Print Test 3/20/15 5:59 PM PRINTABLE VERSION Practice Test 2 Question 1 2. Find the domain of f (x, y) = √‾ x‾‾‾‾ − y‾ a) {(x, y)|x > y2 } b) {(x, y)|x ≥ y2 } c) {(x, y)|x < y2 } d) all values on the xy-plane e) {(x, y)|x ≤ y2 } Question 2 Identify the correct sketch of the surface x − 4y2 = 0 . https://assessment.casa.uh.edu/Assessment/PrintTest.htm Page 1 of 10 Print Test 3/20/15 5:59 PM a) b) https://assessment.casa.uh.edu/Assessment/PrintTest.htm Page 2 of 10 Print Test 3/20/15 5:59 PM c) Question 3 The surfaces x + 7 y + 2 z = 2 and x + y − 3 z = 2 intersect in a space curve C. Determine the projection of C onto the xy-plane. a) 8 x + 23 y = 10 b) 5 x + 23 y = 10 c) 23 x + 5 y = −10 d) 5 x + 26 y = 10 e) −x + 23 y = 10 Question 4 Identify the level curves of the given surface: f (x, y) = ln(4 x2 + 4 y2 ) a) parabolas https://assessment.casa.uh.edu/Assessment/PrintTest.htm Page 3 of 10 Print Test 3/20/15 5:59 PM b) circles c) ellipses d) exponentials e) logarithms Question 5 Find an equation for the the level curve of f (x, y) = 1 − 6x2 − 4y2 that contains the point P(0, 1) . a) 6 x2 + 4 y2 − 1 = 0 b) 6 x2 + 4 y2 + 8 = 0 c) 6 x2 + 4 y2 − 4 = 0 d) 6 x2 + 4 y2 − 2 = 0 e) 6 x2 + 4 y2 − 5/4 = 0 Question 6 2 −y ‾. Calculate fx given f (x, y) = 2 √‾ x‾‾‾‾ a) −x 2 −y ‾ 2 √x‾‾‾‾‾ b) 2x 2 −y ‾ √x‾‾‾‾‾ c) 2x − 1 2 −y ‾ √x‾‾‾‾‾ d) 1 2 −y ‾ 4 √x‾‾‾‾‾ https://assessment.casa.uh.edu/Assessment/PrintTest.htm Page 4 of 10 Print Test e) 3/20/15 5:59 PM − 1 2 −y ‾ √‾x‾‾‾‾ Question 7 Calculate fz given f (x, y, z) = ln( xy ) − 4 ye2 xz . a) b) c) d) e) Question 8 State whether the set is open, closed, or neither: {(x, y, z) : x2 + y2 < 5, 0 < z < 3} . a) The set is neither open nor closed. b) The set is closed. c) The set is open. Question 9 Calculate fxy given f (x, y) = ln √‾ 3‾‾‾‾‾‾‾‾ x2 + 3 y2‾ . a) −x2 + y2 (x 2 + y 2 ) 2 https://assessment.casa.uh.edu/Assessment/PrintTest.htm Page 5 of 10 Print Test b) c) 3/20/15 5:59 PM −2 xy (x 2 + y 2 ) 2 2 (3 x2 − y2 )y (x 2 + y 2 ) d) y x2 + y2 e) x x2 + y2 3 Question 10 Calculate a) 0 b) 16 49 c) 16 343 d) 4 343 e) 16 7 lim (x,y)→(0,0) 4 xy2 (3 x + 2 y) 3 along the path y = 2x . Question 11 Find the gradient vector for f (x, y) = 2 x2 y + 4 xy2 at the point P(3, 2) . a) ∇f (3, 2) = 4i + 24j b) ∇f (3, 2) = 84i c) ∇f (3, 2) = 66i + 40j https://assessment.casa.uh.edu/Assessment/PrintTest.htm Page 6 of 10 Print Test 3/20/15 5:59 PM d) ∇f (3, 2) = 40i + 66j e) ∇f (3, 2) = 8i + 66j Question 12 Find the directional derivative of f (x, y, z) = x2 y + z2 x + y2 z at the point P(1, 0, 3) in the direction of j − 2k . a) √5‾ 5 b) −11√5‾ 5 c) −11 d) 27 e) −6√5‾ 5 Question 13 Suppose that the temperature at each point on a metal plate is given by the function T(x, y) = 3 ex cos(y) + 4 ey cos(x) + 3 . In what direction does the temperature increase most rapidly at the point (0,0) and what is this rate of increase? a) The temperature increases most rapidly in the direction 3i − 4j; rate = √26 ‾‾ ‾ b) The temperature increases most rapidly in the direction 3i + 4j; rate = 5 c) The temperature increases most rapidly in the direction 4i − 3j; rate = √7 ‾ d) The temperature increases most rapidly in the direction 4i + 3j; rate = 5 e) The temperature increases most rapidly in the direction 3i + 4j; rate = √7 ‾ Question 14 Find the rate of change of f (x, y, z) = xy − 2 yz with respect to t along the curve r(t) = 2 t i + t2 j + t3 k . https://assessment.casa.uh.edu/Assessment/PrintTest.htm Page 7 of 10 Print Test 3/20/15 5:59 PM a) −10 t4 + 6 t2 b) 10 t4 − 6 t2 c) −2 t3 − t2 + 2 t d) 3 t2 + 2 t + 2 e) 2 t3 + t2 − 2 t Question 15 Find du t for u = 5 ex sin(y) + 2 ey sin(x) where x = and y = 2 t . dt 2 a) 5/2 et/2 sin(2 t) + e2 t cos(t/2) − 10 et/2 cos(2 t) − 4 e2 t sin(t/2) b) 1/2 tet/2 (2 e3/2 t cos(t/2) + 8 e3/2 t sin(t/2) + 5 sin(2 t) + 20 cos(2 t)) c) 5 et/2 sin(2 t) + 2 e2 t cos(t/2) + 5 et/2 cos(2 t) + 2 e2 t sin(t/2) d) 5/2 et/2 sin(2 t) + e2 t cos(t/2) + 10 et/2 cos(2 t) + 4 e2 t sin(t/2) e) 5 et/2 sin(2 t) + 2 e2 t cos(t/2) − 5 et/2 cos(2 t) − 2 e2 t sin(t/2) Question 16 Find an equation for the tangent plane and scalar parametric equations for the normal line for x3 + y3 = z2 at the point P(1, 2, −3) . a) Tangent plane: 4 x + y + z − 7 = 0 ; normal line: b) Tangent plane: x + 4 y + 2 z − 1 = 0 ; normal line: c) Tangent plane: x + 4 y + 2 z − 15 = 0 ; normal line: {x(t) = 4 t + 1, y(t) = −2 t + 2, z(t) = 2 t − 3} {x(t) = t + 1, y(t) = −4 t + 2, z(t) = 2 t − 3} {x(t) = t + 1, y(t) = 4 t + 2, z(t) = −2 t − 3} https://assessment.casa.uh.edu/Assessment/PrintTest.htm Page 8 of 10 Print Test 3/20/15 5:59 PM d) Tangent plane: x + 4 y + z + 10 = 0 ; normal line: {x(t) = t + 1, y(t) = t + 2, z(t) = t − 3} e) Tangent plane: x + 4 y + 2 z − 3 = 0 ; normal line: {x(t) = t + 1, y(t) = 4 t + 2, z(t) = 2 t − 3} Question 17 Find the stationary points and the local extreme values for f (x, y) = 5 x3 + 5 y3 − 30 xy . a) (0, 0) gives a local max with f = 0 and (2, 2) gives a local min with f = −40 b) (0, 0) is a saddle point and (2, 2) gives a local min with f = −40 c) (0, 0) is a saddle point and (−2, −2) gives a local max with f = 40 d) (2, 2) gives a local min with f = −40 and (−2, −2) gives a local max with f = 40 e) (2, 2) gives a local min with f = −40 Question 18 Maximize 3x + 2y + 2z on the sphere x2 + y2 + z2 = 12 . a) The maximum is −2√51 ‾‾ ‾ b) The maximum is 14√51 ‾‾ ‾ 17 c) The maximum is 288√51 ‾‾ ‾ 289 d) There is no maximum. e) The maximum is 2 √51 ‾‾ ‾ Question 19 3 Use differentials to find the approximate value of √78 ‾‾ ‾ ⋅ √10 ‾‾ ‾. a) 97 6 https://assessment.casa.uh.edu/Assessment/PrintTest.htm Page 9 of 10 Print Test 3/20/15 5:59 PM b) 115 6 c) 119 6 d) 575 36 e) 679 36 Question 20 Determine whether or not the vector function (4 ex + 2 xy) i + (x2 + sin(y)) j is the gradient ∇f (x, y) of a function everywhere defined. If so, find all the functions with that gradient. a) f (x, y) = 4 ex + x2 y − cos(y) + C b) f (x, y) = 4 ex y + xy2 + C c) f (x, y) = 1/3 x3 + sin(y)x + C d) f (x, y) = 4 ex + 2 xy + C e) Not a gradient https://assessment.casa.uh.edu/Assessment/PrintTest.htm Page 10 of 10
© Copyright 2025