXVHWKH3\WKDJRUHDQWKHRUHPWRILQGWKHOHQJWKRIDQDOWLWXGHRIDQHTXLODWHUDOWULDQJOHZKRVHHGJHV
KDYHOHQJWK$VVXPHWKDW¨ABCEHORZLVVXFKDWULDQJOHDQG AD LVDQDOWLWXGH
Mathematics Basic Guide
29
$
%'&

%\WKH3\WKDJRUHDQ7KHRUHP AD +   = = 6R AD = − = +HQFH


AD =
:HFDQXVHWKLVWULDQJOHWRILQGWKHOHQJWKVRIWKHVLGHVRIDQ\WULDQJOHZKRVHDQJOHVDUHSURYLGLQJZH
NQRZWKHVFDOHIDFWRU)RUH[DPSOHLIWKHK\SRWHQXVHRIDWULDQJOHLVWKHQWKHVFDOHIDFWRUIURP¨ABDDERYHWR
 
WKHWULDQJOHLV = 6RWKHHGJHRSSRVLWHWKHDQJOHRIPHDVXUHLV   = DQGWKHHGJHRSSRVLWHWKHDQJOHRIPHDVXUH
 
 
LV 
 = 

Measures for Polygonal Regions
6RIDUZHKDYHGHILQHGPHDVXUHVIRUVHJPHQWVDQGDQJOHV1H[WZHZLOOGHILQHPHDVXUHVIRUSRO\JRQDOUHJLRQV7KHXQLRQ
RIDSRO\JRQZLWKLWVLQWHULRULVFDOOHGDpolygonal region7KHArea Measure PostulateDVVLJQVDSRVLWLYHQXPEHUWRHYHU\
SRO\JRQDOUHJLRQ,IPLVDSRO\JRQDOUHJLRQWKHQ$UHDPGHQRWHVWKHDUHDRIP7KHDUHDSRVWXODWHVVWDWHWKDWWKHDUHDRID
VTXDUHZKRVHHGJHVKDYHOHQJWKa LVa WKDWFRQJUXHQWSRO\JRQDOUHJLRQVKDYHHTXDODUHDVDQGWKDWLIWZRSRO\JRQDOUHJLRQV
DUHHLWKHUQRQLQWHUVHFWLQJRULQWHUVHFWRQO\DORQJDQHGJHRUDYHUWH[WKHQWKHDUHDRIWKHXQLRQRIWKHUHJLRQVLVWKHVXPRI
WKHDUHDVRIWKHUHJLRQV
7KHVHIDFWVFDQEHXVHGWRVKRZWKDWWKHDUHDRIDUHFWDQJOHZKRVHHGJHVKDYHOHQJWKVaDQGbLVabDQGWKHDUHDRIDWULDQJOH
ZLWKEDVHbDQGKHLJKW h LV bh 6RLWV
)RUH[DPSOHZHVKRZHGWKDWWKHOHQJWKRIDQDOWLWXGHRIDQHTXLODWHUDOWULDQJOHZKRVHHGJHVKDYHOHQJWKLV
 
DUHDLV bh = 
 =
 
*LYHQDQHGJHRIDSDUDOOHORJUDPWKHKHLJKWUHODWLYHWRWKDWHGJHLVWKHSHUSHQGLFXODUGLVWDQFHIURPWKDWHGJHWRWKHRSSRVLWH
VLGH/HW¶VFRQVLGHUWKHSDUDOOHORJUDPABCDEHORZ
30
Mathematics Basic Guide
AB
h
CD
bh bhZKHUHb
CD,QJHQHUDOWKHDUHDRIDSDUDOOHORJUDPLVbhZKHUHhLVLWVKHLJKWUHODWLYHWRDEDVHRIOHQJWKb8VLQJVLPLODULGHDVWKH
DUHDRIDWUDSH]RLGDOUHJLRQLV b + b h ZKHUH b DQG b DUHWKHOHQJWKVRIWKHSDUDOOHOVLGHVDQGhLVWKHGLVWDQFH
EHWZHHQWKHP
(DUOLHUZHVKRZHG¨BDC ≅ ¨CAB6R$UHDABCD $UHD¨BDC$¨CAB $UHD¨BDC ,WFDQEHVKRZQWKDWHDFKUHJXODUSRO\JRQFDQEHLQVFULEHGLQDFLUFOH7KHFHQWHURIWKLVFLUFOHLVFDOOHGWKHFHQWHURIWKH
SRO\JRQ7KHOHQJWKRIDSHUSHQGLFXODUVHJPHQWIURPWKHFHQWHURIDSRO\JRQWRDQHGJHLVFDOOHGLWVapothem$OLQHGUDZQ
IURPWKHFHQWHUWRDYHUWH[LVFDOOHGDradius$QDQJOHZLWKDYHUWH[DWWKHFHQWHUZKRVHVLGHVFRQWDLQFRQVHFXWLYHYHUWLFHVLV
FDOOHGDcentral angle
/HW¶VFRQVLGHUDQnVLGHGUHJXODUSRO\JRQZKRVHDSRWKHPLVaDQGZKRVHHGJHVKDYHOHQJWKs/HWAEHLWVDUHDCEHLWV
FHQWHUDQGQDQGREHFRQVHFXWLYHYHUWLFHV7ULDQJOH¨QCRLVLVRVFHOHVDQGKDVKHLJKWaZLWKUHVSHFWWRWKHHGJH QR VR
sa +HQFH A = n sa +RZHYHUnsLVWKHSHULPHWHURIWKHSRO\JRQVR A = aP ZKHUHPLVLWVSHULPHWHU
$UHD¨QCR
$UHDVRISRO\JRQDOUHJLRQVDUHXVHGWRGHILQHDUHDVRIPRUHJHQHUDOUHJLRQVVXFKDVFLUFXODUUHJLRQV)RUH[DPSOHWKHDUHD
RIDFLUFOHRIUDGLXVrFDQEHYLHZHGDVWKHOLPLWLQJYDOXHRIWKHDUHDVRILQVFULEHGSRO\JRQDOUHJLRQVDVWKHQXPEHURIVLGHV
WHQGVWRLQILQLW\$VWKHQXPEHURIVLGHVEHFRPHVDUELWUDULO\ODUJHWKHDSRWKHPWHQGVWRrDQGPWHQGVWRʌr±±WKH
FLUFXPIHUHQFHRIWKHFLUFOH6R A = r π U = π r LVWKHDUHDRIDFLUFOHRIUDGLXVr
Polyhedrons
$polyhedronLVDWKUHHGLPHQVLRQDOILJXUHLQZKLFKHDFKIDFHLVDSRO\JRQDOUHJLRQ,IDSRO\KHGURQKDVDSDLURIFRQJUXHQW
IDFHVWKDWOLHLQGLVWLQFWSDUDOOHOSODQHVWKHQLWLVFDOOHGDSULVP5HFWDQJXODUER[HVDUHVLPSOHH[DPSOHVRISULVPV3ULVPV
EHORQJWRDODUJHUIDPLO\RIUHJLRQVFDOOHGF\OLQGHUV
/HWSDQGTEHGLVWLQFWSDUDOOHOSODQHVDQGOHWLEHDOLQHWKDWLVQRWSDUDOOHOWRSDQGOHWREHDUHJLRQLQSZKRVHDUHDLV
GHILQHGDQGLVQRW]HUR7KHXQLRQRIDOOWKHVHJPHQWVSDUDOOHOWRLZLWKRQHHQGSRLQWLQRDQGWKHRWKHULQT LVFDOOHGWKH
cylinderGHWHUPLQHGE\STLDQGR7KHUHJLRQRLVFDOOHGDEDVH,ILLVSHUSHQGLFXODUWRSWKHQWKHF\OLQGHULVFDOOHGD
right cylinderRWKHUZLVHLWLVFDOOHGDQoblique cylinder$right circular cylinderLVIRUPHGZKHQPLVDFLUFXODUUHJLRQDQG
LLVSHUSHQGLFXODUWRS
$QLPSRUWDQWIHDWXUHRIDF\OLQGHUDQGRIDSULVPLQSDUWLFXODUDWOHDVWIURPWKHSRLQWRIYLHZRIYROXPHLVWKDWLIDSODQH
SDUDOOHOWRSLQWHUVHFWVWKHF\OLQGHUWKHQWKHERXQGDU\RIWKHLQWHUVHFWLRQLVFRQJUXHQWWRWKHERXQGDU\RIR7KLVIDFW
VXJJHVWVWKDWWKHYROXPHVRIDSULVPFDQEHGHILQHGE\ V = Ah ZKHUHALVWKHDUHDRIRDQGhLVWKHSHUSHQGLFXODUGLVWDQFH
EHWZHHQWKHSODQHVSDQGT
/HW¶VXVHWKLVIRUPXODWRILQGWKHYROXPHRIDULJKWFLUFXODUF\OLQGHU/HWVEHLWVYROXPHrEHWKHUDGLXVRILWVEDVHDQGhEH
LWVKHLJKW7KHQ V = Ah = πr h Mathematics Basic Guide
31
*LYHQDSODQHUHJLRQRDQGDSRLQWQQRWLQWKHSODQHRIRWKHXQLRQRIDOOWKHVHJPHQWVRIWKHIRUP PQ ZKHUHPLVDSRLQW
RIRLVFDOOHGDS\UDPLG8VLQJPHWKRGVIURPFDOFXOXVLWFDQEHVKRZQWKDWWKHYROXPHRIDS\UDPLGLV Ah ZKHUHALV
WKHDUHDRIRDQGhLVWKHSHUSHQGLFXODUGLVWDQFHEHWZHHQQDQGWKHSODQHFRQWDLQLQJR+RZHYHULIPLVDUHJXODUSRO\JRQDO
UHJLRQWKHQWKLVIRUPXODFDQDOVREHSURYHGXVLQJSURSHUWLHVRISULVPVE\PRUHHOHPHQWDU\PHDQV
/HW¶VILQGWKHYROXPHRIWKHS\UDPLGEHORZZKRVHEDVHLVDE\UHFWDQJOHDQGZKRVHKHLJKWLV
A DQGh 6RV 32
Mathematics Basic Guide
Trigonometry
7ULJRQRPHWULFH[SUHVVLRQVZHUHRULJLQDOO\XVHGDVWRROVXVHGWRFRPSXWHWKHPHDVXUHVRIDQJOHVDQGWKHVLGHVRIWULDQJOHV
7RGD\WKHLUXVHKDVJURZQWRLQFOXGHPDQ\DSSOLFDWLRQVVXFKDVPRGHOLQJSHULRGLFPRWLRQ7KHFLUFOHCRIUDGLXVFHQWHUHG
DWWKHRULJLQLQDQxy±SODQHLVFDOOHGWKHunit circle7KHXQLWFLUFOHFDQEHXVHGWRGHILQHWKHWULJRQRPHWULFIXQFWLRQV
/HWtEHDSRVLWLYHUHDOQXPEHU,IZHWUDYHUVHWKHERXQGDU\RICFRXQWHUFORFNZLVHVWDUWLQJDWWKURXJKt XQLWVWKHILUVW
DQGVHFRQGFRRUGLQDWHVRIWKHSRLQWPtWKDWZHDUULYHDWDUHGHILQHGDVFRVtDQGVLQtUHVSHFWLYHO\6LPLODUO\LIZH
WUDYHUVHWKHERXQGDU\RICFORFNZLVHVWDUWLQJDWWKURXJKtXQLWVWKHILUVWDQGVHFRQGFRRUGLQDWHVRIWKHSRLQWP±tZH
DUULYHDWDUHGHILQHGDVFRV±tDQGVLQ±tUHVSHFWLYHO\P 7KHUHLVQRUHVWULFWLRQRQWKHPDJQLWXGHRIQXPEHUt
DQGWKHSDWKVWKDWZHWDNHRQWKHFLUFXPIHUHQFHRICPLJKWWDNHXVDURXQGCVHYHUDOWLPHV
$VDUHVXOWIRUDQ\UHDOQXPEHUtFRVtDQGVLQtDUHGHILQHG7KHUHDUHIRXURWKHUWULJRQRPHWULFIXQFWLRQVWKDWFDQEH
FRV t
VLQ t
FRW t =
VHF t =
DQG
H[SUHVVHGXVLQJWKHFRVLQHDQGVLQHIXQFWLRQV7KH\DUH WDQt =
VLQt FRV t
FRV t ZKHUHWKHUDWLRLVGHILQHG7KHVHIXQFWLRQVDUHUHIHUUHGWRDVWKHtangentcotangentsecantDQGcosecant
FVF t =
VLQ
t
IXQFWLRQVUHVSHFWLYHO\
7KHGLDJUDPEHORZVKRZVWKHORFDWLRQVRIPtIRUtHTXDOWR
π π
π DQG − y
π
π
3 x
π
3 − 3
*LYHQDQ\UHDOQXPEHUtZHDVVRFLDWHZLWKt ∠ OQPtZKHUHOLVWKHRULJLQDQG Q = FRVt 7KLVDQJOHLVDOZD\VD
π
ULJKWDQJOHDQGFDQEHXVHGDVDQDLGLQILQGLQJWKHFRRUGLQDWHVRIPt:KHQ t = WKLVWULDQJOHLVDGHJUHH
WULDQJOH6LQFHWKHOHQJWKRILWVK\SRWHQXVHLVE\WKH3\WKDJRUHDQWKHRUHPWKHOHJVKDYHOHQJWK
 π
 π     π 
 π
6R P  = 
DQG
 = FRV   VLQ   %\HTXDWLQJFRUUHVSRQGLQJFRRUGLQDWHVZHREWDLQ FRV  =
  
 
   
 
 π
VLQ   =
6LPLODUO\ZHFDQXVHWKLVVDPHWULDQJOHWRJHWKHUZLWKWKHIDFWWKDWWKHILUVWDQGVHFRQGFRRUGLQDWHVRIDSRLQW
 
 
 
DQG VLQ  π  =
LQWKHVHFRQGTXDGUDQWPXVWEHQHJDWLYHDQGSRVLWLYHUHVSHFWLYHO\WRFRQFOXGHWKDW FRV π  = −




 π
 π
%\LQVSHFWLRQ FRV −  = DQG VLQ  −  = − 



Mathematics Basic Guide
33
6LQFHWKHFLUFXPIHUHQFHRICLVʌWKHSRLQWV P t + nπ IRUn,DQLQWHJHUDUHHTXDODQGFRQVHTXHQWO\WKHLUFRUUHVSRQGLQJ
FRRUGLQDWHVDUHHTXDO6RIRUDOOLQWHJHUVn,ZHKDYH FRVt + nπ = FRVt DQG VLQt + nπ = VLQ t 7KHOHQJWKRIOP t LVE\LQVSHFWLRQDQGE\WKH3\WKDJRUHDQ7KHRUHPLWLVDOVR FRV t + VLQ t (TXDWLQJWKHVHYDOXHVDQGVTXDULQJZHKDYHWKHIDPLOLDULGHQWLW\FRV t + VLQ t = 'LYLGLQJERWKVLGHVRIWKLVHTXDWLRQ
E\FRV t DQGVLPSOLI\LQJZHJHW + WDQ t = VHF t DQGE\GLYLGLQJERWKVLGHVRIWKHHTXDWLRQE\VLQ t DQG
VLPSOLI\LQJZHJHWFRW t + = FVF t 7KHVHODVWWKUHHHTXDWLRQVDUHFROOHFWLYHO\NQRZQDVWKHPythagorean identities
0DQ\PRUHLGHQWLWLHVFDQEHREWDLQHGIURPWKHVXPDQGGLIIHUHQFHRIDQJOHIRUPXODVIRUFRVLQHDQGVLQH7KHsum of angles
formula IRUVLQHVWDWHVWKDWIRUDOOUHDOQXPEHUVsDQGt VLQ s + t = VLQ s FRVt + VLQt FRV s %\UHSODFLQJsZLWKtZHJHW
VLQt = VLQ tFRV t + VLQt FRVt = VLQt FRVt ZKLFKLVFDOOHGWKHdouble angle formula for sine
7KXVIDUZHKDYHDYRLGHGGHVFULELQJKRZWRHYDOXDWHWKHWULJRQRPHWULFIXQFWLRQVDWDQ\QXPEHUtZKHUHWKH\DUHGHILQHG
(YHQWKRXJKZHFDQJLYHSUHFLVHGHILQLWLRQVRIWKHYDOXHVRIWKHVHIXQFWLRQVLQJHQHUDOZHFDQRQO\ILQGWKHLUDSSUR[LPDWH
YDOXHV8VLQJPHWKRGVRIFDOFXOXVZHFDQDSSUR[LPDWHVLQtDQGFRVtWRDQ\GHVLUHGGHJUHHRIDFFXUDF\RYHUDJLYHQ
ILQLWHLQWHUYDOE\DSSUR[LPDWLQJWKHPZLWKSRO\QRPLDOIXQFWLRQV7KHYDOXHVWKDWFDOFXODWRUVJLYHIRUWKHVHIXQFWLRQVDUH
DSSUR[LPDWLRQVEDVHGRQUHODWHGLGHDV
π
t LV
:KHQtLVEHWZHHQDQG LWLVE\GHILQLWLRQWKHUDGLDQPHDVXUHRI ∠P t OQ ZKHUH Q = FRVt ,QDGGLWLRQ
π
π
LWVFRUUHVSRQGLQJGHJUHHPHDVXUH:KHQtLVEHWZHHQDQG WKHYDOXHVRIVLQHDQGFRVLQHJLYHXVWKHOHQJWKVRIWKHOHJV
RI¨PtOQFRVtLVWKHOHQJWKRI OQ DQGVLQtLVWKHOHQJWKRIQP t 7KDWLVZHPD\YLHZ¨PtOQDV
Pt
C
VLQt
t
OFRVtQ
π
,IWKHOHQJWKRILWV
a
C
K\SRWHQXVHLVCWKHOHQJWKRIWKHVHJPHQWRSSRVLWHtLVbDQGWKHOHQJWKRIWKHVHJPHQWDGMDFHQWWRtLVaWKHQ =
FRV
t
a
b
b
C
DQG =
7KLVVWDWHPHQWFDQEHUHZULWWHQDV FRV t = DQG VLQt = c
c
VLQ
t
&RQVHTXHQWO\HDFKULJKWWULDQJOHLVVLPLODUWR¨ P t OQ IRUVRPHYDOXHRItEHWZHHQDQG
b
)URPWKHVHHTXDWLRQVZHFDQGHWHUPLQHVLPLODUUDWLRVIRUWKHRWKHUIRXUWULJRQRPHWULFIXQFWLRQVVXFKDV WDQt = a
7HFKQLFDOO\WKHUHDUHWZRVHWVRIWULJRQRPHWU\IXQFWLRQV±±RQHIRUUHDOQXPEHUVDQGDQRWKHUEDVHGRQGHJUHHPHDVXUH:H
FDQGLVWLQJXLVKEHWZHHQWKHVHWZRVHWVRIIXQFWLRQVE\ZULWLQJ&26IRUWKHGHJUHHFRVLQHIXQFWLRQDQGFRVIRUWKHUHDO
 π 
π
s VR&26 s = FRV
s QXPEHUFRVLQHIXQFWLRQ)RUH[DPSOHLIsLVDGHJUHHPHDVXUHLWVUDGLDQPHDVXUHLV
 
+RZHYHUPRVWSHRSOHZULWHERWKIXQFWLRQVDVFRVDQGOHWWKHFRQWH[WRIWKHVLWXDWLRQGHILQHZKLFKLVEHLQJXVHG&DOFXODWRUV
VZLWFKIURPRQHIXQFWLRQWRDQRWKHUE\FKDQJLQJEHWZHHQGHJUHHDQGUDGLDQPRGHV
34
Mathematics Basic Guide
$VVRFLDWHGZLWKWKHWULJRQRPHWULFIXQFWLRQVDUHWKHinverse trigonometric functions7KHVHDUHQRWLQYHUVHVLQWKHRUGLQDU\
VHQVHEHFDXVHWKHVHIXQFWLRQVDUHQRWRQHWRRQH+RZHYHUWKH\FDQDOZD\VEHXVHGWRILQGDQJOHPHDVXUHVEHWZHHQDQG
−
−
GHJUHHV)RUH[DPSOHLItLVEHWZHHQDQGGHJUHHVDQG VLQt = a WKHQt = VLQ a 6RVLQ a FRPSXWHVt6LPLODU
VWDWHPHQWVKROGIRUWKHRWKHULQYHUVHWULJRQRPHWULFIXQFWLRQV
/HW¶VVHHKRZZHFDQXVHWULJRQRPHWU\WRVROYHDULJKWWULDQJOHSUREOHP)LQGWKHPHDVXUHVRIDOOWKHDQJOHVDQGVLGHVRIWKH
WULDQJOHEHORZ7KDWLVVROYHWKHWULDQJOH
s
°
a
a
:HILUVWREVHUYHWKDWLIsLVDGHJUHHPHDVXUHWKHQs° °VRs °,QDGGLWLRQ FRV° =
8VLQJDFDOFXODWRU
VHWWRGHJUHHPRGHZHJHW FRV° = WRWZRGHFLPDOSODFHV6XEVWLWXWLQJWKLVDSSUR[LPDWLRQLQWRWKHSUHYLRXVHTXDWLRQ
a
= VRa = :HFRXOGKDYHDOVRXVHGWKH3\WKDJRUHDQWKHRUHPWRILQGa
ZHJHW
Mathematics Basic Guide
35
Calculus
7KHQRWLRQWKDWGLVWLQJXLVKHVFDOFXOXVIURPRWKHUVXEMHFWVZLWKLQPDWKHPDWLFVLVWKHFRQFHSWRIWKHlimit of a function7KLV
FRQFHSWLVXVHGWRGHVFULEHWKHEHKDYLRURIWKHYDOXHVRIIXQFWLRQVZKHQWKHDUJXPHQWLVHLWKHUELJVPDOOQHJDWLYHDQGODUJH
LQDEVROXWHYDOXHRUFORVHWREXWQRWHTXDOWRDJLYHQQXPEHU
/HW¶VGHVFULEHWKHEHKDYLRURI f x = x + ZKHQxLVFORVHWRDQGQRWHTXDOWR:KHQxLVFORVHWRDQGQRWHTXDOWR
xLVFORVHWRVR f x = x + LVFORVHWR+HQFH f x LVFORVHWRZKHQxLVFORVHWRDQGQRWHTXDOWR:HFDQ
VD\HYHQPRUH±±ZHFDQPDNH f x DVFORVHWRDVZHZLVKVLPSO\E\FKRRVLQJDQ\UHSODFHPHQWIRUxVXIILFLHQWO\FORVHWR
EXWQRWHTXDOWR7KLVODVWVHQWHQFHLVVXPPDUL]HGE\ZULWLQJ OLP x + = DQGLVUHDG³WKHOLPLWRI x + DVxWHQGV
x→ WRLV´
7KHSURFHVVZHXVHGWRILQGWKLVOLPLWLVFDOOHGDthought experiment+RZHYHUWKHUHDUHVLWXDWLRQVLQZKLFKDWKRXJKW
x
H[SHULPHQWFDQQRWEHSHUIRUPHG)RUH[DPSOHLIxDQGyDUHFORVHWRWKHQQRWKLQJFDQEHVDLGRIWKHYDOXHRI 7RVHH
y
x
−
−
−
−
WKLVOHW¶VDVVXPHWKDW DQG DUHERWKFORVHWR,Ix = DQG y = WKHQ = = ,QWHUFKDQJLQJ
y
x
WKHVHYDOXHVZHJHW = y
x
E\NQRZLQJWKHEHKDYLRURILWV³SDUWV´xDQGyZKHQWKH\DUHFORVHWR
y
7KLVVLWXDWLRQLVTXLWHGLIIHUHQWIURPZKDWZHH[SHULHQFHGDERYHZKHUHZHGHWHUPLQHGWKDWxZDVFORVHVLPSO\E\
NQRZLQJZKDWQXPEHUVLWVIDFWRUVZHUHFORVHWR7KHGHILQLWLRQRIDOLPLWLPSOLHVWKDWLIWZRIXQFWLRQVRIxKDYHWKHVDPH
YDOXHVIRUDOOUHSODFHPHQWVRI x ≠ c DQGFORVHWRcWKHQWKHLUOLPLWVDWcDUHHTXDO7KLVREVHUYDWLRQLVRIWHQXVHGWRUHSODFHD
JLYHQOLPLWRQZKLFKDWKRXJKWH[SHULPHQWFDQQRWEHDSSOLHGZLWKDOLPLWRQZKLFKDWKRXJKWH[SHULPHQWFDQEHDSSOLHG
x − )RUH[DPSOHOHW f x =
:KHQxLVFORVHWRDQGQRWHTXDOWRERWKQXPHUDWRUDQGGHQRPLQDWRUDUHFORVHWR6R
x −
x − x +
x − x − =
= x + IRUx ≠ 6R
+RZHYHU
ZHFDQQRWXVHDWKRXJKWH[SHULPHQWWRILQG OLP
x−
x −
x→ x − x − OLP
= OLP x + = VLQFHx + LVFORVHWRZKHQHYHUxLVFORVHWRDQGQRWHTXDOWR
x→ x − x →
&RQVHTXHQWO\ZHFDQQRWGHWHUPLQHWKHEHKDYLRURI
(
)(
)
∆y
$PRQJWKHPRVWLPSRUWDQWW\SHVRIOLPLWVLQFDOFXOXVDUHWKRVHRIWKHIRUP OLP
ZKHUHyLVDIXQFWLRQRIx/HWcEHD
∆
→
∆x
x
IL[HGQXPEHULQWKHGRPDLQRI y = f x 7KHQIRUDQ\QXPEHUxFORVHWRcDQGQRWHTXDOWRc x = c + h IRUVRPHQRQ]HUR
QXPEHUhFORVHWR6RWKHFKDQJHLQxIURPcWR c + h LVҏ ∆ x = c + h − c = h ,QDGGLWLRQWKHFRUUHVSRQGLQJFKDQJHLQyLV
∆y
f c + h − f c ∆ y = f c + h − f c 7KHUHIRUHE\VLPSOHVXEVWLWXWLRQZHFDQVHHWKDW OLP
= OLP
h
x
→
∆ → ∆x
h
∆y
ZKHQWKHLQLWLDOSRLQW c LVKHOGIL[HGDQGWKHILQDOSRLQW c + h DSSURDFKHV c ∆x
)RUWKLVUHDVRQLWLVFDOOHGWKHLQVWDQWDQHRXVUDWHRIFKDQJHLQ y ZLWKUHVSHFWWR x DW c ,WPHDVXUHVWKHUDWHDWZKLFK y
FKDQJHVUHODWLYHWR x DV x SDVVHVWKURXJK c DWDQ\QRQ]HURVSHHGRUGLUHFWLRQRQDUHDOQXPEHUOLQH
7KLVOLPLWPHDVXUHVWKHOLPLWLQJYDOXHRI
,QVWDQWDQHRXVYHORFLW\LVDVSHFLDOFDVHRILQVWDQWDQHRXVUDWHRIFKDQJH,I y = f t LVWKHSRVLWLRQRIDQREMHFWDWWLPH t WKHQ
f c + h − f c
LVFDOOHGWKHLQVWDQWDQHRXVYHORFLW\DWWLPH c IRULWPHDVXUHVWKHUDWHDWZKLFKLWVSRVLWLRQ y FKDQJHV
OLP
h→
h
UHODWLYHWRWLPHDVWKHWLPH t SDVVHVWKURXJK c 7KHUDWHRIFKDQJHRIYHORFLW\LVFDOOHGacceleration
36
Mathematics Basic Guide
7KLVVDPHOLPLWORRNVVXUSULVLQJO\VLPLODUWRWKHIRUPXODIRUVORSHSUHVHQWHGHDUOLHU,WLVXVHGWRGHILQHWKHVORSHRIDOLQHWKDW
LVWDQJHQWWRWKHJUDSKRIDIXQFWLRQDWDSRLQW&RQVLGHUWKHIROORZLQJJUDSKRI y = f x y
f
L
T
x
cch
f c + h − f c
h
f c + h − f c
7KHVORSHRITLVGHILQHGDVWKHOLPLWLQJVORSHRILDVhWHQGVWR7KDWLVWKHVORSHRITLV OLP
h
h→
7KHOLQHTLVFDOOHGWKHWDQJHQWOLQHWRfDWc/LQHLLVFDOOHGDVHFDQWWRWKHJUDSKRIf7KHVORSHRILLV
%HFDXVH OLP
h→
f c + h − f c
KDVVRPDQ\XVHVLWLVJLYHQDQDPH,WLVFDOOHGWKHderivative RIf DWcDQGLVGHQRWHGE\f
c
h
:HFDQILQGWKHVORSHVRIOLQHVWDQJHQWWRf DWDQ\SRLQWVLPSO\E\UHSODFLQJcLQWKHOLPLWDERYHZLWKx/HW¶VILQGf
xZKHQ
f x = x − x + 8VLQJWKHGHILQLWLRQRIf
xZHJHW
f x + h − f x
f
x OLP
h
h→
( x + h ) − ( x + h ) +  −  x − x + 

 
= OLP 
h→
h
x + xh + h − x − h + − x + x − = OLP
h→
h
h x − + h
= OLP
h
h
→
= OLP x − + h = x − [
]
h→ (
)
7KXVWKHVORSHRIWKHOLQHWDQJHQWWRWKHJUDSKRIf DWWKHSRLQW x f x LVf
x x±,QSDUWLFXODUWKHVORSHRIWKH
WDQJHQWOLQHZKHQx = LVf
+LJKDQGORZSRLQWVRIDJUDSKRFFXUDWSRLQWVDWZKLFKWKHWDQJHQWOLQHLVKRUL]RQWDOPHDQLQJLWKDVVORSHHTXDOWR7KH
SRLQWVRIWKHJUDSKWKDWKDYHKRUL]RQWDOWDQJHQWVIRUWKHSUHFHGLQJIXQFWLRQFDQEHREWDLQHGE\VROYLQJ x − = 6ROYLQJ
WKLVHTXDWLRQZHJHWx = 6RWKHRQO\SRLQWRIWKHJUDSKZKRVHWDQJHQWOLQHLVKRUL]RQWDOLV ( f ) = ( − ) %\
LQVSHFWLRQWKHJUDSKRIfLVDSDUDERODVRWKHYHUWH[LVWKHRQO\SRLQWRIWKHJUDSKRIfZKRVHWDQJHQWOLQHLVKRUL]RQWDO
+HQFHWKHYHUWH[LV±ZKLFKLPSOLHVWKDWWKHPLQLPXPYDOXHRIfLV±
Mathematics Basic Guide
37
Statistics
6WDWLVWLFVLVWKHVFLHQFHRIOHDUQLQJIURPGDWD*LYHQDVHW$RIDQ\W\SHRIREMHFWVGDWDRQ$LVDVHWIRUPHGE\HYDOXDWLQJRU
PHDVXULQJDJLYHQFKDUDFWHULVWLFRIHDFKHOHPHQWRI$,I$UHSUHVHQWVWKHFRPSOHWHVHWRIREMHFWVXQGHUGLVFXVVLRQ±±WKH
universe±±WKHQWKHVHWRIGDWDRQ$LVFDOOHGWKHpopulation7KHGDWDRQWKHXQLYHUVHPXVWEHZHOOGHILQHGEXWQHHGQRWEH
NQRZQ,I%LVDQRQHPSW\SURSHUVXEVHWRI$WKHQWKHFRUUHVSRQGLQJVHWRIGDWDRQ%LVFDOOHGDsample.$FKDUDFWHULVWLFRI
DSRSXODWLRQLVNQRZQDVDparameter,DQGDFKDUDFWHULVWLFRIDVDPSOHLVNQRZQDVDstatistic. (DFKHOHPHQWRIWKHGDWDLV
FDOOHGDscore RU observation.
Descriptive statisticsDQGinferential statisticsDUHWZRPDLQDUHDVRIVWDWLVWLFV'HVFULSWLYHVWDWLVWLFVLQFOXGHVRUJDQL]LQJGDWD
UHSUHVHQWLQJGDWDDQGDQDO\]LQJGDWD,QIHUHQWLDOVWDWLVWLFVLQFOXGHVPDNLQJSUHGLFWLRQVDERXWWKHSRSXODWLRQIURPVDPSOHVRI
WKHSRSXODWLRQ
:KHQGDWDLQYROYHVQXPEHUVDQGHLWKHUWKHRUGHULQJGLIIHUHQFHRUPDJQLWXGHRIWKHVHQXPEHUVLVPHDQLQJIXOWKHQWKHGDWD
LVVDLGWREHquantitative2WKHUZLVHLWLVVDLGWREHqualitative7KHWHVWVVFRUHVRQDJLYHQH[DPDQGWKHZHLJKWVRIDJURXS
RISHRSOHDUHH[DPSOHVRITXDQWLWDWLYHGDWD7KHSROLWLFDOSDUW\DIILOLDWLRQVRIDJURXSRISHRSOHZRXOGEHDQH[DPSOHRI
TXDOLWDWLYHGDWD
Descriptive Statistics
'DWDLVRIWHQRUJDQL]HGLQZD\VWKDWPDNHLWPRUHXQGHUVWDQGDEOHFrequency distributions DUHFRPPRQO\XVHGWRRUJDQL]H
GDWD$IUHTXHQF\GLVWULEXWLRQDVVLJQVWRHDFKGLVWLQFWVFRUHWKHQXPEHURIWLPHVLWRFFXUV:KHQWKHQXPEHURIVFRUHVLV
ODUJHWKHVFRUHVDUHRIWHQJURXSHGLQWRFODVVHVDQGHDFKFODVVLVDVVLJQHGWKHVXPRIWKHIUHTXHQFLHVIRUHDFKPHPEHURIWKH
FODVV
/HW¶VFRQVLGHUWKHIROORZLQJPRQWKO\SULFHVIRUDGVLQDVDPSOHRIDUHDQHZVSDSHUVnewspaper ad price data
7KHWDEOHEHORZLVDIUHTXHQF\GLVWULEXWLRQREWDLQHGE\JURXSLQJWKHGDWDLQWRFODVVHV
Frequency Distribution:
&ODVV
%RXQGDU\
±
±
±
±
Newspaper ad price data
7DOO\
)UHTXHQF\
_
______
__
_
$UHODWHGFRQFHSWLVDrelative frequency distributionLQZKLFKHDFKFODVVRUVFRUHLVDVVLJQHGLWVIUHTXHQF\GLYLGHGE\WKH
WRWDOQXPEHURIVFRUHV)ROORZLQJLVDUHODWLYHIUHTXHQF\GLVWULEXWLRQIRUWKHQHZVSDSHUDGSULFHGDWD
Relative Frequency Distribution: Newspaper ad price data
&ODVV
%RXQGDU\
7DOO\
)UHTXHQF\
±
±
±
±
_
______
__
_
5HODWLYH
)UHTXHQF\
)UHTXHQF\GLVWULEXWLRQVDQGUHODWLYHIUHTXHQF\GLVWULEXWLRQVFDQDOVREHUHSUHVHQWHGXVLQJEDUJUDSKVFDOOHGhistograms
ZKHUHWKHKHLJKWRIWKHEDUUHSUHVHQWVHLWKHUWKHIUHTXHQF\RUWKHUHODWLYHIUHTXHQF\DQGWKHZLGWKRIWKHEDUUHSUHVHQWVWKH
FODVV
38
Mathematics Basic Guide
)RUH[DPSOHDQDQDO\VLVRIWUDLQGHUDLOPHQWLQFLGHQWVVKRZHGWKDWGHUDLOPHQWVZHUHFDXVHGE\EDGWUDFNZHUH
DWWULEXWHGWRKXPDQHUURUZHUHGXHWRIDXOW\HTXLSPHQWDQGKDGRWKHUFDXVHVEDVHGRQGDWDIURPWKH)HGHUDO5DLOURDG
$GPLQLVWUDWLRQ7KHbar graphRIWKLVGDWDFDQEHJLYHQDVIROORZV
Train Derailment Data
25
Bad track
20
15
10
5
Human error
Faulty
equipment
Other
0
,QJHQHUDOWKHEDUVDUHQRWQHFHVVDULO\DGMDFHQWWRHDFKRWKHUDQGDUHQRWQHFHVVDULO\RUGHUHGDFFRUGLQJWRWKHLUYDOXHV
Pie chartsRIIHUDQRWKHUXVHIXOPHDQVIRUXVWRUHSUHVHQWUHODWLYHIUHTXHQFLHV(DFKVFRUHRUFODVVLVDVVLJQHGDVHFWRURID
FLUFOHLQZKLFKWKHUDWLRRIWKHDUHDRIWKHVHFWRUWRWKHDUHDRIWKHFLUFOHHTXDOVLWVUHODWLYHIUHTXHQF\7KHSLHFKDUWEHORZ
UHSUHVHQWVWKHWUDLQGHUDLOPHQWGDWD.
Bad track
Human error
Faulty
equipment
Other
Measures of Central Tendencies
$QRWKHUZD\WRGHVFULEHGDWDLVWRWDNHDPHDVXUHPHQWRILW7ZRLPSRUWDQWW\SHVRIPHDVXUHVDUHmeasures of central
tendencyDQGmeasures of dispersion0HDVXUHVRIFHQWUDOWHQGHQF\ILQGSRLQWVWKDWLQVRPHVHQVHEDODQFHWKHGDWD7KHVH
EDODQFHSRLQWVDUHRIWHQYLHZHGDVFHQWHUVRIWKHGDWD7KHarithmetic meanRUVLPSO\WKHmeanRIWKHGDWDLVWKHVXPRIWKH
GDWDGLYLGHGE\WKHQXPEHURIGDWDHOHPHQWV7KHPHDQRIDSRSXODWLRQLVGHQRWHGE\ µ DQGWKHPHDQRIDVDPSOHLV
GHQRWHGE\ x ,I x ҏLVWKHPHDQRIDVDPSOHDQG x LVDPHPEHURIWKHVDPSOHWKHQ x − x LVDPHDVXUHRIKRZIDU x LVIURP
x 7KHVXPRIDOOH[SUHVVLRQVRIWKHIRUP x − x IRU x OHVVWKDQ x DOZD\VHTXDOVWKHVXPRIWKHH[SUHVVLRQVRIWKHIRUP
x − x IRU x JUHDWHUWKDQ x GHPRQVWUDWLQJDEDODQFHRIWKHGDWDDERXW x $VLPLODUSURSHUW\KROGVIRUWKHSRSXODWLRQPHDQ
7KHPHDQRIWKHQHZVSDSHUDGVFRUHVFDQEHIRXQGDVIROORZV
+ + + + + + + + + =
= *LYHQDGDWDVHWRI n HOHPHQWVLIZHSXWWKHnHOHPHQWVLQQRQGHFUHDVLQJRUGHUUDQNWKHGDWDVD\ x xn , WKHQWKHPHGLDQ
LVx n + LI n LVRGGDQGLVWKHDYHUDJHRIxn DQGx n + ZKHQ n LVHYHQ
Mathematics Basic Guide
39
7KHPHGLDQRIWKHSRSXODWLRQLVGHQRWHGE\MDQGWKHPHGLDQRIDVDPSOHLVGHQRWHGE\ m ,QERWKFDVHVWKHQXPEHURI
VFRUHVWKDWDUHJUHDWHUWKDQWKHPHGLDQLVHTXDOWRWKHQXPEHURIVFRUHVWKDWDUHOHVVWKDQWKHPHGLDQZKLFKGHPRQVWUDWHVWKDW
WKHGDWDLVLQVRPHVHQVHEDODQFHGDERXWWKHPHGLDQ
7KHQXPEHURIQHZVSDSHUVFRUHVLVDQHYHQQXPEHUVRWKHPHGLDQLVWKHDYHUDJHRIWKHILIWKDQGWKVFRUHVZKLFKDUH
+ = DQGUHVSHFWLYHO\+HQFHWKHPHGLDQLV
2WKHUPHDVXUHVRIFHQWUDOWHQGHQF\DUHWKHmidrange±±WKHDYHUDJHRIWKHPLQLPXPDQGPD[LPXPVFRUHV±±DQGWKHmode±±
WKHPRVWIUHTXHQWO\RFFXUULQJVFRUHLIWKHUHLVRQHQuartiles DQGpercentiles DUHJHQHUDOL]DWLRQVRIWKHPHGLDQ,QERWK
FDVHVWKHGDWDLVSXWLQQRQGHFUHDVLQJRUGHU7KHILUVWTXDUWLOHLVWKHPHGLDQRIWKHVFRUHVWKDWOLHWRWKHOHIWRIWKHPHGLDQRI
WKHGDWDVHWDQGLVWKXVWKHQXPEHUEHORZZKLFKSHUFHQWRIWKHVFRUHVIDOO7KHWKLUGTXDUWLOHLVWKHPHGLDQRIWKHVFRUHV
WKDWOLHWRWKHULJKWRIWKHPHGLDQRIWKHGDWDVHWDQGLVWKXVWKHQXPEHUEHORZZKLFKSHUFHQWRIWKHVFRUHVIDOO6LPLODUO\
SHUFHQWLOHVDUHVWDWLVWLFVWKDWGHVFULEHWKHQXPEHUEHORZZKLFKWKHJLYHQSHUFHQWDJHRIGDWDSRLQWVIDOO6RWRVD\WKDWD
VFRUHLVLQWKHSHUFHQWLOHLVWRVD\WKDWSHUFHQWRIWKHVFRUHVIDOOEHORZWKDWYDOXH)RUSHUFHQWLOHVWKHQXPEHURIVHWVRI
VFRUHVLVHDFKFRQWDLQLQJURXJKO\SHUFHQWRIWKHVFRUHVDQGWKHVHWVDUHVHSDUDWHGE\PDUNVDUHFDOOHGSHUFHQWLOHV
0HDVXUHVRIGLVSHUVLRQDUHRIWHQXVHGWRPHDVXUHWKHVSUHDGRIWKHGDWDDERXWDFHQWHU*HQHUDOO\WKHJUHDWHUWKHVSUHDGLV
WKHODUJHUWKHGLVSHUVLRQ2QHRIWKHVLPSOHVWPHDVXUHVRIYDULDWLRQLVWKHrange PD[LPXPVFRUHPLQXVWKHPLQLPXPVFRUH
6LQFHWKHUDQJHLVEDVHGRQRQO\WZRVFRUHVLWPD\QRWUHIOHFWWKHRYHUDOOYDULDWLRQ$PHDVXUHLQYROYLQJDOOWKHGDWDPLJKWEH
EHWWHU$SRSXODUPHDVXUHRIGLVSHUVLRQXVLQJDOOWKHVFRUHVLVWKHvariance.,I x xn LVQXPHULFDOGDWDIURPDSRSXODWLRQ
n
WKHQWKHYDULDQFHLVGHQRWHGE\ σ ZKHUH σ =
∑ (x − µ)
i
i=
n
n
ZKHUH
∑ (x − µ) LVWKHVXPRIWKHVTXDUHGGLIIHUHQFHV
i
i =
EHWZHHQHDFKGDWDSRLQWDQGWKHPHDQ,I x xn LVGDWDIURPDVDPSOHWKHYDULDQFHLVGHQRWHGE\sZKHUH
n
∑ (x − x)
i
s =
i=
n−
7KHYDULDQFHIRUWKHQHZVSDSHUDGSULFHGDWDLV
( − ) + ( − ) + " + ( − ) = = − ,QFRPSXWLQJWKHYDULDQFHRIDVDPSOHWKHVXPLVGLYLGHGE\RQHOHVVWKDQWKHQXPEHURIVFRUHVEHFDXVHVXFKGLYLVLRQOHDGV
WRDQunbiased estimateRIWKHSRSXODWLRQYDULDQFH(YHU\VWDWLVWLFRIDVDPSOHLVFRPSXWHGWRHVWLPDWHWKHFRUUHVSRQGLQJ
SDUDPHWHULQWKHSRSXODWLRQ)RUDJLYHQFKDUDFWHULVWLFRIWKHSRSXODWLRQLIWKHPHDQRIDOOVDPSOHVWDWLVWLFVRIDJLYHQVL]HLV
HTXDOWRWKHFRUUHVSRQGLQJSDUDPHWHURIWKHSRSXODWLRQLWLVNQRZQDVDQXQELDVHGHVWLPDWHRIWKHSDUDPHWHU
7KHVTXDUHURRWRIWKHYDULDQFHLVNQRZQDVWKHstandard deviationZKLFKLVDOVRXVHGDVDPHDVXUHRIGLVSHUVLRQ,IDGDWD
GLVWULEXWLRQLVPRXQGVKDSHGWKHQDSSUR[LPDWHO\SHUFHQWRIWKHYDOXHVOLHZLWKLQWZRVWDQGDUGGHYLDWLRQVRIWKHPHDQ
7KLVSURSHUW\SOD\VDVLJQLILFDQWUROHLQVWDWLVWLFDOLQIHUHQFHDQGZLOOEHGLVFXVVHGLQGHWDLOLQWKHLQIHUHQWLDOVWDWLVWLFVVHFWLRQ
Inferential Statistics
6DPSOHLQIRUPDWLRQLVXVHGWRPDNHLQIHUHQFHVDERXWXQNQRZQSRSXODWLRQSDUDPHWHUVYLDVDPSOHVWDWLVWLFV)RUH[DPSOHLI
WKHWUDLQGHUDLOPHQWGDWDLVFRQVLGHUHGWREHDUDQGRPVDPSOHRIWUDLQGHUDLOPHQWVRQHPD\PDNHDVWDWHPHQWOLNH
³DSSUR[LPDWHO\SHUFHQWRIDOOWUDLQGHUDLOPHQWVDUHFDXVHGE\KXPDQHUURU´7KDWLVVDPSOHLQIRUPDWLRQLVXVHGWRPDNH
LQIHUHQFHVDERXWDQXQNQRZQSRSXODWLRQSHUFHQWDJH
$VVXPLQJWKDWWKHQHZVSDSHUDGGDWDLVDUDQGRPVDPSOHIURPDSRSXODWLRQRIQHZVSDSHUVRQHPD\PDNHDVWDWHPHQWVXFK
DV³WKHPHDQDGSULFHRIVXFKQHZVSDSHUVFDQEHHVWLPDWHGDV´$QXQNQRZQSRSXODWLRQPHDQLVHVWLPDWHGXVLQJD
40
Mathematics Basic Guide
VDPSOH6XFKDPHWKRGRIHVWLPDWLRQIRUSRSXODWLRQSDUDPHWHUVXVLQJWKHFRUUHVSRQGLQJVDPSOHVWDWLVWLFV\LHOGVDpoint
estimate)RUDJLYHQGLVWDQFH d DQGSRLQWHVWLPDWH u LQIRUPDWLRQDERXWWKHSRSXODWLRQGLVWULEXWLRQFDQEHXVHGWRILQGD
ORZHUERXQGRQWKHSUREDELOLW\WKDWWKHSDUDPHWHUOLHVLQ u − d u + d 7KHUHVXOWLVNQRZQDVDQinterval estimate
2QWKHRWKHUKDQGDOLNHOLKRRGFDQEHFDOFXODWHGXQGHUDK\SRWKHVLVDQGWKHQDFODLPFDQEHVXSSRUWHGRUUHIXWHGEDVHGRQ
WKHVDPSOHLQIRUPDWLRQ7KLVLVNQRZQDVtesting a statistical hypothesis7RGHPRQVWUDWHWRSLFVVXFKDVLQWHUYDOHVWLPDWHVDQG
WHVWLQJVWDWLVWLFDOK\SRWKHVHVZHZLOOQHHGWREHIDPLOLDUZLWKWKHQRWLRQVRISUREDELOLW\SUREDELOLW\GLVWULEXWLRQVDQG
VDPSOLQJGLVWULEXWLRQV
ProbabilityPHDVXUHVWKHFKDQFHWKDWDQRXWFRPHRIDQe[periment FDQRFFXU,WLVWKHWRROWKDWHQDEOHVVWDWLVWLFLDQVWRXVH
LQIRUPDWLRQLQDVDPSOHWRPDNHLQIHUHQFHVDERXWDSRSXODWLRQ,QLWVVLPSOHVWIRUPWKHSUREDELOLW\RIDQRXWFRPHLVURXJKO\
WKHSHUFHQWRIWKHWLPHLWRFFXUVZKHQWKHH[SHULPHQWLVUHSHDWHGDODUJHQXPEHURIWLPHV,IDQH[SHULPHQWKDVPRUHWKDQRQH
RXWFRPHHDFKLVDQXPEHUDQGHDFKQXPEHUKDVDSUREDELOLW\WKHQWKHUHVXOWRIWKHH[SHULPHQWLVFDOOHGDrandom variable
)RUH[DPSOHLI X GHQRWHVWKHQXPEHURIGRWVRQWKHWRSIDFHRIDJLYHQGLHDIWHULWKDVEHHQUROOHGWKHQ X LVDUDQGRP
YDULDEOH$UDQGRPYDULDEOHLVdiscreteLILWFDQWDNHRQO\DILQLWHQXPEHURIYDOXHVRULIWKHYDOXHVLWFDQWDNHRQFDQEHSXW
LQWRRQHWRRQHFRUUHVSRQGHQFHZLWKWKHQDWXUDOQXPEHUV
$continuous random variable LVDUDQGRPYDULDEOHZKRVHYDOXHVFDQEHSXWLQWRRQHWRRQHFRUUHVSRQGHQFHZLWKWKHUHDO
QXPEHUV$discrete probability distribution±±DOVRNQRZQDVDprobability mass functionSPI––LVIRUPHGE\DVVLJQLQJHDFK
RXWFRPHRIDQH[SHULPHQWWRLWVSUREDELOLW\
,QDFRQWLQXRXVGLVWULEXWLRQHDFKRXWFRPHLVDVVLJQHGLWVSUREDELOLW\GHQVLW\7KHSUREDELOLW\RIDQLQWHUYDORIRXWFRPHVLV
GHILQHGDVWKHDUHDRIWKHUHJLRQWKDWOLHVEHORZWKHJUDSKRIWKHSUREDELOLW\GLVWULEXWLRQIXQFWLRQDQGDERYHWKHLQWHUYDO7KH
cumulative distribution function FGI RIDUDQGRPYDULDEOH X LVJLYHQE\ F X = P X ≤ x 7KHFGILVDPHDVXUHRIWKH
DFFXPXODWLRQRISUREDELOLW\XSWRDQGLQFOXGLQJ x
0HDVXUHVRIFHQWUDOWHQGHQF\DQGPHDVXUHVRIGLVSHUVLRQDUHDOVRDVVLJQHGWRSUREDELOLW\GLVWULEXWLRQV,I X LVDGLVFUHWH
xp x = µWKHSRSXODWLRQPHDQ7KHvariance LVWKHPHDQ
UDQGRPYDULDEOHWKHPHDQRUWKHexpected value RI X E X =
x
x − µ p x DQGWKHcovarianceEHWZHHQ
RIVTXDUHGGHYLDWLRQVIURPWKHSRSXODWLRQPHDQ σ = V X = E X − µ =
x
WZRYDULDEOHV X DQG Y LVGHILQHGDV COV X Y = E X − E X Y − E Y ∑
∑
Binomial Experiments
$QH[SHULPHQWRIWHQFRQVLVWVRIUHSHDWHGWULDOVHDFKRIZKLFKFDQUHVXOWLQRQHRIWZRSRVVLEOHRXWFRPHVsuccess RUfailure.
7KLVLVWUXHLQWHVWLQJDVVHPEO\OLQHLWHPVZKHUHILQGLQJQRQGHIHFWLYHLWHPVDQGGHIHFWLYHLWHPVFRUUHVSRQGWRVXFFHVVDQG
IDLOXUHUHVSHFWLYHO\
$binomial e[periment LVRQHWKDWSRVVHVVHVWKHIROORZLQJSURSHUWLHV
•
•
•
7KHH[SHULPHQWFRQVLVWVRI n LQGHSHQGHQWWULDOV
(DFKWULDOUHVXOWVLQHLWKHUsuccess RUfailure.
7KHSUREDELOLW\RIVXFFHVV p UHPDLQVFRQVWDQWIURPWULDOWRWULDO
,IDELQRPLDOWULDOFDQUHVXOWLQVXFFHVVZLWKSUREDELOLW\ p DQGIDLOXUHZLWKSUREDELOLW\ q = − p WKHQWKHSUREDELOLW\
 n
 n
GLVWULEXWLRQRIWKHQXPEHURIVXFFHVVHVLQnWULDOVLV B n p = b x n p =   p x q n −x x = n ZKHUH   UHSUHVHQWV
 x
 x
 n
n
WKHQXPEHURIZD\V x QXPEHURIVXFFHVVHVFDQRFFXULQ n WULDOVDQGFDQEHFRPSXWHGDV   =
ZKHUH
 x  x n − x n= n n −n − ⋅⋅ ⋅ ⋅ DQG= (
Mathematics Basic Guide
)
41
7KHPHDQRIDELQRPLDOGLVWULEXWLRQLVµ = E X = np DQGWKHVWDQGDUGGHYLDWLRQRIDELQRPLDOGLVWULEXWLRQLV
σ = V X =
npq Normal Probability Distributions
7KHnormal RUGaussian GLVWULEXWLRQLVWKHFRUQHUVWRQHRIPRVWPHWKRGVRIHVWLPDWLRQDQGK\SRWKHVLV0DQ\FRQWLQXRXV
UDQGRPYDULDEOHVVXFKDVELUWKZHLJKWEORRGSUHVVXUHHWFWHQGWRIROORZDQRUPDOGLVWULEXWLRQ5DQGRPYDULDEOHVWKDWDUH
QRWQRUPDOO\GLVWULEXWHGPD\RIWHQEHDSSUR[LPDWHGE\WKHQRUPDOGLVWULEXWLRQ/HW X EHDQRUPDOO\GLVWULEXWHGUDQGRP
YDULDEOHZLWKPHDQ µ DQGYDULDQFH σ 7KHQ X KDVDSGISUREDELOLW\GHQVLW\IXQFWLRQJLYHQE\
N µ σ = f x µ σ =
πσ
e
−
σ x − µ − ∞ < x < ∞
$Q\QRUPDOGLVWULEXWLRQPD\EHWUDQVIRUPHGWRWKHstandard normal distributionXVLQJWKHWUDQVIRUPDWLRQ Z =
X −µ
7KH
σ
UDQGRPYDULDEOH Z KDVDQRUPDOGLVWULEXWLRQZLWKPHDQ µ = DQGYDULDQFH σ = /HW X KDYHDQRUPDOGLVWULEXWLRQZLWKPHDQDQGYDULDQFH/HW¶VILQGWKHSUREDELOLW\RI X EHLQJEHWZHHQDQG
8VLQJDVWDQGDUGQRUPDOWDEOHZHKDYH
 − X − − 
P < X < = P
= P < Z < = − = <
<

 ,IDVDPSOHRIZHLJKWVXDUHN µ = σ = DQG P X > x = ZKDWLVWKHYDOXHRI x "
)URPDVWDQGDUGQRUPDOWDEOH
 X − x − 
P X > x = P
= P Z > z = ZKHUHz = >

 6R z =
x −µ
PHDQVWKDW =
σ
x − DQG x = Normal as Approximation to Binomial
X −µ
LVDSSUR[LPDWHO\ N 7KDWLVLI X LV B n p WKHQZHPD\DSSUR[LPDWH P a ≤ X ≤ b
σ
E\WKHDUHDXQGHUD N np npq FXUYHIURPa − WRb + 7KLVDSSUR[LPDWLRQLVQRUPDOO\XVHGZKHQ np > DQG nq > ,I X LV B n p WKHQ Z =
%\7KH&HQWUDO/LPLW7KHRUHPLI X LVWKHPHDQRIDUDQGRPVDPSOHRIVL]H n WDNHQIURPDSRSXODWLRQZLWKPHDQ µ DQG
YDULDQFH σ WKHQWKHGLVWULEXWLRQRI Z =
X −µ
LVDSSUR[LPDWHO\ N IRUODUJH n n ≥ σ n
Estimates and Sample Sizes
(VWLPDWLRQLVDW\SHRIVWDWLVWLFDOLQIHUHQFHWKDWGHDOVZLWKSUHGLFWLQJWKHYDOXHVRISRSXODWLRQSDUDPHWHUVXVLQJWKHVDPSOH
LQIRUPDWLRQIURPWKHSRSXODWLRQ7KHUHDUHWZRW\SHVRIHVWLPDWLRQpoint estimationDQGinterval estimation7KHVDPSOH
PHDQ X LVDQH[DPSOHRIDSRLQWHVWLPDWHRIWKHSRSXODWLRQPHDQ µ 8VLQJWKH&HQWUDO/LPLW7KHRUHPRQHFDQILQGD
42
Mathematics Basic Guide
σ
SHUFHQWFRQILGHQFHLQWHUYDOHVWLPDWHRI µ DV X ± UHSODFH σ ZLWK S LILWLVXQNQRZQXVLQJWKHIDFWWKDW
n


X −µ
σ
P − <
<  = 7KHWHUP LVNQRZQDVWKHerror bound DQGLVGHQRWHGE\ B )RUJLYHQYDOXHVRI
n
σ n


 σ 
B DQGσRQHFDQVROYHIRU n DV n = 
7KHQXPEHULVRQO\YDOLGIRUSHUFHQWDQGLVREWDLQHGIURPWKH
B 

VWDQGDUGQRUPDOWDEOH,WZLOOEHGLIIHUHQWIRURWKHUSHUFHQWDJHV
Estimates and Sample Sizes of Proportions
∧
$SRLQWHVWLPDWHRIWKHSRSXODWLRQSURSRUWLRQ p LVWKHVDPSOHSURSRUWLRQ p = X
ZKHUH X LVWKHQXPEHURIVXFFHVVHVLQ
n
n LQGHSHQGHQW%HUQRXOOLWULDOV8VLQJWKH&HQWUDO/LPLW7KHRUHPRQHFDQILQGDSHUFHQWFRQILGHQFHLQWHUYDOHVWLPDWHRI
∧


∧
p−p
pq
<  = DQGE\UHSODFLQJ p ZLWK p LQWKH
XVLQJWKHIDFWWKDW P  − <
p DV p± n


pq n
∧
∧ ∧


GHQRPLQDWRU7KHWHUP pq n LVNQRZQDVWKHHUURUERXQGDQGLVGHQRWHGE\ B )RUDJLYHQYDOXHRI B RQHFDQVROYH
pq
XVLQJ p = ZKHQLWLVXQNQRZQ7KHQXPEHULVRQO\YDOLGIRUSHUFHQWDQGLVREWDLQHG
B
IURPWKHVWDQGDUGQRUPDOWDEOH,WZLOOEHGLIIHUHQWIRURWKHUSHUFHQWDJHV
IRU n DV n =
Testing Hypotheses
7KHREMHFWLYHRIK\SRWKHVLVWHVWLQJLVWRWHVWDK\SRWKHVLVFRQFHUQLQJWKHYDOXHRIRQHRUPRUHSRSXODWLRQSDUDPHWHUV,WLVD
WRROXVHGWRDLGDUHVHDUFKHULQPDNLQJDGHFLVLRQDERXWDSRSXODWLRQEDVHGXSRQLQIRUPDWLRQFRQWDLQHGLQDUDQGRPVDPSOH
Basic Principles of Testing Hypotheses: $statistical hypothesis LVDVWDWHPHQWDERXWRQHRUPRUHSRSXODWLRQV7KHnull
hypothesis H LVDK\SRWKHVLVWKDWRQHZRXOGOLNHWRUHMHFW7KHalternative hypothesis, H LVDK\SRWKHVLVWKDWDRQHKRSHV
WRVXSSRUW
$one-tailed test RIDK\SRWKHVLVLVDWHVWLQZKLFKWKHDOWHUQDWLYHLVRQHGLUHFWLRQDOOHVVWKDQRUJUHDWHUWKDQ$two-tailed
test RIDK\SRWKHVLVLVDWHVWLQZKLFKWKHDOWHUQDWLYHLVQRWRQHGLUHFWLRQDOQRWHTXDOWR
$type I error KDVEHHQFRPPLWWHGLIZHUHMHFW H ZKHQLQIDFWLWLVWUXH7KHSUREDELOLW\RIDW\SH,HUURULVGHQRWHGDV α
DQGLVDOVRNQRZQDVWKHlevel of significance. $type II error KDVEHHQFRPPLWWHGLIZHGRQRWUHMHFW H ZKHQLQIDFW H LV
IDOVH7KHSUREDELOLW\RIDW\SH,,HUURULVGHQRWHGE\ β 7KHQXPEHU − β LVNQRZQDVWKHpower of the test. 7KHREVHUYHG
OHYHORIVLJQLILFDQFHRUWKHHVWLPDWHGYDOXHRI α LVNQRZQDVWKHP±YDOXHRIWKHWHVW
General Testing Procedure:
Step 16HWXSWKHQXOOK\SRWKHVLV H θ = θ ZKHUH θ LVWKHSDUDPHWHURILQWHUHVWDQG θ LVWKHFODLPHGYDOXHRIWKH
SDUDPHWHU
Step 26HWXSDQDSSURSULDWHDOWHUQDWLYHK\SRWKHVLVXVLQJWKHREMHFWLYHRIWKHVWXG\ Hθ > θ RU Hθ < θ RUҏ Hθ ≠ θ Step 36HOHFWDQDSSURSULDWHWHVWVWDWLVWLFXVLQJWKHIDFWVNQRZQLQWKHSUREOHP
Step 4&RPSXWHWKHP±YDOXHRIWKHWHVW
Step 5&RPSDUHWKHP±YDOXHRIWKHWHVWZLWKWKHOHYHORIVLJQLILFDQFH α DQGUHMHFW H LIWKHP±YDOXHLVOHVVWKDQ α Step 6:ULWHWKHFRQFOXVLRQLQWHUPVRIWKHPDLQREMHFWLYHRIWKHSUREOHP
Mathematics Basic Guide
43
Testing a Claim about a Mean
X − µ
ZKHUH µ LVWKHFODLPHGPHDQLI σ LVXQNQRZQUHSODFHLWZLWK S WKHVDPSOHVWDQGDUG
σ n
GHYLDWLRQ$VDQH[DPSOHOHW¶VVXSSRVHWKDWWKHORQJGLVWDQFHWHOHSKRQHFKDUJHVGXULQJDJLYHQPRQWKIRUDUDQGRPVDPSOH
RISULYDWHFXVWRPHUV\LHOGHGDQDYHUDJHRIZLWKDVWDQGDUGGHYLDWLRQRI7HVWWKHK\SRWKHVLVWKDWWKHWUXH
DYHUDJHPRQWKO\ELOOLQJLVJUHDWHUWKDQZLWKSHUFHQWFRQILGHQFH
7KHWHVWVWDWLVWLFLV Z =
Step 1: H µ = Step 2 H µ > X − µ
− = S n
Step 4:P±YDOXH = P Z > = Step 5:P±YDOXH= > α = VRGRQRWUHMHFW H Step 6:7KHUHLVQRVLJQLILFDQWHYLGHQFHLQWKHVDPSOHWRVXSSRUWWKHFODLPWKDWWKHWUXHDYHUDJHPRQWKO\ELOOLQJLVJUHDWHU
WKDQ
Step 3:7HVWVWDWLVWLFLV Z =
=
Tests of Proportion
pÖ − p
ZKHUH p LVWKHFODLPHGSURSRUWLRQRIVXFFHVV([DPSOH$FRPPRQO\SUHVFULEHGGUXJRQWKH
p q n
PDUNHWIRUUHOLHYLQJQHUYRXVWHQVLRQLVEHOLHYHGWREHRQO\HIIHFWLYH([SHULPHQWDOUHVXOWVZLWKDQHZGUXJDGPLQLVWHUHG
WRDUDQGRPVDPSOHRIDGXOWVZKRZHUHVXIIHULQJIURPQHUYRXVWHQVLRQVKRZHGUHFHLYHGUHOLHI,VWKLVVXIILFLHQWGDWD
IRUXVWRFRQFOXGHWKDWWKHQHZGUXJLVVXSHULRUWRWKHFRPPRQO\SUHVFULEHGRQH"
7HVWVWDWLVWLF Z =
Step 1 H p = Step 2 H p > Step 37HVWVWDWLVWLFLV Z =
pÖ − p
p q n
=
− = Step 4P±YDOXH = P Z > = Step 5P±YDOXH= < α = VRUHMHFW H Step 67KHUHLVVXIILFLHQWHYLGHQFHWRFRQFOXGHWKDWWKHQHZGUXJLVVXSHULRUWRWKHFRPPRQO\SUHVFULEHGRQH
Correlation and Regression
7KHUHODWLRQVKLSEHWZHHQWZRYDULDEOHV x DQGy FDQEHYLVXDOL]HGE\SORWWLQJWKHSRLQWVRQDWZRGLPHQVLRQDOFRRUGLQDWH
V\VWHP7KLVLVNQRZQDVDscatter plot7KHSDLUHGGDWDEHORZRQWKHDPRXQWRISDSHUGLVFDUGHGE\KRXVHKROGVFRQVLVWRI
ZHLJKWLQSRXQGVRIGLVFDUGHGSDSHUDQGVL]HRIKRXVHKROG
Discarded paper data:
3DSHUOEV
+RXVHKROGVL]H
44
Mathematics Basic Guide
3DSHUOEV
7KHVFDWWHUSORWIRUWKLVGDWDDSSHDUVDVIROORZV
12
10
8
6
4
2
0
0
2
4
6
8
+RXVHKROGVL]H
CorrelationLVDPHDVXUHWKDWHYDOXDWHVWKHVWUHQJWKRIWKHOLQHDUUHODWLRQVKLSLIDQ\EHWZHHQWZRYDULDEOHV7KHSRSXODWLRQ
COV X Y ZKHUH
FRUUHODWLRQFRHIILFLHQWWKHWUXHOLQHDUUHODWLRQVKLSEHWZHHQWZRYDULDEOHVLVGHILQHGDV ρ =
SD X SD Y COV X Y = E X − E X Y − E Y LVWKHSRSXODWLRQcovarianceEHWZHHQ X DQG Y DQG SD X DQG SDY DUHWKH
SRSXODWLRQVWDQGDUGGHYLDWLRQVIRU X DQG Y UHVSHFWLYHO\
7KH sample correlation coefficientLV
r=
∑ ( X − X )(Y − Y )
∑(
X−X
) ∑(
Y −Y
)
=
n∑ XY − ∑ X ∑ Y
n∑ X − (∑ X )
n∑ Y − ( ∑ Y )
2QHFDQVKRZWKDW r EHORQJVWR>@,I r LVFORVHWRWKHSDLUHGGDWDVDWLVILHVDZHDNOLQHDUUHODWLRQVKLSDQGZKHQ r LV
FORVHWRWKHSDLUHGGDWDVDWLVILHVDVWURQJOLQHDUUHODWLRQVKLS$SRVLWLYHFRUUHODWLRQVXJJHVWVy LQFUHDVHVDV x LQFUHDVHVDQG
DQHJDWLYHFRUUHODWLRQVXJJHVWVWKDW y GHFUHDVHVDV x LQFUHDVHV,IZHFRQVLGHURXUSUHYLRXVH[DPSOHWKHFRUUHODWLRQ
FRHIILFLHQWIRUWKHGLVFDUGHGSDSHUGDWDLVZKLFKLQGLFDWHVPRGHUDWHO\SRVLWLYHOLQHDUFRUUHODWLRQEHWZHHQWKH
KRXVHKROGVL]HDQGWKHZHLJKWRIGLVFDUGHGSDSHU7KLVDOVRVXJJHVWVWKDWDVWKHKRXVHKROGVL]HLQFUHDVHVWKHZHLJKWRI
GLVFDUGHGSDSHUDOVRLQFUHDVHV
$FROOHFWLRQRISDLUHGGDWD x i y i IRU i = n VDWLVILHVDsimple linear regression modelLIWKHUHH[LVW σ α DQG β VXFK
WKDWIRUHDFK xi WKH yi LVDQREVHUYDWLRQIURPDN αxi + β σ :KHQWKHDEVROXWHYDOXHRIWKHFRUUHODWLRQFRHIILFLHQWLV
FORVHWRWKHQ\L ≈ α xi + β IRU i = n 7KHJUDSKRI y = α + β x LVFDOOHGWKHregression line7KHYDOXHV α DQG β DUH
HVWLPDWHGDV a DQG b UHVSHFWLYHO\ZKHUH a = Y − bX DQG b =
HVWLPDWHGUHJUHVVLRQOLQHLV y = + x
Mathematics Basic Guide
n
∑ XY − ∑ X ∑ Y )RUWKHGLVFDUGHGSDSHUGDWDWKH
n∑ X − (∑ X )
45
Bibliography
Bellman, Alan, et. al. Algebra: Tools for a Changing World.
Needham, MA: Prentice-Hall, 2001.
Eves, Howard. An Introduction to the History of Mathematics.
Philadelphia: Saunders College, 1990.
Hirsch, Christian R., et. al. Geometry, 2nd ed.
Glenview, IL: Scott Foresman, 1987.
Hornsby, John and Margaret L. Lial. A Graphical Approach to Precalculus, 2nd ed.
Reading, MA: Addison Wesley, 1999.
Larson, Roland E., Robert P. Hostetler, and Bruce H. Edwards.
Precalculus with Limits: A Graphing Approach.
Lexington, MA: D.C. Heath, 1995.
Lial, Margaret L. and Charles D. Miller. Trigonometry, 2nd ed.
Glenview, IL: Scott Foresman, 1983.
Mendenhall, William, Richard L. Schaeffer, and Dennis D. Wackerly.
Mathematical Statistics with Applications.
Boston: Duxbury Press, 1986.
Moore, David A. The Basic Practice of Statistics.
New York: W.H. Freeman, 1999.
Sobel, Max and Norbert Lerner. Precalculus Mathematics, 5th ed.
New York: Prentice Hall, 1995.
46
Mathematics Basic Guide