ID: A ACP Semester 2 Review Answer Section MULTIPLE CHOICE 1. ANS: D PTS: 1 REF: 93d13687-9631-11dd-8a40-001185f11039 OBJ: Problem-Solving Application NAT: NT.CCSS.MTH.10.7.7.SP.6 STA: TEKS.7.6.H TOP: Making Predictions KEY: probability | prediction | problem solving DOK: DOK 2 2. ANS: A PTS: 1 REF: fa53f47c-6ff9-11df-9c81-001185f0d2ea NAT: NT.CCSS.MTH.10.7.7.SP.6 STA: TEKS.7.6.I KEY: probability | experimental DOK: DOK 1 3. ANS: D The 6 outcomes of the spinner not landing on A and rolling a prime number in the format (spinner, number cube) are (B, 2), (B, 3), (B, 5), (C, 2), (C, 3), and (C, 5). Since there are 18 possible outcomes in the sample space, the probability of the spinner not landing on A and rolling a prime 6 1 number is , or . 18 3 Feedback 4 The probability of the spinner landing on B or rolling a 4 is B The probability of the spinner not landing on C and rolling a 3 is C The probability of the spinner landing on A or rolling a number greater than 2 is not D 9 , not 1 A 1 9 18 . , not 13 18 . 7 9 , 2 . 9 That’s correct! PTS: NAT: STA: KEY: DOK: 4. ANS: OBJ: STA: DOK: 5. ANS: OBJ: STA: KEY: 1 NT.CCSS.MTH.10.7.7.SP.8.a | NT.CCSS.MTH.10.7.7.SP.8.b | NT.CCSS.MTH.10.K-12.MP.5 TEKS.7.6.I compound events | identifying outcomes | probability | sample space | tree diagram DOK 2 C PTS: 1 REF: 9922c541-9631-11dd-8a40-001185f11039 Finding the Area of a Composite Figure NAT: NT.CCSS.MTH.10.7.7.G.6 TEKS.7.9.C TOP: Area of Irregular Figures KEY: area | irregular figure DOK 3 C PTS: 1 REF: 940f3413-9631-11dd-8a40-001185f11039 Solving Two-Step Equations NAT: NT.CCSS.MTH.10.7.7.EE.4 TEKS.7.11.A TOP: Solving Two-Step Equations solving | equation | two-step equation DOK: DOK 2 1 ID: A 6. ANS: C PTS: 1 NAT: NT.CCSS.MTH.10.7.7.EE.4 TOP: Translating Words into Math 7. ANS: D PTS: 1 STA: TEKS.7.11.B 8. ANS: A Compare the corresponding sides. MN 9 3 = = RS 15 5 REF: STA: KEY: NAT: DOK: 94737e8f-9631-11dd-8a40-001185f11039 TEKS.7.11.A multi-step DOK: DOK 2 NT.CCSS.MTH.10.6.6.EE.7 DOK 2 MP 6 3 = = RU 10 5 Since the measures of the corresponding angles are equal and the ratios of the corresponding sides are equivalent, the rectangles are similar. The similarity ratio is 3 5 . rectangle MNOP ~ rectangle RSTU Feedback A B C D Correct! Compare the corresponding sides. Check whether the ratios of the corresponding sides are equivalent. Check whether the ratios of the corresponding sides are equivalent. PTS: 1 DIF: Advanced STA: TEKS.8.3.A TOP: Similar Figures and Proportions 2 ID: A 9. ANS: B height of maple shadowof maple = height of pine shadowof pine x 20.02 = 21.61 4.9 x 20 ≈ 20 5 x ≈4 20 x ≈ 80 Write a proportion using the corresponding sides. Substitute. Use compatible numbers to estimate. Simplify. Multiply to isolate the variable. The maple tree is about 80 feet tall. Feedback A B C D Use compatible numbers to estimate. Correct! Set up a proportion and estimate. Set up a proportion and estimate. PTS: 1 DIF: Average OBJ: Estimating with Indirect Measurement STA: TEKS.8.3.A TOP: Using Similar Figures KEY: indirect measurement | similar 10. ANS: A Multiply the coordinates by the scale factor to find the vertices of the image. Feedback A B C D Correct! Did you multiply each of the coordinates by the scale factor? Did you remember to list the x-coordinates first and the y-coordinates second? Did you perform the dilation on each of the vertices? PTS: 1 DIF: Average REF: Page 245 OBJ: 5-6.3 Using the Origin as the Center of Dilation STA: TEKS.8.3.B TOP: 5-6 Dilations 3 NAT: 8.3.2.c KEY: coordinate plane | dilation ID: A 11. ANS: A Under a dilation (x, y) → (kx, ky), the lengths of the sides change by a scale factor of k. So, the length of 2 each segment of the figure changes by a scale factor of . 3 Feedback A B C D 12. 13. 14. 15. 16. 17. That’s correct! The dilation does not preserve the length of the segment. 3 The scale factor of the dilation is not . 2 The scale factor of the dilation is not 2. PTS: KEY: ANS: STA: ANS: OBJ: STA: DOK: ANS: STA: ANS: STA: ANS: STA: ANS: STA: 1 NAT: NT.CCSS.MTH.10.8.8.G.3 STA: TEKS.8.3.B dilation | scale factor | length of line segment DOK: DOK 1 D PTS: 1 NAT: NT.CCSS.MTH.10.8.8.G.3 TEKS.8.3.C DOK: DOK 2 C PTS: 1 REF: 986ff3b7-9631-11dd-8a40-001185f11039 Using a Dilation to Reduce a Figure NAT: NT.CCSS.MTH.10.8.8.G.3 TEKS.8.3.C TOP: Dilations KEY: coordinate plane | dilation DOK 2 D PTS: 1 NAT: NT.CCSS.MTH.10.8.8.SP.2 TEKS.8.5.D DOK: DOK 1 C PTS: 1 NAT: NT.CCSS.MTH.10.8.8.SP.2 TEKS.8.5.D DOK: DOK 2 D PTS: 1 NAT: NT.CCSS.MTH.10.8.8.F.3 TEKS.8.5.I DOK: DOK 3 A PTS: 1 NAT: NT.CCSS.MTH.10.8.8.F.3 TEKS.8.5.I DOK: DOK 1 4 ID: A 18. ANS: D First, find the function’s rate of change using the first two ordered pairs in the table. 25 − 19 6 = =2 6−3 3 Then, find the function’s initial value using the equation s = mt + b, the slope, and one ordered pair from the table. 19 = 2 ( 3 ) + b 19 = 6 + b 13 = b So, the function represented by the table is s = 2t + 13. Feedback A B C D The rate of change is not negative. The initial value is not 2. The initial value is not 0. That’s correct! PTS: 1 NAT: NT.CCSS.MTH.10.8.8.F.4 | NT.CCSS.MTH.10.K-12.MP.4 STA: TEKS.8.5.I KEY: constructing linear functions | analyzing tables DOK: DOK 1 19. ANS: C PTS: 1 REF: 911ba69b-6ab2-11e0-9c90-001185f0d2ea OBJ: Identifying Similarity Transformations NAT: NT.CCSS.MTH.10.8.8.G.4 STA: TEKS.8.10.A TOP: Similarity and Congruence Transformations KEY: dilation | transformation | similarity | congruence DOK: DOK 2 20. ANS: B Two figures are congruent if there exists a sequence of translations, reflections, and/or rotations that maps one figure to the other. Two figures are similar if there exists a sequence of translations, reflections, rotations, and/or dilations that maps one figure to the other. So, if the sequence of transformations includes a dilation, the figures are similar but not congruent. The figure with the vertices (−6, − 6), (−2, 2), (2, 2), (6, − 6) is the image of the given figure after a dilation with respect to the origin by a scale factor of 2. So, this figure is similar but not congruent to the given figure. Feedback A B C D This figure is the image of the given figure after a rotation 90° clockwise about the origin. That’s correct! This figure is the image of the given figure after a translation right 1 unit and down 3 units. This figure is the image of the given figure after a reflection across the x-axis. PTS: 1 NAT: NT.CCSS.MTH.10.8.8.G.4 | NT.CCSS.MTH.10.8.8.G.2 STA: TEKS.8.10.A KEY: similar figures | congruent figures | translation | reflection | rotation | dilation | sequence of transformations DOK: DOK 2 5 ID: A 21. ANS: A PTS: 1 REF: 9d5d10e5-9631-11dd-8a40-001185f11039 NAT: NT.CCSS.MTH.10.8.8.G.3 STA: TEKS.8.10.B TOP: Transformations KEY: transformation | reflection | coordinate plane DOK: DOK 1 22. ANS: D PTS: 1 NAT: NT.CCSS.MTH.10.8.8.G.3 STA: TEKS.8.10.B DOK: DOK 2 23. ANS: D PTS: 1 REF: MLC10917 NAT: NT.CCSS.MTH.10.8.8.G.3 STA: TEKS.8.10.C TOP: Translations in a Coordinate Plane KEY: translation DOK: DOK 1 24. ANS: B PTS: 1 NAT: NT.CCSS.MTH.10.8.8.G.3 STA: TEKS.8.10.C DOK: DOK 2 25. ANS: A When the dimensions of a triangle are increased by a factor of x, the perimeter is increased by a factor of x, and the area is increased by a factor of x2 . Feedback A B C D Correct! Check the change in the area. Check the change in the perimeter. Compare the perimeter and area of the original figure with the perimeter and area of the enlarged figure. PTS: 1 DIF: Average REF: Page 548 OBJ: 10-4.1 Comparing Perimeters and Areas STA: TEKS.8.10.D TOP: 10-4 Changing Dimensions KEY: length | width | perimeter | area | change 6 ID: A 26. ANS: A ÊÁ 1 1 ˆ˜˜ Á The vertices of figure A and figure B are shown in the table below. Since the dilation (x, y) → ÁÁÁÁ x, y ˜˜˜˜ ÁË 3 3 ˜¯ 1 transforms figure A to figure B, the scale factor is . 3 Preimage (−3, − 3) (−3, 9) Image (−1, − 1) (−1, 3) (3, 6) (3, − 6) (1, 2) (1, − 2) Feedback A B C D 27. 28. 29. 30. 31. 32. 33. 34. That’s correct! The distance from the origin to a vertex of figure B is not half of the distance from the origin to the corresponding vertex of figure A. Figure B is not the same size figure A. Figure B is not larger than figure A. PTS: KEY: ANS: STA: ANS: NAT: KEY: ANS: NAT: KEY: ANS: STA: ANS: STA: ANS: STA: ANS: OBJ: STA: KEY: ANS: STA: 1 NAT: NT.CCSS.MTH.10.8.8.G.3 STA: TEKS.8.10.D dilation | scale factor DOK: DOK 1 A PTS: 1 NAT: NT.CCSS.MTH.10.8.8.SP.1 TEKS.8.11.A DOK: DOK 1 C PTS: 1 REF: f9e15b9c-6ff9-11df-9c81-001185f0d2ea NT.CCSS.MTH.10.8.8.SP.1 STA: TEKS.8.11.A association | relationship | scatter plot DOK: DOK 1 C PTS: 1 REF: f9e182ac-6ff9-11df-9c81-001185f0d2ea NT.CCSS.MTH.10.8.8.SP.1 STA: TEKS.8.11.A association | relationship | scatter plot DOK: DOK 1 D PTS: 1 NAT: NT.CCSS.MTH.10.6.6.SP.5.c TEKS.8.11.B DOK: DOK 2 B PTS: 1 NAT: TEKS.8.12.A TEKS.8.12.A DOK: DOK 1 D PTS: 1 NAT: TEKS.8.12.A TEKS.8.12.A DOK: DOK 2 C PTS: 1 REF: 96da7a3b-9631-11dd-8a40-001185f11039 Problem-Solving Application NAT: NT.CCSS.MTH.10.7.7.RP.3 TEKS.8.12.D TOP: Simple Interest interest | simple interest DOK: DOK 1 A PTS: 1 NAT: NT.CCSS.MTH.10.7.7.RP.3 TEKS.8.12.D DOK: DOK 2 7 ID: A 35. ANS: B The formula for the surface area of a rectangular prism is S = 2™w + 2™h + 2wh, where ™ is the length, w is the width, and h is the height. S = 2 (9 ) (7 ) + 2 (9 ) (5 ) + 2 (7 ) (5 ) = 126 + 90 + 70 = 286 2 Thus, the surface area of the prism is 286 m . Feedback A B C D 36. 37. 38. 39. 40. The prism has 6 faces, not just 3 faces. That’s correct! 3 315 m is the volume of the prism. This is the surface area of a cube with side length 9 m. PTS: KEY: ANS: STA: ANS: STA: ANS: OBJ: STA: KEY: ANS: NAT: STA: ANS: NAT: STA: 1 NAT: NT.CCSS.MTH.10.7.7.G.6 STA: TEKS.8.7.B rectangular prism | surface area DOK: DOK 1 A PTS: 1 NAT: NT.CCSS.MTH.10.6.6.G.4 TEKS.8.7.B DOK: DOK 2 C PTS: 1 NAT: NT.CCSS.MTH.10.8.8.EE.7 TEKS.8.8.A DOK: DOK 2 D PTS: 1 REF: 9f83fac7-9631-11dd-8a40-001185f11039 Application NAT: NT.CCSS.MTH.10.8.8.EE.7 | NT.CCSS.MTH.10.8.8.EE.7.b TEKS.8.8.A TOP: Solving Equations with Variables on Both Sides multi-step equation | solve DOK: DOK 1 C PTS: 1 NT.CCSS.MTH.10.8.8.EE.7 | NT.CCSS.MTH.10.8.8.EE.7.b TEKS.8.8.C DOK: DOK 2 A PTS: 1 NT.CCSS.MTH.10.8.8.EE.7 | NT.CCSS.MTH.10.8.8.EE.7.b TEKS.8.8.C DOK: DOK 2 NUMERIC RESPONSE 1. ANS: 299 PTS: OBJ: TOP: 2. ANS: 1 REF: 99e6204d-9631-11dd-8a40-001185f11039 Application NAT: NT.CCSS.MTH.10.7.7.SP.6 STA: TEKS.7.6.H Making Predictions KEY: multi-step DOK: DOK 2 902.5 PTS: 1 REF: 92f83f1d-9631-11dd-8a40-001185f11039 NAT: NT.CCSS.MTH.10.6.6.G.1 STA: TEKS.7.9.C TOP: Area of Composite Figures DOK: DOK 3 8 ID: A 3. ANS: 44.02 PTS: NAT: KEY: DOK: 1 REF: fa136d67-6ff9-11df-9c81-001185f0d2ea NT.CCSS.MTH.10.6.6.SP.5.c STA: TEKS.8.11.B residual | linear | least-squares | regression | absolute | deviation | goodness | of | fit DOK 2 SHORT ANSWER 1. ANS: A) Sample answer: Austin and Berenice are riding a train. Austin is in the sixth train car from the end of the train and is walking towards the end at a rate of half a car per minute. Berenice is at the end of the train and is walking forward at a rate of two and a half cars per minute. At what time will they meet? B) x = 2; Sample answer: They will meet after 2 minutes. PTS: 1 NAT: TEKS.8.8.B STA: TEKS.8.8.B DOK: DOK 2 9
© Copyright 2025